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14 Ungeldste Probleme

Da | M, | = C und die rechtsgeschriebenen Mengen von einer Machtigkeit < C sind,
muss so ein X, existieren. Wir definieren nun

V;ﬁ =alsJ Ty (Vap U {X.},

wo X, das erste Element von M, ist, das nicht zu U, U U V,; gehort.
8<p
Wenn nun S = U S,, dann enthilt fiir jedes Paar von Ordinalzahlen f, y

(181,171 <C) die Menge (S — T4(S)) " M, die Punkte von V,, fiir jedes
« > max{f, y}. Die Menge S — T 4(S) ist also zusammenhédngend und S ist tiberall
dicht. Andererseits trifft die Komplementirmenge S’ = U S, nach Konstruktion
auch jedes M - ist also sicher iiberall dicht.

Mit derselben Methode konnte man folgende Verallgemeinerung von Satz 2
beweisen:

Satz2'. Es sei T eine Menge von eineindeutigen Abbildungen eines reellen Vektor-
raumes V der Dimension < §, in sich, so dass |T| < C und die Fixpunkte von
weniger als C Abbildungen aus T den Raum nicht trennen. Dann gibt es eine Menge
S C V, die zugleich mit ihrem Komplement iiberall dicht ist und die die F-Eigen-
schaft fiir T hat. Paur ErpOs, Mathematisches Institut, Budapest und

E. G. StrAUS*), University of California, Los Angeles
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Nr. 49. Es bezeichne R den dreidimensionalen euklidischen Raum, Z € R einen
fest gewahlten Ursprung und 4 C R einen eigentlichen Eikorper, der den Ursprung
enthilt, so dass fortab stets Z € A vorausgesetzt ist. Bedeutet V' das Volumen, so
gilt offenbar V(4) > 0. Ferner bezeichne E, C R die durch Z hindurchgehende
Ebene, deren Normalenrichtung durch den Einheitsvektor # gegeben ist. Schliesslich
soll f den ebenen Flicheninhalt anzeigen, so dass f (4 0 E,) die Schnittfliche dar-
stellt, welche die Ebene E, aus dem Eikoérper 4 ausschneidet.

Unser Interesse gilt den beiden durch die Ansitze

p = sup inf [£(4 0 )P [V(4)]-2 o
g = int sup [f(4 0 E)P [V(4)]-2 @

definierten Zahlwerten. Die Existenz von ¢ ist trivial, diejenige von p ergibt sich
weiter unten.
Das mit (1) angesetzte Problem in etwas anderer gleichwertiger Weise formuliert,

lautet wie folgt:
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Gesucht ist der grosste Wert, den der kleinste Flicheninhalt der Schnittbereiche annehmen
kann, die von den durch einen Punkt eines Eikirpers vom Volumen V = 1 hindurch-
gehenden Ebenen aus diesem ausgeschnitten werden.

Die Losung dieses Problems ist einfach, und der mit (1) gefragte MaxMin-Wert 4
ist durch p = 9m/16 ~ 1,767 3)

gegeben. Der Extremwert (3) stellt sich ein, wenn A4 eine Kugel mit Zentrum Z ist.
Der Nachweis unserer Behauptung ergibt sich leicht mit einer integralgeometrischen
Ungleichung von H. BusEMANN?), wonach

16

ist. Hierbei bezeichnet 4 » die Richtungsdichte, also die linke Seite den iiber alle
Richtungen # erstreckten Integralmittelwert der dritten Potenz der Schnittfliche
von A mit E,. Aus der Busemannschen Ungleichung (4) folgert man zunichst, dass

inf [/(4 0 E)P [V(4)]"2 < 9x/16

Tlgf[f(A ONENPdu< 2 V(4)2 4)

sein muss, also damit erstens die Existenz von p und zweitens die Abschitzung
p < 97/16. Mit der Bemerkung, dass eine Kugel mit Zentrum Z das Gleichheits-
zeichen beansprucht, schliesst man auf (3).

Uberraschenderweise scheint nun das mit (2) angeschnittene Problem schwieriger
zu sein. Wenn iiber A keine zusétzliche Forderung gestellt wird, beispielsweise etwa
die Voraussetzung, zentralsymmetrisch zu sein?), so ist sicher, dass hier nicht die
Kugel extremal ist und dass der mit (2) erfragte MinMax-Wert ¢ kleiner als 97/16
sein muss. Durch das unten erklarte Beispiel wird belegt, dass

g < 243/32 72 ~ 0,769 (5)

gilt. In der Tat: Wahlt man fiir 4 einen geraden Kreiskegel mit Spitze Z, der Hohe
h = 1und mit Grundkreisradius 7 = }/2, so folgt mit elementarer Diskussion zun4chst
supf(ANE,) = 3/2und V(4) = 2x/3, so dass also bei diesem speziellen Koérper

sup [f(ANE,)]? [V(A)]™% = 243/32 72 und damit unsere Behauptung (5) resultiert.

Ungelost bleibt unseres Wissens also das mit (2) eréffnete Problem, das wir wie
oben bei (1) in gleichwertiger Weise etwas anders formulieren: Gesucht ist der kleinste
Wert, den der griosste Flicheninhalt der Schmittbereiche annehmen kann, die von den
durch einen Punkt eines Eikorpers vom Volumen V = 1 hindurchgehenden Ebenen
aus diesem ausgeschnitten werden.

Diese sprachliche Fassung unserer Frage unterstellt, dass die gesuchte Schranke
auch angenommen wird und bei einem nichtkugelférmigen unbekannten Extremal-

korper realisiert werden kann. Dies ist abzukldren.
H. HADWIGER

1) Unsere Ungleichung ist ein Spezialfall einer sehr allgemeinen Integralrelation, die sich auf n — 1
verschiedene Eikérper des #n-dimensionalen Raumes bezieht. Vgl. H. BusemaNN, Volume in Terms of
Concurrent Cross Sections, Pac. J. Math. 3, 1-12 (1953).

?) In diesem besonderen Fall, also fiir Mittelpunktseikérper, zeigt sich, dass ¢ = 9 7{16 dann gilt,
wenn die mit dem Ungeldsten Problem Nr. 44, El. Math. 77, 84 (1962) dargelegte Busemannsche Ungleich-
heitsaussage zutrifft. Vgl. hierzu H. Busemany und C. M. PETTY, Problems on Convex Bodies, Math. Scand.
4, 88-94 (1956); insb. Problem 4.
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