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Un théoréme sur les nombres triangulaires

Les nombres triangulaires sont des nombres {, =n (n + 1)/2, ou n=1,2,....
Le but de cette note est de démontrer d'une fagon élémentaire le théoréme suivant:

Théoréme. Il existe une infinité de nombres triangulaires qui sont d la fois sommes,
différences et produits de deux nombres triangulaires > 1.

Démonstration. Les nombres ¥ = y = 1 satisfont a 'équation

x(x+1)—-2y(y+1)+2=0 (1)
Or, vu l'identité

Bx+4y+3)Bx+4y+4) —-202x+3y+2)2x+3y+3)
=x(x+1)—2y(y+1)

on voit que si les nombres naturels x et y satisfont & I’équation (1), les nombres
naturels 3x + 4y + 3 et 2x 4+ 3 ¥ 4 2 qui sont plus grands que x et y satisfont aussi
a I’équation (1). Cette derniére a donc une infinité de solutions en nombres naturels
x et y plus grands que 1. Par exemple de la solution ¥ = y = 1 on obtient la nouvelle
solution x = 10, y = 7 qui donne ensuite la solution x = 61, y = 43, et ainsi de suite.

Soitx > lety > 1 une solution de I’équation (1) en nombres naturels. D’aprés (1)
on aura

t,+1=2¢,
dod b (L, + 1)
b=t — gy 2)

Or, comme on le vérifie sans peine, on a, pour » = 2, 3, ...
n = tﬂ - tn_l et tl” . ttn"'l + tn .

D’aprés (2) on a donc
t‘x = ttx._] + tx = t‘tx - ttt;l = tx ty .

Par exemple, pour x = 10, y = 7, on trouve

tss = t54 + t1o = t154o - t1530 =liolq .
Or, on a aussi

lg=1ty+lg=1tg—tig=1lgly, log=tyu+liu=1yn —tlg=1g1.

Il est & remarquer que s’il s’agissait seulement de démontrer qu’il existe une infinité
de nombres naturels qui sont a la fois sommes, différences et produits de deux nombres
triangulaires > 1, on pourrait le faire d’une fagon élémentaire en deux lignes, puisque
¢a résulte tout de suite de l'identité (qu’on vérifie sans peine):

b1+t =t —ts = t,t, pour n=273,...
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Pour n = 2 et » = 3 on trouve, par exemple:
botlg=1tyg—tg=1lgty, 5+ 1tg=1ls—tg5=1383=15.
Il existe des paires de nombres triangulaires dont la somme, la différence et le
produit sont des nombres triangulaires, par exemple
s tha=1ty, hs—ta=1tn, tety="tig.

Or, je ne sais pas s'il existe une infinité de tels paires.
W. SIERPINSKI, Varsovie

Der Aufbau der Kongruenzgruppe im Raum
durch Spiegelungen

(Fortsetzung)

4. Die Produkte aus 3 Ebenenspiegelungen

In unserer Aufzdhlung der Abbildungstypen in & fehlen uns nur noch die Produkte
aus 3 Ebenenspiegelungen. Wir beginnen die Untersuchung dieser Abbildungen mit
einem einfachen Beispiel.

Es seien drei Ebenen «, f und y vorgegeben, die paarweise senkrecht sind und sich
in einem Punkt S schneiden. Die Kongruenz X, o 2,0 2, fithrt auf zugeordnete

Punktepaare A A, die so liegen, dass stets S Mittelpunkt der Strecke AA ist (Fig. 9).
Q=2,0lp02, =202,

Wegen der besonderen Lage der Ebenen «, f und y ist

Q——”Z“QZﬂOZ,y:ZaoZy°2p=27°2a°2ﬂ=2702ﬂ02a

= (ZyoXpel,)t=0"1
und daher 02— QoO-1_1.
Die Abbildung 2, o X'y o X, ist somit eine Involution mit dem einzigen Fixpunkt S;
wir bezeichnen sie als Spiegelung am Punkt S und schreiben dafiir 2.
Wie die Fig. 10 zeigt, erhdlt man durch Zusammensetzen zweier Punktspiegelun-
gen eine Translation:

' ZFOZG“—_—(Z‘aQZﬁOEY)O(2,’,02’5023):2“028:T
wobel v=2a=2FG.

Wir halten dieses Ergebnis fest in ~
Satz 12: Xy X; = T ist eine Translation; der Translationsvektor v ist der zweimal
genommene Vektor a zwischen den Punkten F und G (@ zeigt von F nach G). Umgekehrt
kann eine vorgegebene Translation T mit dem Vektor v auf umendlichviele Arten als
Produkt von zwei Punktspiegelungen Xy und 2; geschrieben werden; es ist FG = 1[2v.
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