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Uber Dreiecke

Einleitung

Die Fliacheninhaltsformel fiir Fusspunktdreiecke und eine Formel fiir die Abstands-
summen beliebiger Punkte von den Dreiecksseiten sind nebst meistens bekannten
Konsequenzen in den ersten drei Paragraphen aufgefiihrt.

Im vierten Paragraphen gelingt es, die in der Dreiecksgeometrie wichtigen
Quotienten p = /R (r Inkreis-, R Umkreisradius) und ¢ = Fy/F (Fy Flicheninhalt
des Hohenfusspunktdreiecks, F Flicheninhalt des Dreiecks selbst) zu charakteri-
sieren. Es zeigt sich, dass man alle gegeniiber Kongruenz und Ahnlichkeit invarianten
Dreiecksgréssen mit Hilfe von $ und ¢ darstellen kann.

Im fiinften Paragraphen werden diese Ergebnisse benutzt, um den Schnittpunkt
der Winkelhalbierenden w in bezug auf die Schnittpunkte der Schwerelinien und der
Hohen s bzw. §) zu lokalisieren. Fiir Dreiecke, die nicht gleichseitig sind, liegt w stets
in dem punktierten Kreis mit | s — V) | als Durchmesser, der durch s und Yy liuft, wobei
der Mittelpunkt des FEUERBACHREreises | ausgelassen ist. Diese Bedingung ist auch
hinreichend, d.h. jeder Punkt in diesem Kreis ist in einem geeigneten Dreieck Schnitl-

punkt der Winkelhalbierenden. Das Dreieck ist durch diese Bedingung eindeutig
bestimmt. '

sp{fz

-+ .
\mhke/iger

Bereich

Im sechsten Paragraphen wird gezeigt, dass man im allgemeinen ein Dreieck nicht
aus den drei Schnittpunkten s, § und w (mit Zirkel und Lineal) konstruieren kann.
Bei festgehaltenen s und Y liegen die Schnittpunkte w sowohl der konstruierbaren als
auch der wicht konstruierbaren Dreiecke vn dem Krers diber s by dicht.

Die ersten drei Paragraphen und die bekannte Tatsache, dass man ein Dreieck
nicht generell aus s, § und w konstruieren kann, sind lediglich dargestellt, um zu
zeigen, wie man mit den Mitteln der elementaren Vektorrechnung die Ergebnisse



50 K. KoprerMANN: Uber Dreiecke

ziigig bekommt. Die Vorteile der Vektorrechnung, die heutzutage immer mehr
Eingang in die Schulmathematik findet, liegen auf der Hand. Liastige Fallunter-
scheidungen werden iiberfliissig und Konstruierbarkeitsfragen werden direkt zu-
géanglich.

Von den mannigfachen Anwendungen sind nur ein paar aufgefiihrt. Z. B. bekommt
man scharfe Abschitzungen der gegeniiber Kongruenz und Ahnlichkeit invarianten
Dreiecksgrossen aus den Abschidtzungen (**) des vierten Paragraphen.

1. Elementares?)

Ein Dreieck ist ein geordnetes Paar (a, b) zweier linear unabhingiger Vektoren
a und b. Der relative Flicheninhalt des durch die Vektoren a und b aufgespannten
Parallelogramms ist ¥ =a, b= — b, - a. Dabeisinda, undb, dieaufabzw.b senk-
recht stehenden Vektoren, die dieselben Lingen a bzw. b wie a und b haben und mit
a bzw. b positiv orientiert sind. Wir konnen ohne Einschrinkung der Allgemeinheit
(evtl. nach Umorientierung von (a, b)) FF > 0 voraussetzen.

Die Schnittpunkte der Mittelsenkrechten, der Schwerelinien, der Hohen und der
Winkelhalbierenden ergeben sich der Reihe nach zu

—ab, a+b

__ 9y _ __a-b _ab+4ba
m= T F ros=—g— [)——T—C_L, UJ-———**—U“—“ (1)
Dabeiist ¢:=b — a und U := a + b + c gesetzt.
Fiir den Umkreisradius R := | m | und den Inkreisradius 7 := w - a, /a bekommt
man sofort
abc F
R=—%, =7 ()

Die Punkte m, s, ) und der Mittelpunkt § des FEUERBACHKkreises liegen auf der
EuLERrschen Geraden, und es gilt

b=a+b-2m, 2f=a+b—m, (3)
woraus sich sofort
3(6—m)=ph—m, 2(f-m=h-—m (39
ergibt. Die Punkte b, {f, 5, m stimmen genau dann iiberein, wenn schon zwei von ihnen
iibereinstimmen, und genau dann ist das Dreieck gleichseitig.

Zur Rechentechnik seien noch die folgenden Formeln notiert: sofort einzusehen ist
Fp),=a'pb—b-pa fiir belicbige Punkte p. Fiir insbesondere p = a erhdlt man
Fa; =a®*b— a-ba, Multiplikation mit b liefert F? = a2b? — (a - b)%, Multiplikation
mit ¢ liefert F2=a?b-¢— a- b a- ¢, analog bekommt man F2= —b%2a-¢c+ a-bb-¢
durch Addition ergibt sich 2 F2 =a?b-¢c—02a-¢c+ c2a-b.

2. Fusspunktdreiecke?)

Ist p ein beliebiger Vektor, so bilden die Projektionen der Endpunkte von p auf
die Seiten des Dreiecks (a, b) ein Dreieck mit den Ecken
a*p b-p
a? b b,
1) Siehe auch den ersten Teil meiner Arbeit ¢«Duale Basis und dualer Vektorraum», Math. Phys. Sem.

Ber. XIV, 1 (1967) 89-98.
%) Siehe auch die Darstellung von KooisTra [2].

(p—a)-c
62

ne: = a, ndb:= ne.=aqa-++ c.
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Der relative Flicheninhalt F, = n% - n® + n’ - n® + n% - n°des Dreiecks (n° — n?,
n? — n4) berechnet sich wegen a? b2 c?/F?F, = — F2p2 + 2F?m - p zu
pr(2m—
b= —‘““Zfﬁi’_}l)" F. 4)
Wegen p - (2m — p) = m? — (p — m)? hat man

Py
4R —— = R*— (p —m)?.

Also ist das Fusspunktdreieck dem Dreieck (a, b) gleichorientiert, wenn | p — m | < R,
entgegengesetzt orientiert, wenn | p — m | > R ist. Im Falle | p — m | = R hat man
degenerierte Fusspunktdreiecke. Man sieht ferner, dass fiir Fusspunktdreiecke stets
4 F,[F <1 ist, insbesondere gilt 4 F,/F = 1 genau dann, wenn p = m ist.

Firp=bgilt FI2°h-2m—-bh)=—2a-bb-cc-q,also

F=—2F 0500 )

Zusammen mit dem Vorhergehenden ist also |) — m | < R genau dann, wenn das
Dreieck (a,b) spitzwinkelig, |) — m | = R, genau dann, wenn es rechtwinkelig,
| h — m | > R genau dann, wenn es stumpfwinkelig ist. Ausserdem hat man nach (4')
stets — 2 < Fy/F; detaillierter ergibt sich mit ¢:= F/F sofort:gq = 1/4 fiir gleich-
seitige, 0 < ¢ <C 1/4 fiir spitzwinkelige, ¢ = O fiir rechtwinkelige und — 2 < ¢ < 0
fiir stumpfwinkelige Dreiecke.

Die Lange der Seite n® — n? ergibt sich wegen

azbz(%gb—aclzp 0)2:F2p2zu%|p|.

Analog bekommt man fiir die anderen Seitenlingen des Fusspunktdreiecks

(Flac) | p — a | und (F/bc) | p — b |. Also ergibt sich fiir den Umfang des Fusspunkt-
dreiecks

ab ac be
Fiir insbesondere p = § erhdlt man

__la-blc Ja-c}b [b-cla
Uf)— ab + ac + be ’

Fiir spitzwinkelige Dreiecke ist dann abc Uy = 2 F? und fiir stumpfwinkelige
(y > 7/2)3) abc Uy = — 2a-¢b - ¢, also mit (2)

F

<= (falls By < 321_)
Uf’ B a¢cb-¢ 4 (5,)
- S (fallsy > )

Den Inkreisradius g := | Fy |/Uy bekommt man aus (4') und (5') mit ¢ = Fy/F zu

\e qR(fallsoc,ﬂ,y< —’2’-) o

| C;‘E?l (fallsy > —nz—)

3) Die Winkel «, 3, y seien der Reihe nach durch die Produkte b - ¢, — ¢ - @, a * b definiert.
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Man sieht hier einen grundsitzlichen Unterschied zwischen spitz- und stumpfi-
winkeligen Dreiecken.

Wir werden spiter sehen, dass der Quotient ¢ = Fg/F, nicht der Inkreisradius des
Hohenfusspunktdreiecks, entscheidend ist. In der Tat wird sich herausstellen, dass man
alle gegeniiber Ahnlichkeit und Kongruenz invarianten «Dreiecksgrossen» durch die
Quotienten ¢ = Fy/F und p := /R darstellen kann.

3. Summen der Seitenabstinde?)

Die (orientierten) Abstinde eines Vektors p von den Seiten eines Dreiecks (a, b)
sind

a, b, <
Pr— P (p—a) ==
Thre Summe s(p) ergibt
a b, 4 F
o) =p- (S-S5 + )+ L

Die Vektoren mit konstanter Summe s(p) bilden also Geraden, die zua/a —b/b+ ¢/c
parallel sind. Wegen w —m=— R (a,/a —b,/b+ ¢, /c) und s(m) = R + 7 erhilt
man fiir beliebige Dreiecke

1
sp=—%@®P-m - (w-m+R+7. (7
Zusammen mit (3') ergibt sich daraus

3 (s(s) — s(m)) = s(b) — s(m), 2 (s(f) — s(m)) = s(h) — s(m) . (7')

Die Gleichung (7) hat einige Konsequenzen. Wegen s(w) = 37 bekommt man sofort
(w-—-m)2=R2—2Rv7r. Aus |w—f|=(1/2) R— 7 und () — m)2= R? — 4 ¢q R? (das
ist Gleichung (4)) erhélt man mit ¢ = F;/F

h—m)-(w—m)=R2—r2— Rr—qR? (8)
und (w — h)2 = 272 — 2 ¢ R% Zusammen haben wir also (8) und
w—-—m2=R:*—2Rr, () —m)2=R2— 49 R?, (w—h)2=22—29R2. (9)

Nun gibt es sicher einen Punkt m + % () — m) auf der EuLERschen Geraden, so
dass s(w) = s (m + & (h — m)) ist. Wire das nicht der Fall, so miisste namlich nach (7)
(p—m) « (w—m) =0 und s(w) + R + r sein. Wegen » < (1/2) R und ¢ < 1/4 ist das
Produkt (h — m)- (w — m) nie negativ, und es verschwindet nur fiir » = (1/2) R und
g = 1/4 (gleichseitiges Dreieck), und dann ist s(w) = 37 = R + r. Das ist ein Wider-
spruch.

Nach (7) und (8) bekommt man

2 __ 42 _ — 2
1 R*—»»—-Rr—gqR (r#%—R).

k R:2— 2Ry
Das ergibt fiir die Punkte auf der EuLERschen Geraden

(10)

s(m—l—l(b——m))-—:R-}—r-—%(R——Zr) (r#—;—R).

4) Siehe auch BERNSTEIN und STEINIG, Wissenswertes um das Dreieck, El. Math. 79, 8 (1964
TEINIG, Comparison of Two Inequalities for the Triangle, Acta Math. Sc. Hung. 76, 19-22 (1965)



K. KopFeErMANN: Uber Dreiecke 53

Da fiir Dreiecke, die nicht gleichseitig sind, stets £ > O ist, fillt s(p) auf der EULER-
schen Geraden von m nach ) hin monoton.
Zusammen mit (10) hat man auf der EuLERschen Geraden explizit

2
sm+ap-—m)=A5+(1+Ar+(1-H)R+AgR,
woraus man fiir A = 0, 1/3, 1/2, 1 der Reihe nach die Summen fiir m, s, f und } erhilt.

4. Die Quotienten r/R und Fy/F
Fiir beliebige Dreiecke mit den Winkeln «, f und y gilt

pr= —% = 4 sin % sin i; sin 12}- , ¢ = fﬁ? = 2 cosa cosf} cosy . (11)

Also sind p und ¢ gegeniiber Permutationen der Winkel invariant.

Wir wollen ohne Einschrinkung der Allgemeinheit 0 < a <<f <y, also 0 < a <
und o + 2 8 <& voraussetzen. Seien D= {(a, f): 0 < a < B, a+ 28 <a}, D,:=
{(o, ): 0<a<B,a+28<ma+pf>n2},D;:={(,f): 0<a<p,a+p <xm2}
Gebiete mit den (offenen) Réndern d,:={(o, f): 0 < a < B, a+ 2 =m}, by:=
{(o, B): 0 < a=p<af3},bg:={(r, B) : . = 0,0 < B < 7[2},04:= {(or, B) : 0 < x <,
o+ f = z/2}.

T S5 T
Tbgphin pprhind

Jeit
i

0 _‘? S

Das Gebiet D besteht aus den Winkelpaaren der Dreiecke mit 0 < a < g <4y.
Darunter sind D, die Winkelpaare der spitzwinkeligen, D, die der stumpfwinkeligen
und b, die der rechtwinkeligen Dreiecke. Auf den Rindern b, und b, liegen die Winkel-
paare der gleichschenkeligen, nicht gleichseitigen Dreiecke, und e:= {a = f = z/3}
entspricht dem gleichseitigen Dreieck.

Die durch (11) beschriebene Abbildung 4: («, ) > (p, ¢) (dabei sei stets y:=
7 — (e + B) gesetzt) ist in D reguldr (die Funktionaldeterminante der Abbildung

verschwindet nirgends) und im abgeschlossenen Gebiet D stetig. Das Bild D’ := A (D)

wird also vom Bild des Randes berandet.
Zunichst hat man auf dem Rand b, yeyu D,

P=4Sin2£5in m= 2P = 2 (1 — cosp) cosf

2 2

(0<8<3)
g =2 cos?fcos(m — 2 8) =2 (1 —2cos?f) cos?
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Eliminiert man cosf, so erhilt man

g=3p—pt—14L)1-24 (0<r=3). (12)

Auf dem Rand bg hat man ¢ =0, — 2 < p < 0.
Das Bild D' = A(D) besteht also genau aus den Punkten (p, ¢g) mit

3p—pr—1—)1-2p<g<3p—pt—1+)1-24° (0<p<%).(12')

Das Bild d,: = A(d,) besteht aus den Punkten 0 < p < }/2 — 1, ¢ = 0. Damit hat
man auch im Bildbereich die Trennung fiir spitz- und stumpfwinkelige Dreiecke.

Insbesondere ergibt sich fiir rechtwinkelige Dreiecke stets » << R (/2 — 1), und zwar
r=R ([/E- 1) genau fiir das gleichschenklig-rechtwinkelige Dreieck. Fiir stumpf-
winkelige Dreiecke gilt » < R ()2 — 1) generell.

stumpr-
winkeliger
Bereich

Die Kurve d;:= {(p, q): ¢ = 3 p — p* — 1} entspricht genau den Dreiecken, fiir
die s(w) = s(f) ist. Nach (10) hat man nimlich auf b; 1/k = 2, also £ = 1/2. Oberhalb
von by ist s(w) < s(f), unterhalb s(w) > s(f).

Die Abbildung 4: D - D' ist lokal eineindeutig, da sie regulir ist. Sie ist auch
global eineindeutig. Das bekommt man sofort aus allgemeinen Kriterien. Man kann es
sich auch, etwas umstindlicher, direkt ausrechnen. Die Bildkurven der Strecken
(B = const.) N D sind ndmlich durch

q=p2—1~é9§g§~§+2pcosﬂ-—2wszﬁ (O<ﬂ<~7zi) (*)
parametrisiert. Fiir verschiedene § sind diese Kurven disjunkt. — Die Eineindeutig-
keit der Abbildung bleibt auf dem Rande von D erhalten.

Die Aquivalenzklassen paarweise zueinander dhnlicher oder kongruenter Drei-
ecke sind also eineindeutig durch die Quotienten p = 7/R und ¢ = Fy/F charakterisiert.
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Die Klassen kongruenter Dreiecke sind eineindeutig durch », R und ¢ gegeben, da-
gegen nicht durch » und R allein.

Alle Dreiecke erfiillen nach (12’) die Bedingung
— 1
3p—pr—1—Y1-2p <g<3p—p—1+Vi=2p", (0<p <) (¥

und zu jedem g, das diese Bedingung mit einem p mit 0 < p < 1/2 erfiillt, gibt es ein
bis auf Ahnlichkeit und Kongruenz eindeutig bestimmtes Dreieck, fiir das p = #/R und
g = Fgy/F wird. Daraus bekommt man notwendige und hinreichende Bedingungen fiir
beliebige Dreiecksgrossen, die gegeniiber Ahnlichkeit und Kongruenz wie etwa F/R2,
U/R invariant, d.h. durch p und g darstellbar sind. Die explizite Darstellung kann jedoch
kompliziert sein. Fiir U/R bekommt man die einfache Darstellung U?/(4 R?)=2q+
(2 4+ p)2. Damit bekommt man sofort aus (**) die Ungleichung

S 2
2R24+10R7v -1 —2(R—27)/R*— 2Ry <%

<2R*+ 10Rv—7r*+ 2(R—27))R*—2Rv,

und diese Ungleichung lasst sich nicht mehr verschidrfen. Das ist, wie Herr STEINIG
freundlicherweise nach den Korrekturen mitteilte, genau ein Ergebnis, das BLUNDON %)
mit anderen Mitteln bewies.

5. Die Lage von v

In §3 wurde gezeigt, dass es zu jedem Dreieck ein reelles & gibt, fiir das s (m +

k (h — m)) = s(w) ist. Nach (10) hat man fiir dieses eindeutig bestimmte %, wenn nur
das Dreieck nicht gleichseitig ist
11— p2

= 1_“21;)‘q>0 (0<p<—;«).

Weiter ist durch cosw:= () —m) - (w — m)/(|h — m| | w — m|) (> 0) ebenfalls fiir
Dreiecke, die nicht gleichseitig sind, w mit | w | < x/2 bis auf das Vorzeichen ein-
deutig festgelegt. Man iiberlegt sich leicht, dass fiir Dreiecke mit 0 < a <8 <y
stets w < 0, fiir solche mit 0 < g << a <y stets w > 0 ist.

\/\ /k yu
[
Mit Hilfe von (8) und (9) bekommt man

_14/1=2p 1
Cosw—“k—l/m (O<p< 2).

Mit K := 4/k — 3 hat man sogar

K=2p+ 4q COSW = —— e 0<{><—1‘.k=~*-4———.(13)
1 2p”’ kYK —2p 2 K+3

%) Siehe auch BLunDON, Inequalities Associated with the Triangle, Canad. Math. Bull. &8, 615-626
(1965).
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Hieraus sieht man sofort, dass die durch (13) definierte Abbildung B von (p, ¢) in
(K, w) in D’ eineindeutig ist. Wir wollen jetzt das Bildgebiet von D’ in rechtwinkeligen
Koordinaten

u:=kcos?w, v%:=k?%cos?w (1 — cos?w)
beschreiben.

Zunichst rechnet man leicht nach, dass die Kurven K = const. das Gebiet D’ in
einem zusammenhingenden Kurvenbogen mit

o<2;><1=(£;i)2 (1<K <09 (14)

schneiden. Nach (13) steigt cosw auf diesem Bogen monoton mit p. Also hat man auf
dem Durchschnitt (K = const.) 0 D’

;—117?<cosw<1 (1<K<9,k=T}3—) (14)
Es geniigt also wieder zur Beschreibung des Bildes D”:= B(D’) der Abbildung
B: (p, q) > (u, v), die Bilder der Randkurven zu beschreiben.

Zunichst hat man auf der Randkurve 9, U 9, nach dem Vorhergehenden stets
cosw=1fir I<K<5und 5<K<9 oder 1> %>1/2 und 1/2> u > 1/3.
Das bedeutet nichts anderes, als dass die Schnittpunkte der Winkelhalbierenden
gleichschenkliger Dreiecke auf der EULERschen Geraden liegen, und zwar genau
zwischen s und I, { ausgelassen, es sei denn das Dreieck ist gleichseitig.

Auf der Randkurve b, hat man nach (14) und (14') cosew = 1/(k)/K) fiir 1 < K <9.
Das entspricht der Darstellung

1 1 1 \2
"= s, vzz—f—(ﬁ) (1<K<9,k=Tjr—3)
in rechtwinkeligen Koordinaten. Das aber ist nichts anderes als eine Parameter-
darstellung des offenen Halbkreisbogens mit der expliziten Darstellung

vz=%—(u——§—)2 (—;—<u<1,v<0). (15)

Also ist D" das Innere des von diesem Bogen und dem Stiick 1/3<#<1,v=0
auf der EuLERschen Geraden begrenzten Gebietes®).

Jetzt gelingt es sofort, den spitzwinkeligen Bereich vom stumpfwinkeligen zu
trennen. Dazu braucht man nurd, = B(b,) zu berechnen. Auf b, hatman 0 < p < /21,

8) Dass w stets in dem genannten Halbkreis liegt, bekommt auch direkt aus (8) und (9).
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g=0. Also ist dort u=1— p2— p, v2+ u® = (1 — 2 p) . Eliminiert man p, so
erhidlt man

v232—~u2—-l/3_-—4u (‘/5——1<u<1). (15%)

In der Tat hat diese Kurve bei # = [/f—— 1 und » = 1 Nullstellen. Ausserhalb dieser
Kurve liegen die Schnittpunkte der Winkelhalbierenden stumpfwinkeliger, innerhalb
die der spitzwinkeligen Dreiecke, dabei ist der Punkt # = 1/2, v = 0 ausgelassen.

Schliesslich ist dg := B(p;) sehr einfach durch s(w) = s(f) zu charakterisieren.
Dafiir bekommt man eine einfache Darstellung.

Die Abbildungen A4 und B sind auf Dbzw. D’ — ¢ eineindeutig. Wir haben also
insgesamt :

Zu je drei Punkten pg, Py und py, gibt es genau dann ein Dreieck A, fiir das p; = s,
Py = b und p,, = w ist, wenn entweder

1. dve Punkte ps, py und py, ein in Py, stumpfwinkeliges Dreveck bilden, oder

2. ps, Py und py, paarweise verschieden sind, py, auf der Strecke zwischen p; und py
liegt, und py, + ps + (1/4) (py — ps) ist, oder

3. p; = Py = Py 15,

Im ersten Fall ist A nicht gleichschenkelig, im zweiten Fall nicht gleichseitig, jedoch
gleichschenkelig, im dritten Fall gleichseitig. In den ersten beiden Fillen ist A durch ps,
py und py, bis auf Kongruenz esndeutig bestimmi,

Das sind reine Existenzaussagen, die nichts iiber die Konstruierbarkeit der Drei-
ecke aussagen. In der Tat werden wir sehen, dass sich die Dreiecke A nicht stets aus
s, h und w konstruieren lassen.

Der hier benutzte Formalismus liefert mehr. Z.B.hatmanu = (1 —p2—p—q)/(1 —4q) Z
1/2 genau dann, wenn 2 ¢ 2 2 2 + 2p — 1 ist. Mit U2/(4 R?) = 29 + (2 + p)? ist das

genau dann der Fall, wenn U2/(4 R?) Z 3 (p + 1)?, also U 2 2)/3 (R + 7) ist. Das istein

Ergebnis, das VELDkKAMP in [4] hergeleitet hat.

6. Konstruierbarkeitsfragen

Wir wollen uns hier mit der Frage beschiftigen, wann ein Dreieck aus seinen
Schnittpunkten der Winkelhalbierenden, der Mittelsenkrechten und der Hohen (mit
Zirkel und Lineal) konstruierbar ist.

Wegen (9) sind fiir nichtgleichseitige Dreiecke R, p = #/R und q = Fy/F stets aus
den Punkten m, §) und w konstruierbar. Nach §4 ist eine Ahnlichkeitsklasse von
Dreiecken eineindeutig durch p und ¢ bestimmt (0 < « << <7). Man kann sie sich
durch cosa und cosf gegeben denken. Sind also cose und cosf aus p und g konstruier-
bar, so offenbar simtliche Dreiecke der Ahnlichkeitsklasse aus den Schnittpunkten
m, b und w. Mit diesem Fall werden wir uns zunichst befassen.

Nach S. 54 hat man fiir cosf die Bedingung

g=p? : cosf +2pcosf — 2cos?f . (*)

— cosf
Man beweist genau so, dass cosa und cosy dieselbe Gleichung wie cosf erfiillen.
Also sind cosa, cosf und cosy genau die Nullstellen des kubischen Polynoms

Pr)yi=xa+Ax2+ux+v (16)
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mit den aus p und g konstruierbaren Koeffizienten 4 := — (p + 1), u:= p2/2+ p + ¢/2
vi= — qf2.

Es ist bekannt, dass das Polynom P genau dann aus  und ¢ konstruierbare Null-
stellen besitzt, wenn es iiber dem Korper Q(p, ¢) reduzibel ist?).

Insbesondere ist fiir rechtwinkelige Dreiecke ¢ =0, also » =0, also P(x) =
(% 4+ A x + u) x stets reduzibel. Die Nullstelle x = 0 entspricht dem rechten Winkel
y = 7t/2. Weiter sind cose und cosf genau die aus p und ¢ konstruierbaren Nullstellen
des quadratischen Polynoms %2 + A x + u. Also sind alle rechtwinkeligen Dreiecke
stets aus den Schnittpunkten m, § und w konstruierbar.

Durch die iibliche Substitution y := x + 4/3 wird (16) in das Polynom

Ply)=y*+3{y+279 (167)

mit den aus p und g konstruierbaren Koeffizienten 3 { = — A%/3 + u, 29 = (2/27) A3 —
A u/3 + v transformiert. Die Nullstellen des Polynoms (16’) berechnen sich fiir nicht-
gleichseitige Dreiecke (3 reelle Nullstellen und ¢ + 0) bekanntlich mit

-7

=y

y1=2}/——§‘cos%’—, y2=—2V—-Ccos (p;n, y3=—2V—Ccos (p—;n .

Da cosg und die Koeffizienten + 2]/:3 der Nullstellen y; (¢ = 1, 2, 3) stets aus
£ und g konstruierbar sind, so sind die Nullstellen y; genau dann aus p und g konstruier-
bar, wenn cosg/3 aus p und ¢ konstruierbar ist.

Die Diskriminante d:= {3 + #? ist in D’ stets negativ (drei verschiedene Null-
stellen des Polynoms (16')), sie verschwindet genau fiir die gleichschenkeligen Drei-
ecke (mindestens zwei gleiche reelle Nullstellen). Also hat man fiir die nichtgleich-
seitigen, gleichschenkeligen Dreiecke (£ + 0) stets cosp = 4+ 1. Da die Winkel
@ = 0, 7 dreiteilbar sind, sind die Nullstellen y; stets aus p und ¢ konstruierbar.
Also sind die nichtgleichseitigen, gleichschenkeligen Dreiecke stets aus m, §, w kon-
struierbar.

Allgemein ist cosg/3 fiir eine im Intervall (— 1, 1) dichte Teilmenge der cosg
konstruierbar. Die Punktmenge {(p, ¢) € D' : cosp = — 5[}/ — &2, cosg/3 konstruierbar}
liegt in D’ dicht, da die Kurven {3 cos?p + #? = 0 das Gebiet D’ stetig parametrisieren,
und da auf diesen Kurven mit konstruierbaren cosg/3 nur Punkte (p, ¢q) € D’ von aus
2 und ¢ konstruierbaren Winkeln « und § liegen. Mithin liegen erst recht die Punkte
(p, ) € D" aller aus p und ¢ konstruierbaren Winkel « und § in D’ dicht.

Wir wollen jetzt zeigen, dass auch die Punkte (p, ¢) € D' derjenigen Winkelpaare
(o, B) € D, die sich nicht aus $ und ¢ konstruieren lassen, in D’ dicht liegen. Offenbar
geniigt es zu zeigen, dass schon die Punkte (p, ¢) € D’ mit rationalen Komponenten
p und ¢ derjenigen Winkel o und 8, die sich nicht (schlechthin) konstruieren lassen,
in D' dicht liegen. Da die Koeffizienten A, g und » des Polynoms (16) genau dann
rational sind, wenn die p und ¢ es sind, ist das nach dem anfangs zitierten Kriterium
genau dann der Fall, wenn das Polynom (16) (mit rationalen Koeffizienten) iiber den
rationalen Zahlen Q irreduzibel ist.

cos@: =

zu

7) S. BieBerBAcH [1], § 13. Q sei der Korper der rationalen Zahlen.

-
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Die Koeffizienten des Polynoms (16) erfiillen die Nebenbedingung A2 =
2 (u + v) + 1. Fiir rationales 4, g und » ist P genau dann iiber Q reduzibel, wenn es
ein £ € Q gibt, so dass das konstante Glied des Polynoms P (x + £) verschwindet, also

BrA&tpubtr=0

ist. Da wir uns nur fiir die Polynome (16) mit drei reellen Nullstellen, die dem Betrage
nach kleiner als 1 sind, interessieren, kénnen wir | £ | < 1 annehmen. Die Ebenen

Eo={Aumv):8+28+ul+v=0}C03, |£|<1 (18)

bestehen also genau aus den Tripeln der rationalen Koeffizienten der iiber Q reduziblen
kubischen Polynome, die mindestens eine rationale Nullstelle x, mit | x, | < 1 be-

sitzen. Aus (18) und der Nebenbedingung A% = 2 (u + ») + 1 erhilt man durch
Elimination von g

2é& A2—1
v=g5-17 AU, %l =8+2+——, [&]<1. (19)
Die Nullstellen des quadratischen Polynoms Q,(§) — s mit rationalem s sind
§=(— A+ »)[2mit x2 =2 + 4 s — A% Also nimmt Q, fiir rationale £ genau diejenigen
rationalen Zahlen s an, fiir die die Diskriminante 2 + 4 s — A2 rationales Quadrat ist.
Nach (19) wird dann mit & = (— 4 4 %)/2

A '
2v=7¥%(}»2+xz——2) A+ x| <2 (19"

fiir beliebige rationale 4 und ». Damit hat man eine brauchbare Parametrisierung der
rationalen Koeffizienten der iiber Q reduziblen kubischen Polynome (16), die minde-
stens eine rationale Nullstelle x, mit | x, | < 1 besitzen.

Sei A:= {¢/t: ¢, v ganzrational, T Primzahl, v = 3 mod 4, (t, #) = 1}. Offenbar
liegt A in Q dicht, da es unendlich viele Primzahlen v mit v = 3 mod 4 gibt. Mit
A€ A und % := m|[n (m, n ganzrational, (m, n) = 1) ergibt sich aus (19)
tn 4+ tm 2n?+ t2m? — 2120t

2y = in +Tm+2tn 72 n?

Diese Bruchdarstellung fiir 2 » braucht nicht gekiirzt zu sein. Ist jedoch (z, #) = 1,
so steckt stets das Quadrat 72 #2 > 1 unkiirzbar im Nenner. Ist dagegen » = % 7, so
steckt stets das Quadrat »? im Nenner. Ist » > 1, so hat man wieder ein nicht-
triviales Quadrat unkiirzbar im Nenner. Ist dagegen # = 1, so wird
t+m 24 m2— 212
V=TI mtzs 7t :

Ist = Teiler von ¢ + m, so auch von ¢ + m + 2 7. Ist 72 Teiler von ¢ 4 m, so sicher
nicht von ¢ 4~ m + 2 7 (v + 2). In diesem Fall hat mant +m =772 Aus [A £ x| =
| t/t 4+ m/r| = || 7 < 2 mit ganzrationalem / folgt dann / = 0, also » = 0 (g = 0).
Dieser Fall macht uns keine Schwierigkeiten. Weiter ist 7 Teiler von
t2 4+ m? — 2 72 genau dann, wenn v Teiler von #2 4+ m? ist. Wire das der Fall, so
miisste — #2 quadratischer Rest mod 7, also auch — 1 quadratischer Rest mod 7 sein.
Das geht nicht, da wir 7 als 7 = 3 mod 4 gewihlt haben®). Also steckt auch im Falle
n = 7T ein nichttriviales Quadrat unkiirzbar im Nenner.

8) Nach dem ersten Zusatz zum quadratischen Reziprozititsgesetz.
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Insgesamt haben wir also bewiesen, dass fiir alle A € A stets 2» (v + 0) im Nenner
ein unkiirzbares nichttriviales Quadrat enthilt. Also gibt es auf jeder Geraden
A = t|T = const. eine dichte Punktmenge, fiir die (16) irreduzibel ist. Da A in Q dicht
liegt, haben wir eine dichte Menge rationaler A, » und damit auch eine in D’ dichte
Menge rationaler (p, g) gefunden, fiir die (16) tiber den rationalen Zahlen irreduzibel
ist. Fiir diese Koeffizienten hat (16) keine konstruierbaren Nullstellen.

Die Punkte (p, ¢) € D' mit rationalen Komponenten, aus denen sich die zugehorigen
Winkel «, # nicht konstruieren lassen, liegen also in D’ dicht, erst recht simtliche
Punkte (p, g) € D’, aus denen sich die zugehorigen Winkelpaare («, §) = A-1(p, q)
nicht konstruieren lassen.

Insgesamt wissen wir also bisher, dass die Punkte (p, ¢) € D’, aus denen sich die
cosa und cosf konstruieren, wie nicht konstruieren lassen, in D’ dicht liegen. Weiter
liegen die Tripel (p, ¢, R) mit aus p und ¢ konstruierbarem Umkreisradius R in
D’ X R dicht, da die (schlechthin) konstruierbaren Radien R in den reellen Zahlen R
dicht liegen. Diese Voraussetzung ist etwa fiir alle $, ¢ und R mit festem und kon-
struierbaren |§ — m | erfiillt. Also liegen die Tripel (p, ¢, R) derjenigen Dreiecke,
die sich aus p, ¢, R konstruieren, wie nicht konstruieren lassen, in D’ X R dicht.
Bei festem |} — m| gilt das entsprechend fiir die Schnittpunkte w e D”, q.e.d.

K. KoPFERMANN, Hannover
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Kleine Mitteilungen

Area of the Union of Disks

At the Conference on Geometry in Eger in 1953, SzELE set forth a problem, which was
written to him by KNEsER. The problem, which has become well known since then, is the
following. A set of % circular disks is given on the plane. Change the position of the disks
in such a way that their distances from each other decrease. (The term ‘it decreases’ will
always be used in the weak sense, i.e. it means that ‘it does not increase’.) Is it true that
the area covered by the disks decreases ? The obvious conjecture is yes, but this has not
been proved yet, and the answer seems to be rather difficult.

In this note a partial solution of this problem will be presented. Namely it will be
proved (theorem 2) that if the disks are congruent and they can be moved continuously in
such a way that the distance of any two centres decreases continuously, then the area
covered by the disks also decreases. The proof is based on a similar statement about the
perimeter length of the union of disks. )

Let P;(t) be points on the plane for ¢ =1, 2, ..., n and 0 < ¢ < 1. Suppose F(f) is a
continuous function of ¢ and S(F;(¢), P;(f)) is a decreasing function of ¢ for every pair 1, 7,
1 € i < j < n. Denote by U(¢) the union of unit disks with centres Pi(¢), P,(?), ..., Fu(?).

Theorem 1. If p(t) denotes the perimeter length of U(t), then p(¢) is decveasing in [0, 1].
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