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Un theoreme sur les nombres triangulaires

Les nombres triangulaires sont des nombres tn n (n + l)/2, oü n 1, 2,
Le but de cette note est de demontrer d'une facon elementaire le theoreme suivant:

Theoreme. II existe une infinite de nombres triangulaires qui sont ä lafois sommes,
differences et produits de deux nombres triangulaires > 1.

Demonstration. Les nombres x y 1 satisfont ä l'equation

x (x + 1) - 2 y (y + 1) + 2 0 (1)
Or, vu l'identite

(3x + 4y + 3)(3x + 4y + 4)~2(2x + 3y + 2)(2x + 3y + 3)

x (x + 1) - 2 y (y + 1)

on voit que si les nombres naturels x et y satisfont ä l'equation (1), les nombres
naturels 3#-h4y-f-3et2# + 3y + 2 qui sont plus grands que x et y satisfont aussi
ä l'equation (1). Cette derniere a donc une infinite de Solutions en nombres naturels
x et y plus grands que 1. Par exemple de la Solution x — y 1 on obtient la nouvelle
Solution x 10, y 7 qui donne ensuite la Solution x 61, y 43, et ainsi de suite.

Soit x > 1 ety > 1 une Solution de l'equation (1) en nombres naturels. D'apres (1)
on aura

tx+l 2ty,
d'oü

^_____t_i ^. (2)

Or, comme on le verifie sans peine, on a, pour n 2,3,...

D'apres (2) on a donc

tfx ^ V"1 + ** \ ~ V1 ==t^ty

Par exemple, pour x 10, y 7, on trouve

^55 ^54 + ^10 ^1540 ~~ ^1530 ~ ho h •

Or, on a aussi

tg t5 + tB — tlz — t10 t3 tz t t20 — tu + tu t21 — te r6 ?4

II est ä remarquer que s'il s'agissait seulement de demontrer qu'il existe une infinite
de nombres naturels qui sont ä la fois sommes, differences et produits de deux nombres
triangulaires > 1, on pourrait le faire d'une facon elementaire en deux lignes, puisque
9a resulte tout de suite de l'identite (qu'on verifie sans peine):

K-i + *u '#; - 'il-i K K Pour n 2, 3,
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Pour n 2 et n 3 on trouve, par exemple:

t2 ~f" *3 tg — t8 t2 t2 t5 + tß tBß — fgg 13 £3 tg

II existe des paires de nombres triangulaires dont la somme, la difference et le

produit sont des nombres triangulaires, par exemple

^18 + ^14 — ^23 y h% ~ ^14 ~ ^11 > ^18 ^14 ~ ^189 •

Or, je ne sais pas s'il existe une infinite de tels paires.
W. Sierpinski, Varsovie

Der Aufbau der Kongruenzgruppe im Raum
durch Spiegelungen

(Fortsetzung)

4. Die Produkte aus 3 Ebenenspiegelungen

In unserer Aufzählung der Abbildungstypen in 51 fehlen uns nur noch die Produkte
aus 3 Ebenenspiegelungen. Wir beginnen die Untersuchung dieser Abbildungen mit
einem einfachen Beispiel.

Es seien drei Ebenen ol, ß und y vorgegeben, die paarweise senkrecht sind und sich
in einem Punkt 5 schneiden. Die Kongruenz Ea ° Zß ° Ey führt auf zugeordnete

Punktepaare A A, die so liegen, dass stets 5 Mittelpunkt der Strecke AA ist (Fig. 9).

ß z °za°z e °e_7tf __rfa ___ ß **y **g *-,y

Wegen der besonderen Lage der Ebenen oc, ß und y ist

(r,.I.o.H_fl-'
q za c zß o zy za o zy o r, _:y° _:_ ° zß _:y°zr zt

unddaher fli_fl.fl-i_j,
Die Abbildung Ea° Eß° Ey ist somit eine Involution mit dem einzigen Fixpunkt S;
wir bezeichnen sie als Spiegelung am Punkt S und schreiben dafür Es.

Wie die Fig. 10 zeigt, erhält man durch Zusammensetzen zweier Punktspiegelungen

eine Translation:

zF o zG (za o zß c zY) o (zy o _;, o zs) _;. o _;, r
wobei 2. 2FG.
Wir halten dieses Ergebnis fest in

Satz 12: EF ° EG T ist eine Translation; der Translationsvektor v ist der zweimal

genommene Vektor a zwischen den Punkten F und G (a zeigt von F nach G). Umgekehrt
kann eine vorgegebene Translation T mit dem Vektor v auf unendlichviele Arten als

Produkt von zwei Punktspiegelungen EF und EG geschrieben werden; es ist FG 1/2 v.
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