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Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Förderung der wissenschaftlichen Forschung

El. Math. Band 23 Heft 3 Seiten 49-72 10. Mai 1968

Über Dreiecke
Einleitung

Die Flächeninhaltsformel für Fusspunktdreiecke und eine Formel für die Abstandssummen

beliebiger Punkte von den Dreiecksseiten sind nebst meistens bekannten
Konsequenzen in den ersten drei Paragraphen aufgeführt.

Im vierten Paragraphen gelingt es, die in der Dreiecksgeometrie wichtigen
Quotienten p r/R (r Inkreis-, R Umkreisradius) und q F^/F (F^ Flächeninhalt
des Höhenfusspunktdreiecks, F Flächeninhalt des Dreiecks selbst) zu charakterisieren.

Es zeigt sich, dass man alle gegenüber Kongruenz und Ähnlichkeit invarianten
Dreiecksgrössen mit Hilfe von p und q darstellen kann.

Im fünften Paragraphen werden diese Ergebnisse benutzt, um den Schnittpunkt
der Winkelhalbierenden tD in bezug auf die Schnittpunkte der Schwerelinien und der
Höhen s bzw. f) zu lokalisieren. Für Dreiecke, die nicht gleichseitig sind, liegt tn stets

in dem punktierten Kreis mit | s — f) | als Durchmesser, der durch s und \) läuft, wobei

der Mittelpunkt des FEVERBAcnkreises f ausgelassen ist. Diese Bedingung ist auch
hinreichend, d. h. jeder Punkt in diesem Kreis ist in einem geeigneten Dreieck Schnittpunkt

der Winkelhalbierenden. Das Dreieck ist durch diese Bedingung eindeutig
bestimmt.

rnnke/iger
Bereich"

Im sechsten Paragraphen wird gezeigt, dass man im allgemeinen ein Dreieck nicht
aus den drei Schnittpunkten s, I) und tD (mit Zirkel und Lineal) konstruieren kann.
Bei festgehaltenen s und t) liegen die Schnittpunkte vo sowohl der konstruierbaren als

auch der nicht konstruierbaren Dreiecke in dem Kreis über s \) dicht.

Die ersten drei Paragraphen und die bekannte Tatsache, dass man ein Dreieck
nicht generell aus s, f) und to konstruieren kann, sind lediglich dargestellt, um zu

zeigen, wie man mit den Mitteln der elementaren Vektorrechnung die Ergebnisse
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zügig bekommt. Die Vorteile der Vektorrechnung, die heutzutage immer mehr
Eingang in die Schulmathematik findet, liegen auf der Hand. Lästige
Fallunterscheidungen werden überflüssig und Konstruierbarkeitsfragen werden direkt
zugänglich.

Von den mannigfachen Anwendungen sind nur ein paar aufgeführt. Z.B. bekommt
man scharfe Abschätzungen der gegenüber Kongruenz und Ähnlichkeit invarianten
Dreiecksgrössen aus den Abschätzungen (**) des vierten Paragraphen.

1. Elementares1)

Ein Dreieck ist ein geordnetes Paar (a, b) zweier linear unabhängiger Vektoren
Ct und b. Der relative Flächeninhalt des durch die Vektoren a und b aufgespannten
Parallelogramms ist F a± • b — b± • ct. Dabei sind ct± undb± die auf et bzw. b senkrecht

stehenden Vektoren, die dieselben Längen a bzw. b wie et und b haben und mit
et bzw. b positiv orientiert sind. Wir können ohne Einschränkung der Allgemeinheit
(evtl. nach Umorientierung von (et, b)) F > 0 voraussetzen.

Die Schnittpunkte der Mittelsenkrechten, der Schwerelinien, der Höhen und der
Winkelhalbierenden ergeben sich der Reihe nach zu

ah+ b a ,^.

• a±/a bekommt

(2)

Die Punkte m, s, t) und der Mittelpunkt f des FEUERBACHkreises liegen auf der
EüLERschen Geraden, und es gilt

f) a-f-b-2m, 2 f et + b - m (3)

woraus sich sofort
3 (s - rrt) f) - m 2(f-m)=l)-m (3')

ergibt. Die Punkte f), f, s, nt stimmen genau dann überein, wenn schon zwei von ihnen
übereinstimmen, und genau dann ist das Dreieck gleichseitig.

Zur Rechentechnik seien noch die folgenden Formeln notiert: sofort einzusehen ist
F pi a' pb — b • p et für beliebige Punkte p. Für insbesondere p a erhält man
F a± a2 b - a • b a, Multiplikation mit b liefert F2 a2 b2 - (a • b)2, Multiplikation
mit c liefert F2 a2 b • c — et • b et • c, analog bekommt man F2 — b2 et • c + a • b b • c,

durch Addition ergibt sich 2 F2 a2 b • c — b2 a • c + c2 et • b.

2. Fusspunktdreiecke2)

Ist p ein beliebiger Vektor, so bilden die Projektionen der Endpunkte von p auf
die Seiten des Dreiecks (et, b) ein Dreieck mit den Ecken

rt<.: _^a, n>:-*j*-h. n<: a + ^^c

b2

m —
a± ~a2h±

2F ' *z ct+ b
3

' t>=- a-b
tr>

Dabei ist c: b — et und U := a + b + c gesetzt.
Für den Umkreisradius R := | m | und den Inkreisradius r\— to

man sofort
D abc

r
F
U '

*) Siehe auch den ersten Teil meiner Arbeit «Duale Basis und dualer Vektorraum», Math. Phys. Sem.
Ber. XIV, 1 (1967) 89-98.

*) Siehe auch die Darstellung von Kooistra [2].
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Der relative Flächeninhalt Fp nc± • nb + rt^ na + na± nc des Dreiecks (nc — na,
n& — rta) berechnet sich wegen a2 b2 c2/F2 Fp — — F2 p2 + 2 F2 m p zu

F p (2m-p) p (4)rP 4 R2 { ]

Wegen p (2 m — p) in2 — (p — m)2 hat man

4 R2 -£- R2 - (p - m)2.

Also ist das Fusspunktdreieck dem Dreieck (et, b) gleichonentiert, wenn | p — m | < R,
entgegengesetzt orientiert, wenn | p — m | > R ist Im Falle | p — m | R hat man
degenerierte Fusspunktdreiecke Man sieht ferner, dass fur Fusspunktdreiecke stets
4 Fp/F < 1 ist, insbesondere gilt 4 Fp/F 1 genau dann, wenn p m ist

Fur p f) gilt F2 J) (2tn-I)) -2a b b c c a, also

F - -2F a bb cc a _4'_r*~ lt a2b2c2 ^>

Zusammen mit dem Vorhergehenden ist also | f) — m | < R genau dann, wenn das
Dreieck (et, b) spitzwinkelig, | f) — m | R, genau dann, wenn es rechtwinkelig,
| f) — m | > R genau dann, wenn es stumpfwinkelig ist Ausserdem hat man nach (4')
stets — 2 < F^/F, detaillierter ergibt sich mit q F^/F sofort q 1/4 fur
gleichseitige, 0 < q < 1/4 fur spitzwinkelige, q 0 fur rechtwinkelige und — 2 < q < 0

fur stumpfwinkelige Dreiecke
Die Lange der Seite nb — rta ergibt sich wegen

-•'•(yb-y-«)'-^»-^*
Analog bekommt man fur die anderen Seitenlangen des Fusspunktdreiecks
(F/ac) | p — et | und (F/bc) | p — b | Also ergibt sich fur den Umfang des Fusspunktdreiecks

Fur insbesondere p I) erhalt man

TT
| et b \c 1 q c[ fe | b c | a

%

ab ac bc

Fur spitzwinkelige Dreiecke ist dann abc Ui) 2F2 und fur stumpfwinkelige
(y > rc/2)3) abc U^ - 2 o c b c, also mit (2)

4(falls«,/5,y<-f)

Den Inkreisradius g | 2^ |/L^ bekommt man aus (4') und (5') mit q F^/_P zu

q R (falls oc, ft 7 < -£-)
V 7

(6)
I* b| (falls y>i)

0

2R

8) Die Winkel a, ß, y seien der Reihe nach durch die Produkte b C, - C <t, tt b definiert.
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Man sieht hier einen grundsätzlichen Unterschied zwischen spitz- und
stumpfwinkeligen Dreiecken.

Wir werden später sehen, dass der Quotient q — F$/F, nicht der Inkreisradius des

Höhenfusspunktdreiecks, entscheidend ist. In der Tat wird sich herausstellen, dass man
alle gegenüber Ähnlichkeit und Kongruenz invarianten «Dreiecksgrössen» durch die
Quotienten q F^/F und p :— r/R darstellen kann.

3. Summen der Seitenabstände4)

Die (orientierten) Abstände eines Vektors p von den Seiten eines Dreiecks (et, b)
sind

p._f -p.-g-, (p-a)- —.
Ihre Summe s(p) ergibt

bj_ ci\ F
c

Die Vektoren mit konstanter Summe s(p) bilden also Geraden, die zu a/a — h/b + c/c

parallel sind. Wegen to — m — R (aA \a — h±/b + t±/c) und s(m) R + r erhält
man für beliebige Dreiecke

s(p) - JL (p _ m) (m _ m) + r + r (7)

Zusammen mit (3') ergibt sich daraus

3 (s(s) - s(tn)) s({,) - s(m). 2 (_(f) - s(m)) sfo) - s(m) (7')

Die Gleichung (7) hat einige Konsequenzen. Wegen s(tö) 3 r bekommt man sofort
(m-m)2=R2-~2Rr. Aus | tt> — f | (1/2) R - r und $ - m)2 R2 - 4 q R2 (das
ist Gleichung (4)) erhält man mit q F^/F

- m) • (tt) - m) R2 - r2 - Rr - q R2 (8)

und (tt) — I))2 2 r2 — 2 q R2. Zusammen haben wir also (8) und

(tn - m)2 R2 - 2Rr $ - m)2 R2 - Aq R2, (to - !))2 2r2 - 2q R2. (9)

Nun gibt es sicher einen Punkt tn + k (f) — rrt) auf der EuLERschen Geraden, so
dass s(tü) s (m -f- k (I) — m)) ist. Wäre das nicht der Fall, so musste nämlich nach (7)

— m) - (to — m) 0 und s(w) 4= R + r sein. Wegen r < (1/2) i? und q < 1/4 ist das
Produkt -- rrt) • (tt) — m) nie negativ, und es verschwindet nur für r (1/2) 2? und
q 1/4 (gleichseitiges Dreieck), un4 dann ist s(m) 3 r R 4- r. Das ist ein
Widerspruch.

Nach (7) und (8) bekommt man
1 R2-r2-Rr-qR2 1

ft R*-2Rr (r * \ R) (10)

Das ergibt für die Punkte auf der EuLERschen Geraden

s(m + X<fi-m)) R + r-j- (R-2r) (r * \ R)

4) Siehe auch Bernstein und Steinig, Wissenswertes um das Dreieck, El. Math. 19, 8 (1964
teinig, Comparison of Two Inequalities for the Triangle, Acta Math. Sc. Hung. 16, 19-22 (1965)
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Da für Dreiecke, die nicht gleichseitig sind, stets k > 0 ist, fällt s(p) auf der EuLERschen

Geraden von rrt nach f) hin monoton.
Zusammen mit (10) hat man auf der EuLERschen Geraden explizit

s (m + X - m)) X -J- + (1 + X) r + (1 - X) R + X q R

woraus man für X 0, 1/3, 1/2, 1 der Reihe nach die Summen für m, s, f und f) erhält.

4. Die Quotienten r/R und F^jF

Für beliebige Dreiecke mit den Winkeln ol, ß und y gilt

P'..
r 4 sm — sm -^- sm -|-

Fh
q: — '- 2 cosa cos/? cosy (11)

Also sind p und q gegenüber Permutationen der Winkel invariant.
Wir wollen ohne Einschränkung der Allgemeinheit 0 < a < ß < y, also 0 < a < ß

und a + 2 ß < tt voraussetzen. Seien D := {(a, ß): 0 < a < ß, a + 2 /? < jr}, D- :=
{(a, ß):0<oi<ß, öL + 2ß<7i,ai + ß> n/2), Dt := {(ol, ß):0<<x<ß, a + ß< ^/2}
Gebiete mit den (offenen) Rändern bx := {(a, ß) : 0 < a < /?, a + 2 ß tc}, b2 '=
{(a, j3): 0 < a j8 < rc/3}, b3 := {(a, j8): a 0,0 < j8 < rc/2}, b4 := {(a, ß):0<oL<ß,
ol + ß n/2).

ß

Das Gebiet D besteht aus den Winkelpaaren der Dreiecke mit 0 < a < ß < y.
Darunter sind Ds die Winkelpaare der spitzwinkeligen, Dt die der stumpfwinkeligen
und b4 die der rechtwinkeligen Dreiecke. Auf den Rändern bx und b2 liegen die Winkelpaare

der gleichschenkeligen, nicht gleichseitigen Dreiecke, und e := {a ß — n/3}
entspricht dem gleichseitigen Dreieck.

Die durch (11) beschriebene Abbildung A: (a, ß) -> (p, q) (dabei sei stets y :=
n — (ol -f ß) gesetzt) ist in D regulär (die Funktionaldeterminante der Abbildung
verschwindet nirgends) und im abgeschlossenen Gebiet D stetig. Das Bild D' := A(D)
wird also vom Bild des Randes berandet.

Zunächst hat man auf dem Rand bx u e \j b2

X A ' 9 ß • Ol — 2 ß
p 4 sm2 ~ sm --1-- 2 (1 - cosß) cos/?

2 cos2/? cosfc - 2 0) 2 (1 - 2 cos2$ cos2/»
(o</?<f)
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Eliminiert man cos/?, so erhält man

q 3 p - p2 - 1 ± j/l - 2 / (0 < 0 <J |) (12)

Auf dem Rand b3 hat man # 0, — 2 < p < 0.

Das Bild D' A(D) besteht also genau aus den Punkten (p, q) mit

3p - p2 - 1 -)fl - 2 p* < q < 3 p - p2 - 1 + )IT- 2 pZ (o<p<±\. (12')

Das Bild b4: ^4(b4) besteht aus den Punkten 0 < p < j/2 - 1, q 0. Damit hat
man auch im Bildbereich die Trennung für spitz- und stumpfwinkelige Dreiecke.
Insbesondere ergibt sich für rechtwinkelige Dreiecke stets r < R (j/2 — 1), und zwar
r R (j/2— 1) genau für das gleichschenklig-rechtwinkelige Dreieck. Für
stumpfwinkelige Dreiecke gilt r < R (j/2 — 1) generell.

spm

P recht-
=rD,3—"r

stumpfwinkeliger

Bereich

Die Kurve b^ :== {(p, q): q 3 p — p2 — 1} entspricht genau den Dreiecken, für
die s(tt)) s(f) ist. Nach (10) hat man nämlich auf bg 1/k 2, also A 1/2. Oberhalb
von bs ist s(tt>) < s(f), unterhalb s(to) > s(f).

Die Abbildung A: D -> D' ist lokal eineindeutig, da sie regulär ist. Sie ist auch
global eineindeutig. Das bekommt man sofort aus allgemeinen Kriterien. Man kann es
sich auch, etwas umständlicher, direkt ausrechnen. Die Bildkurven der Strecken
[ß =_ const.) O D sind nämlich durch

q-PtT^ß+2pcosß-2cos^ß (o< /J < -J) (*)

parametrisiert. Für verschiedene ß sind diese Kurven disjunkt. — Die Emeindeutigkeit
der Abbildung bleibt auf dem Rande von D erhalten.

Die Äquivalenzklassen paarweise zueinander ähnlicher oder kongruenter Dreiecke

sind also eineindeutig durch die Quotienten p r/R und q F^/F charakterisiert.
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Die Klassen kongruenter Dreiecke sind eineindeutig durch r, R und q gegeben,
dagegen nicht durch r und R allein.

Alle Dreiecke erfüllen nach (12') die Bedingung

<?<3£-/>2_i+ J/l - 2 p
3

(o < p < i-J (**)3p-p2-l-]/l-2p
und zu jedem #, das diese Bedingung mit einem p mit 0 < p < 1/2 erfüllt, gibt es em
bis auf Ähnlichkeit und Kongruenz eindeutig bestimmtes Dreieck, fur das p r/R und
q Ff)/F wird. Daraus bekommt man notwendige und hinreichende Bedingungen fur
beliebige Dreiecksgrossen, die gegenüber Ähnlichkeit und Kongruenz wie etwa F/R2,
U/R invariant, d.h. durch p und q darstellbar smd Die explizite Darstellung kann jedoch
kompliziert sein. Fur U/R bekommt man die einfache Darstellung U2/(4 R2) 2q-\-
(2 -f- p)2. Damit bekommt man sofort aus (**) die Ungleichung

2 R2 + 10 R r - r2 - 2 (R - 2 r) ]/R2 - 2 R r < ~
< 2 R2 + 10 R r - r2 + 2 (R - 2 r) /i.2 - 2 R r

und diese Ungleichung lasst sich nicht mehr verscharfen. Das ist, wie Herr Steinig
freundlicherweise nach den Korrekturen mitteilte, genau em Ergebnis, das Blundon5)
mit anderen Mitteln bewies

5. Die Lage von tti

In §3 wurde gezeigt, dass es zu jedem Dreieck ein reelles k gibt, für das s (m +
k (I) — m)) s(vo) ist. Nach (10) hat man für dieses eindeutig bestimmte k, wenn nur
das Dreieck nicht gleichseitig ist

1 - 2p >o (o<*<!).
Weiter ist durch cosco := — m) • (tu — m)/(|f) — m | | m — rrt |) (> 0) ebenfalls für
Dreiecke, die nicht gleichseitig sind, co mit | co \ < n/2 bis auf das Vorzeichen
eindeutig festgelegt Man überlegt sich leicht, dass für Dreiecke mit 0 < a < ß < y
stets co < 0, für solche mit 0 < ß < a < y stets co > 0 ist.

Mit Hilfe von (8) und (9) bekommt man

1 t/1-2

Mit K := 4/k — 3 hat man sogar

l
coscoK 2fi + \=^-zp ' k]/K-2p

(o<><i).

(°<^<T- *-kTt)-^
5) Siehe auch Blundon, Inequahtus Associated with the Tnangle, Canad. Math. Bull. 8, 615-626

(1965).
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Hieraus sieht man sofort, dass die durch (13) definierte Abbildung B von (p, q) in
(K, co) in D' ememdeutig ist Wir wollen jetzt das Bildgebiet von D' m rechtwinkeligen
Koordinaten

u k cos2co, v2 k2 cos2co (1 — cos2co)

beschreiben
Zunächst rechnet man leicht nach, dass die Kurven K const das Gebiet D' in

einem zusammenhangenden Kurvenbogen mit
'K- 5\20<2p<l (-^-4—) (K K < 9) (14)

schneiden Nach (13) steigt cosco auf diesem Bogen monoton mit p Also hat man auf
dem Durchschnitt (K const) O D'

l
k ]/K

< cosco < 1 (l<K<9, k -jArj) (14')

Es genügt also wieder zur Beschreibung des Bildes D" B(D') der Abbildung
B (p, q) -> (u, v), die Bilder der Randkurven zu beschreiben

Zunächst hat man auf der Randkurve b^ u bg nach dem Vorhergehenden stets
cosco 1 fur 1< K < 5 und 5 < K < 9 oder \> u> 1/2 und 1/2 > u > 1/3
Das bedeutet nichts anderes, als dass die Schnittpunkte der Winkelhalbierenden
gleichschenkliger Dreiecke auf der EuLERschen Geraden liegen, und zwar genau
zwischen s und I), f ausgelassen, es sei denn das Dreieck ist gleichseitig

Auf der Randkurve bg hat man nach (14) und (14') cosco l\(k]/K) fur 1< K < 9.

Das entspricht der Darstellung

______hK v* ~K (Af (1<K<9'k-irU)K+ 3,

in rechtwinkeligen Koordinaten Das aber ist nichts anderes als eme
Parameterdarstellung des offenen Halbkreisbogens mit der expliziten Darstellung

W2=1_(M_|)2 (i-<«<l,.<0). (15)

Also ist D" das Innere des von diesem Bogen und dem Stuck 1/3<^<1, v 0

auf der EuLERschen Geraden begrenzten Gebietes6)

Jetzt gelingt es sofort, den spitzwinkeligen Bereich vom stumpfwinkeligen zu
trennen Dazu braucht man nurb4 B (b4) zu berechnen Auf b4 hat man 0 < ^ < |/2 — 1,

6) Dass w stets in dem genannten Halbkreis hegt, bekommt auch direkt aus (8) und (9).
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q 0 Also ist dort u 1 — p2 — p, v2 + u2 (1 — 2 p) u Eliminiert man p, so
erhalt man

v* 2 - u2 - )/5 - 4 u (|/2 - 1< u < l) (15')

In der Tat hat diese Kurve bei u ][2 — 1 und w 1 Nullstellen Ausserhalb dieser
Kurve liegen die Schnittpunkte der Winkelhalbierenden stumpfwinkeliger, innerhalb
die der spitzwinkeligen Dreiecke, dabei ist der Punkt u 1/2, v — 0 ausgelassen

Schliesslich ist bg B(b'b) sehr einfach durch s(w) s(f) zu charakterisieren
Dafür bekommt man eme einfache Darstellung

Die Abbildungen A und B smd auf D bzw D' — e' ememdeutig Wir haben also

insgesamt
Zu ]e drei Punkten p§, p^ und pw gibt es genau dann ein Dreieck A,fur das p§ s,

p^ f) wwi pw tt) «£, www entweder
1 <^£ Punkte p§, pjj und p^ ein in p^ stumpfwinkeliges Dreieck bilden, oder
2 p§, p^ #wi p^, paarweise verschieden sind, ptü auf der Strecke zwischen p§ w.d p^

ZwgJ, ww* pto #= p§ + (1/4) (p$ — p8) w^, orf_y

Jw ersteh JFa/Z is£ zj mcAtf gleichschenkelig, im zweiten Fall nicht gleichseitig, jedoch
gleichschenkelig, im dritten Fall gleichseitig In den ersten beiden Fallen ist A durch p§,

Pij und pj,, bis auf Kongruenz eindeutig bestimmt
Das smd reme Existenzaussagen, die nichts uber die Konstruierbarkeit der Dreiecke

aussagen In der Tat werden wir sehen, dass sich die Dreiecke A nicht stets aus

s, I) und tt) konstruieren lassen

Der hier benutzte Formalismus liefert mehr Z B hat man u (1 — p2 — p — q) / (1 — 4-q) ^
1/2 genau dann, wenn 2 q § 2 p2 + 2 p - 1 ist Mit U2/(4 R2) 2 q + (2 + £)2 ist das

genau dann der Fall, wenn U2/(4 R2) g 3 (p -f l)2, also LT | 2j/3~(i_ + r) ist Das ist em
Ergebnis, das Veldkamp in [4] hergeleitet hat

6. Konstruierbarkeitsfragen

Wir wollen uns hier mit der Frage beschäftigen, wann em Dreieck aus seinen
Schnittpunkten der Winkelhalbierenden, der Mittelsenkrechten und der Hohen (mit
Zirkel und Lineal) konstruierbar ist

Wegen (9) smd fur nichtgleichseitige Dreiecke R, p r/R und q F^/F stets aus
den Punkten m, f) und tt) konstruierbar Nach §4 ist eme Ahnhchkeitsklasse von
Dreiecken ememdeutig durch p und q bestimmt (0 < a < ß < y) Man kann sie sich
durch cosa und cos/? gegeben denken Smd also cosa und cos/? aus p und q konstruierbar,

so offenbar sämtliche Dreiecke der Ahnhchkeitsklasse aus den Schnittpunkten
m, f) und tt) Mit diesem Fall werden wir uns zunächst befassen

Nach S 54 hat man fur cos/? die Bedingung

q -t>*T^ß+2p™sß-2cos*ß. (*)

Man beweist genau so, dass cosa und cosy dieselbe Gleichung wie cos/? erfüllen
Also smd cosa, cos/? und cosy genau die Nullstellen des kubischen Polynoms

P(x) =x* + Xx2-{-ilix + v (16)
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mit den aus^> und q konstruierbaren Koeffizienten X := — (p + 1), ja := ^>2/2 + p + q/2

v:=-q/2.
Es ist bekannt, dass das Polynom P genau dann aus p und q konstruierbare

Nullstellen besitzt, wenn es über dem Körper Q(p, q) reduzibel ist7).
Insbesondere ist für rechtwinkelige Dreiecke q 0, also v 0, also P(x)

(x2 + X x + pt) x stets reduzibel. Die Nullstelle x 0 entspricht dem rechten Winkel
y n/2. Weiter sind cosa und cos/? genau die aus p und q konstruierbaren Nullstellen
des quadratischen Polynoms x2 + X x + ja. Also sind alle rechtwinkeligen Dreiecke
stets aus den Schnittpunkten rrt, I) und tt) konstruierbar.

Durch die übliche Substitution y := x -f X/3 wird (16) in das Polynom

P(y):=y* + 3Cy + 2ri (16')

mit den aus p und q konstruierbaren Koeffizienten 3 J — A2/3 + pi,2r] (2/27) A3 —

A///3 + ^ transformiert. Die Nullstellen des Polynoms (16') berechnen sich für
nichtgleichseitige Dreiecke (3 reelle Nullstellen und £ 4= 0) bekanntlich mit

cosc/?: Fp
zu

y1 2/=Tcos|,y,= -2^cos-?^.y, -2j/rycos__+_L.

Da cos^ und die Koeffizienten ± 2j/— £ der Nullstellen yf (i 1, 2, 3) stets aus

p und # konstruierbar sind, so sind die Nullstelleny{ genau dann aus^> und q konstruierbar,

wenn coscp/3 aus p und q konstruierbar ist.
Die Diskriminante d := £3 -f- rj2 ist in D' stets negativ (drei verschiedene

Nullstellen des Polynoms (16')), sie verschwindet genau für die gleichschenkeligen Dreiecke

(mindestens zwei gleiche reelle Nullstellen). Also hat man für die nichtgleichseitigen,

gleichschenkeligen Dreiecke (f 4= 0) stets coscp ± 1. Da die Winkel
cp 0,n dreiteilbar sind, sind die Nullstellen y{ stets aus p und q konstruierbar.
Also sind die nichtgleichseitigen, gleichschenkeligen Dreiecke stets aus m, f), tt)
konstruierbar.

Allgemein ist coscp/3 für eine im Intervall (— 1,1) dichte Teilmenge der COS99

konstruierbar. Die Punktmenge {(p, q) e D': COS99 — r\\\J— f3, coscp/3 konstruierbar}
liegt in D' dicht, da die Kurven £3 cos2^ -f rf — 0 das Gebiet Dr stetig parametrisieren,
und da auf diesen Kurven mit konstruierbaren coscp/3 nur Punkte (p, q) e D' von aus

p und q konstruierbaren Winkeln a und ß hegen. Mithin liegen erst recht die Punkte
(p, q) e D' aller aus p und q konstruierbaren Winkel oc und ß in Df dicht.

Wir wollen jetzt zeigen, dass auch die Punkte (p, q) e D' derjenigen Winkelpaare
(a, ß) G Dt die sich nicht aus p und q konstruieren lassen, in D' dicht liegen. Offenbar
genügt es zu zeigen, dass schon die Punkte (pt q) e D' mit rationalen Komponenten
p und q derjenigen Winkel a und ß, die sich nicht (schlechthin) konstruieren lassen,
in D' dicht liegen. Da die Koeffizienten X, pt, und v des Polynoms (16) genau dann
rational sind, wenn die p und q es sind, ist das nach dem anfangs zitierten Kriterium
genau dann der Fall, wenn das Polynom (16) (mit rationalen Koeffizienten) über den
rationalen Zahlen Q irreduzibel ist.

7) S. Bieberbach [1], § 13. Q sei der Körper der rationalen Zahlen.
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Die Koeffizienten des Polynoms (16) erfüllen die Nebenbedingung X2

2 (pi + v) + 1. Für rationales X, pt und v ist P genau dann über Q reduzibel, wenn es
ein | e 0 gibt, so dass das konstante Glied des Polynoms P (x -f f) verschwindet, also

|3 + A|2 + ^| + v 0

ist. Da wir uns nur für die Polynome (16) mit drei reellen Nullstellen, die dem Betrage
nach kleiner als 1 sind, interessieren, können wir | f | < 1 annehmen. Die Ebenen

Ei^{(X,pt,v):^ + Xi2 + iu^ + v 0}cO\ |f|<l (18)

bestehen also genau aus den Tripeln der rationalen Koeffizienten der über Q reduziblen
kubischen Polynome, die mindestens eine rationale Nullstelle x0 mit | x0 | < 1

besitzen. Aus (18) und der Nebenbedingung X2 2 (pi + v) -f- 1 erhält man durch
Elimination von pt

* =-prr &(£). <?A(f) £2 + U+—"-1, |f|<i. (19)

Die Nullstellen des quadratischen Polynoms Qx(£) — s mit rationalem s sind
£ (— X ± h)/2 mit a;2 2 + 4 s — A2. Also nimmt Qx für rationale f genau diejenigen
rationalen Zahlen 5 an, für die die Diskriminante 2 + 4 s — A2 rationales Quadrat ist.
Nach (19) wird dann mit £ (- X ± x)/2

2v= tSt2" (A2 + K* ~ 2) \X±x\<2 (19')

für beliebige rationale A und x. Damit hat man eine brauchbare Parametrisierung der
rationalen Koeffizienten der über Q reduziblen kubischen Polynome (16), die mindestens

eine rationale Nullstelle x0 mit | x0 | < 1 besitzen.
Sei A \= {t/r: t, r ganzrational, t Primzahl, r 3 mod 4, (t, t) 1}. Offenbar

liegt A in Q dicht, da es unendlich viele Primzahlen t mit r 3 mod 4 gibt. Mit
XeA und « := w/w (m, n ganzrational, (m, n) 1) ergibt sich aus (19')

n tn ± rm t2 n2 + r2 m2 - 2 t2 n2
£ y ___ __ .—__—_ >tn^Tm-\-2rn r2 n2

Diese Bruchdarstellung für 2 v braucht nicht gekürzt zusein. Ist jedoch (t, n) 1,

so steckt stets das Quadrat r2 n2 > 1 unkürzbar im Nenner. Ist dagegen n nr, so
steckt stets das Quadrat n2 im Nenner. Ist ri > 1, so hat man wieder ein
nichttriviales Quadrat unkürzbar im Nenner. Ist dagegen n 1, so wird

2
* ^ m t2+ m2 - 2 t2

t ±rn+ 2t' t2

Ist t Teiler von ^ ± m, so auch von t ± w 4- 2 r. Ist t2 Teiler von ^ ± w, so sicher
nicht von t ± m + 2 r (t 4= 2). In diesem Fall hat man £ ± m / r2. Aus | A ± «
| t/r ± w/t I | /1 t < 2 mit ganzrationalem / folgt dann / 0, also v 0 (# 0).
Dieser Fall macht uns keine Schwierigkeiten. Weiter ist t Teiler von
t% _|_. m2 ___ 2 T2 genau dann, wenn r Teiler von t2 + w2 ist. Wäre das der Fall, so

musste — t2 quadratischer Rest mod r, also auch — 1 quadratischer Rest mod r sein.
Das geht nicht, da wir r als r 3 mod 4 gewählt haben8). Also steckt auch im Falle
n r ein nichttriviales Quadrat unkürzbar im Nenner.

8) Nach dem ersten Zusatz zum quadratischen Reziprozitätsgesetz.
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Insgesamt haben wir also bewiesen, dass fur alle A e A stets 2 v (v 4= 0) im Nenner
em unkurzbares nichttnviales Quadrat enthalt Also gibt es auf jeder Geraden
A t/r — const eme dichte Punktmenge, fur die (16) irreduzibel ist Da Am Q dicht
hegt, haben wir eme dichte Menge rationaler A, v und damit auch eme m D' dichte
Menge rationaler (p, q) gefunden, fur die (16) uber den rationalen Zahlen irreduzibel
ist Fur diese Koeffizienten hat (16) keine konstruierbaren Nullstellen

Die Punkte (p,q)sDf mit rationalen Komponenten, aus denen sich die zugehörigen
Winkel a, ß nicht konstruieren lassen, liegen also in D' dicht, erst recht sämtliche
Punkte (p, q) e D', aus denen sich die zugehörigen Winkelpaare (a, ß) A~1(p, q)

nicht konstruieren lassen

Insgesamt wissen wir also bisher, dass die Punkte (p, q) e D', aus denen sich die
cosa und cos/? konstruieren, wie nicht konstruieren lassen, m D' dicht liegen Weiter
liegen die Tripel (p, q, R) mit aus p und q konstruierbarem Umkreisradius R m
D' xR dicht, da die (schlechthin) konstruierbaren Radien R m den reellen Zahlen R
dicht liegen Diese Voraussetzung ist etwa fur alle p, q und R mit festem und
konstruierbaren 11) — m | erfüllt Also liegen die Tripel (p, q, R) derjenigen Dreiecke,
die sich aus p, q, R konstruieren, wie nicht konstruieren lassen, m D' x R dicht
Bei festem | f) — rrt | gilt das entsprechend fur die Schnittpunkte tt) e D", qed

K Kopfermann, Hannover
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Kleine Mitteilungen

Area of the Union of Disks

At the Conference on Geometry in Eger in 1953, Szele set forth a problem, which was
written to him by Kneser The problem, which has become well known smce then, is the
following A set of n circular disks is given on the plane Change the position of the disks
m such a way that their distances from each other decrease (The term 'it decreases* will
always be used in the weak sense, i e it means that 'it does not mcrease' Is it true that
the area covered by the disks decreases The obvious conjeeture is yes, but this has not
been proved yet, and the answer seems to be rather difficult

In this note a partial Solution of this problem will be presented Namely it will be
proved (theorem 2) that if the disks are congruent and they can be moved contmuously m
such a way that the distance of any two centres decreases contmuously, then the area
covered by the disks also decreases The proof is based on a similar statement about the
penmeter length of the umon of disks

Let Pt(t) be points on the plane for % 1, 2, n and 0 < t < 1 Suppose Pt(t) is a
contmuous function of t and S(P,(t), Pj(t)) is a decreasmg function of t for every pair i, ;,
1 < i < 1 < n Denote by U(t) the umon of unit disks with centres Px(t), P2(t), Pn(t)

Theorem 1. If p(t) denotes the perimeter length of U(t), then p(t) is decreasmg m [0, 1],
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