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Uber eine geometrische Frage von Fejes-TorH

FEJES-TOTH bewies folgenden Satz (vgl. [1]).

Es sei S eine abgeschlossene Menge der Ebene mit der Eigenschaft, dass fiir jedes
S;, das zu S kongruent ist, die Menge S — S N S, zusammenhéingend sei. Dann ist S
eine Kreisscheibe (Halbebene) oder das Komplement einer offenen Kreisscheibe oder
die ganze Ebene, oder leer.

FEjES-TOTH fragte uns, was aus diesem Satz wiirde, wenn die Bedingungen der
Abgeschlossenheit oder der Zweidimensionalitdt fallen gelassen wiirden. Um die
Antwort einfacher auszudriicken, gebrauchen wir folgenden Begriff:

Definition. Eine Menge S hat die F-Eigenschaft fiir die Transformationsmenge T,
wenn S — SN S, zusammenhidngend ist fiir jedes S; das aus S durch eine Trans-
formation aus 7T entsteht.

Satz 1. Es sei S eine Teilmenge von E3 mit der F-Eigenschaft fiir Spiegelungen an
Ebenen. Dann ist der Rand, 05, von S eine Kugelfliche (moglicherweise degeneriert
zu einer Ebene, einem Punkt, der Nullmenge). Der Teil 0S 0 S des Randes, der zu S
gehort, besteht aus einer Kugelkappe (im ebenen Falle zur Kreisscheibe degeneriert)
deren Anteil an ihrem Randkreise aus einem (moglicherweise leeren) Kreisbogen
besteht.

Diese Satz ldsst sich offenbar auf beliebige Hilbertsche Rdume und sphérische
Raume verallgemeinern, aber da dadurch die vollstindige Beschreibung von S
kompliziert wiirde, beschrinken wir uns hier auf den dreidimensionalen Fall. In
unserem Satz geniigt es, Spiegelungen zu gebrauchen. FEJES-TOTH teilt uns mit, dass
in seinem Beweis nur orientationserhaltende Kongruenzen verwendet werden. Wenn
wir uns auf diese Kongruenzen beschrinken, so wird selbst in der Ebene FEJES-TOTHS
Resultat ohne die Annahme der Abgeschlossenheit vollig ungiiltig. Mit Hilfe trans-
finiter Induktion beweisen wir

Satz 2. Es gibt in der Ebene (auch in jedem hoéherdimensionalen Raum) eine
Menge S, die zugleich mit ihrem Komplement iiberall dicht ist und die FF-Eigenschaft
fiir orientationserhaltende Kongruenzen hat.

Es wire von Interesse, zu entscheiden, ob solche Mengen auch ohne transfinite
Induktion konstruiert werden koénnten, zum Beispiel ob es Borelsche oder analytische
Mengen dieser Art gibt.

Bewets von Satz 1. Definition: Eine Menge heisse kreiskonvex, wenn sie jeden Kreis
in einer zusammenhingenden Menge und jede gerade Linie in einer zusammenhéingen-
den Menge oder deren Komplement schneidet.

Lemma 1. Eine Menge ist kreiskonvex dann und nur dann, wenn ihr Komplement
kreiskonvex ist.

Lemma 2. Es sei S eine ebene kreiskonvexe Menge mit Rand 0S. Dann ist 0S ein
Kreis (méglicherweise zu einer Geraden, einem Punkt oder der Nullmenge degeneriert)
und 0S N S ist daher ein Kreisbogen (eine Strecke, das Komplement einer Strecke,
ein Punkt, leer).
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Beweis. Nach unserer Definition ist eine kreiskonvexe Menge auch projektiv
konvex. Nach H. KNESER [2] enthilt entweder die Menge oder ihr Komplement eine
gerade Linie und ist daher mit einer konvexen Menge oder deren Komplement
projektiv dquivalent, oder sie ist durch zwei gerade Linien begrenzt. Im letzteren Fall
ist die Menge offensichtlich nicht kreiskonvex. Wenn im ersten Fall der Rand, 0S,
aus zwei konvexen Kurven besteht, so muss es einen Kreis geben, der die beiden
Kurven beriihrt, und S ist daher nicht kreiskonvex. Wenn nun 0S eine unendliche
konvexe Kurve, aber nicht eine gerade Linie ist, dann gibt es auf ihr Punkte, $, an
denen die Kriimmung, », existiert und positiv (oder (oo ist. Ein Kreis mit Krimmung
< %, der 0S in p tangiert und in der gleichen Richtung gekriimmt ist, schneidet
dann 0S in dem isolierten Punkt $ und anderen Punkten so, dass S nicht kreiskonvex
ist. Es sei endlich 0S eine geschlossene konvexe Kurve, so sei p ein Punkt, an dem die
Kriimmung x existiert (oder x = o0). Nach dem obigen Argument muss jeder Kreis K
mit Kriimmung < %, der 0S in p tangiert und in der gleichen Richtung gekriimmt ist,
die ganze Kurve 0S enthalten, wihrend jeder Kreis 2 mit Kriimmung > »x, der 0S
in p tangiert und in der gleichen Richtung gekriimmt ist, in 0S enthalten sein muss.
Das ist nur méglich, wenn 0S selbst ein Kreis ist.

Lemma 3. Die kreiskonvexen Mengen des dreidimensionalen Raumes sind genau
die in Satz 1 beschriebenen Mengen.

Beweis. Es sei S eine kreiskonvexe Menge in E3. Nach Lemma 2 schneidet 0S jede
Ebene in einem Kreis (gerade Linie, Punkt, Nullmenge). Das ist bekanntlich nur
moglich, wenn 0S selbst eine Kugel (Ebene, Punkt, Nullmenge) ist. Die Forderungen
fiir 0S N S folgen unmittelbar aus Lemma 2.

Lemma 4. Eine Untermenge, S, eines Kreises oder einer Geraden mit der F-Eigen-
schaft fiir die Spiegelungen des Kreises (der Geraden) auf sich selbst ist ein Kreis-
bogen (der ganze Kreis, ein Punkt, leer), eine Strecke (ganze Gerade, Halbgerade,
Punkt, leer) oder deren Komplement. '

Bewets. Die Spiegelung an der Geraden g lisst die Punkte S N g fest. Das Spiegel-
bild S; von S muss daher alle Punkte von S auf einer Seite von g enthalten, da sonst
S — SN S, Punkte auf beiden Seiten von g aber keine g-Punkte enthielte, also
nicht zusammenhdngend wire. Es ist daher nicht moglich, zwei getrennte gleich-
gerichtet kongruente Kreisbégen (s, f) und (sq, ¢;) zu finden, fiir die s,s;€S und
t,t, ¢S, da es sonst eine Spiegelung s «— ¢, und ¢ <— s, gibe.

Betrachten wir zuerst den Fall, in dem S auf einem echten Kreis — sagen wir dem
Einheitskreis — liegt. Wenn S weder der ganze Kreis noch leer ist, so gibt es zwei
Punkte t=¢"¢ S, s =¢°€S mit beliebig kleinem Abstand; wir kénnen ohne
Beschrinkung der Allgemeinheit annehmen, dass ¢ = 0, 0 < 7 und dass es Punkte
¢'*’ ¢ S mit beliebig kleinem 7’ > 0 gibt. Nach der obigen Bemerkung ist also fiir
jedes s;, =€ S mit 1< o, <2m— 7 auch s, =¢@+7 €S und fir jedes ¢, =
emg¢Smit 27 <1, <2mauchiy=en""¢S.

Wenn esnun sy=¢* €S undf,=e™¢ S gibe,so dass 27 < gy < 1 < 27w — 277,
dann hitten wir die Punkte '

) 27—
Sy = e‘(o°+kt) eSS fir k= O, 1, wiwe [““’%“*‘6—0']

und

=™ I¢ S fir l=0,1,...,[3—’—t—£—1’°~].



PauL Erpos und E. G. Straus: Uber eine geometrische Frage von FEJEs-TOTH 13
Im Besonderen kénnten wir also

T<ogtRhRtr<ty—Ilr1<oy+(k+1D)r<7,—(l—-1)71<2nm

d
P < — <ot kr<ty—(—1D1<o+ (k+1)7<27

finden. In beiden Fillen gidbe das zwei getrennte gleichgerichtet kongruente Kreis-
bogen der Linge |(ty — 0o) — (! + &) 7| mit einem Endpunkt in S und dem anderen
im Komplement von S. Wie oben bemerkt widerspricht dies der F-Eigenschaft. Da =
beliebig klein gewidhlt werden kann, folgt nun, dass tiberhaupt die Bedingung
0<0,<7y<27 mit &%€eS, ¢S nicht erfiillbar ist. Mit anderen Worten:
S ist ein Kreisbogen {¢'* | 0 < a < 0 < 27}

Im Fall dass S auf einer Geraden liegt, zeigt man auf ganz analoge Weise, dass
vier Punkte s <t <s, <t mits,s; €S;¢¢ ¢S der F-Eigenschaft widersprechen
wiirden. Es muss also S aus einer Strecke (Gerade, Halbgerade, Punkt, Nullmenge)
oder deren Komplement bestehen.

Satz 1 folgt nun, da eine Menge der F-Eigenschaft fiir Spiegelungen an Ebenen
nach Lemma 4 kreiskonvex ist und daher nach Lemma 3 die angegebenen Eigen-
schaften besitzt.

Der Begriff der F-Eigenschaft wirft viele interessante Fragen auf. Zum Beispiel
hat jede projektivkonvexe Menge die F-Eigenschaft fiir Translationen, das fiithrt zu
folgender Frage:

Problem. Ist jede abgeschlossene Menge eines reellen Vektorraumes mit der
F-Eigenschaft fiir Translationen projektivkonvex? In der Ebene ldsst sich dieses
Problem leicht positiv beantworten. In héheren Dimensionen scheint die Antwort
komplizierter.

Beweis von Satz 2. Wir konstruieren eine ebene Menge S, die gleichzeitig mit ihrem
Komplement iiberall dicht ist und die Eigenschaft besitzt, dass fiir jede Menge S,,
die aus S durch nichtidentische orientationserhaltende Kongruenz entsteht, die
Menge S — SN S, jede die Ebene trennende Menge trifft. Diese Konstruktion ge-
schieht durch transfinite Induktion. Wir wohlordnen die Punkte {X,} der Ebene,
die nichtidentischen orientationserhaltenden Kongruenzen {7,} der Ebene und die
abgeschlossenen Mengen {M} der Ebene, die die Ebene trennen, nach dem initiellen
Ordnungstyp der Michtigkeit C. Es seien nun fiir die Ordnungstypen g < «,
(|| < C), die Mengen S, und Sg so definiert, dass

(Sp— T,(Sp 0Ss) A My +0 und (S;— T,(Sp) 0Sp) A M, + O fiir alley,8 <

d , ,
- 1Sg1<cC, |S;1<C, SnS;=0.

Dann setzen wir S, = U,y V, und S, = U,y V,, wo U, =U Szund U, = U S;.

f<a f<a
Die Mengen V, und V, werden selbst induktiv definiert durch V,=UV, g und
f<a
Ve=UV,5 wo V,  aus dem ersten Element X, von M 4 besteht, das nicht Fix-
<

punkt einer der Transformationen Ty, d < « ist und fiir das

X,¢U,0UV,, und T,%X,)¢U,0uUV,, firale 6<x.

e<p e<p
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Da | M, | = C und die rechtsgeschriebenen Mengen von einer Machtigkeit < C sind,
muss so ein X, existieren. Wir definieren nun

V;ﬁ =alsJ Ty (Vap U {X.},

wo X, das erste Element von M, ist, das nicht zu U, U U V,; gehort.
8<p
Wenn nun S = U S,, dann enthilt fiir jedes Paar von Ordinalzahlen f, y

(181,171 <C) die Menge (S — T4(S)) " M, die Punkte von V,, fiir jedes
« > max{f, y}. Die Menge S — T 4(S) ist also zusammenhédngend und S ist tiberall
dicht. Andererseits trifft die Komplementirmenge S’ = U S, nach Konstruktion
auch jedes M - ist also sicher iiberall dicht.

Mit derselben Methode konnte man folgende Verallgemeinerung von Satz 2
beweisen:

Satz2'. Es sei T eine Menge von eineindeutigen Abbildungen eines reellen Vektor-
raumes V der Dimension < §, in sich, so dass |T| < C und die Fixpunkte von
weniger als C Abbildungen aus T den Raum nicht trennen. Dann gibt es eine Menge
S C V, die zugleich mit ihrem Komplement iiberall dicht ist und die die F-Eigen-
schaft fiir T hat. Paur ErpOs, Mathematisches Institut, Budapest und

E. G. StrAUS*), University of California, Los Angeles
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Ungel6ste Probleme

Nr. 49. Es bezeichne R den dreidimensionalen euklidischen Raum, Z € R einen
fest gewahlten Ursprung und 4 C R einen eigentlichen Eikorper, der den Ursprung
enthilt, so dass fortab stets Z € A vorausgesetzt ist. Bedeutet V' das Volumen, so
gilt offenbar V(4) > 0. Ferner bezeichne E, C R die durch Z hindurchgehende
Ebene, deren Normalenrichtung durch den Einheitsvektor # gegeben ist. Schliesslich
soll f den ebenen Flicheninhalt anzeigen, so dass f (4 0 E,) die Schnittfliche dar-
stellt, welche die Ebene E, aus dem Eikoérper 4 ausschneidet.

Unser Interesse gilt den beiden durch die Ansitze

p = sup inf [£(4 0 )P [V(4)]-2 o
g = int sup [f(4 0 E)P [V(4)]-2 @

definierten Zahlwerten. Die Existenz von ¢ ist trivial, diejenige von p ergibt sich
weiter unten.
Das mit (1) angesetzte Problem in etwas anderer gleichwertiger Weise formuliert,

lautet wie folgt:
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