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Über eine geometrische Frage von Fejes-Töth

Fejes-Töth bewies folgenden Satz (vgl. [1]).
Es sei S eine abgeschlossene Menge der Ebene mit der Eigenschaft, dass für jedes

St, das zu S kongruent ist, die Menge S-SOS, zusammenhängend sei. Dann ist S
eine Kreisscheibe (Halbebene) oder das Komplement einer offenen Kreisscheibe oder
die ganze Ebene, oder leer.

Fejes-Töth fragte uns, was aus diesem Satz würde, wenn die Bedingungen der
Abgeschlossenheit oder der Zweidimensionalität fallen gelassen würden. Um die
Antwort einfacher auszudrücken, gebrauchen wir folgenden Begriff:

Definition. Eine Menge S hat die F-Eigenschaft für die Transformationsmenge T,
wenn S — S O St zusammenhängend ist für jedes S{ das aus S durch eine
Transformation aus T entsteht.

Satz 1. Es sei S eine Teilmenge von E3 mit der F-Eigenschaft für Spiegelungen an
Ebenen. Dann ist der Rand, öS, von S eine Kugelfläche (möglicherweise degeneriert
zu einer Ebene, einem Punkt, der Nullmenge). Der Teil öS n S des Randes, der zu S

gehört, besteht aus einer Kugelkappe (im ebenen Falle zur Kreisscheibe degeneriert)
deren Anteil an ihrem Randkreise aus einem (möglicherweise leeren) Kreisbogen
besteht.

Diese Satz lässt sich offenbar auf beliebige Hilbertsche Räume und sphärische
Räume verallgemeinern, aber da dadurch die vollständige Beschreibung von S

kompliziert würde, beschränken wir uns hier auf den dreidimensionalen Fall. In
unserem Satz genügt es, Spiegelungen zu gebrauchen. Fejes-Töth teilt uns mit, dass
in seinem Beweis nur orientationserhaltende Kongruenzen verwendet werden. Wenn
wir uns auf diese Kongruenzen beschränken, so wird selbst in der Ebene Fejes-Töths
Resultat ohne die Annahme der Abgeschlossenheit völlig ungültig. Mit Hilfe trans-
finiter Induktion beweisen wir

Satz 2. Es gibt in der Ebene (auch in jedem höherdimensionalen Raum) eine

Menge S, die zugleich mit ihrem Komplement überall dicht ist und die F-Eigenschaft
für orientationserhaltende Kongruenzen hat.

Es wäre von Interesse, zu entscheiden, ob solche Mengen auch ohne transfinite
Induktion konstruiert werden könnten, zum Beispiel ob es Boreische oder analytische
Mengen dieser Art gibt.

Beweis von Satz 1. Definition: Eine Menge heisse kreiskonvex, wenn sie jeden Kreis
in einer zusammenhängenden Menge und jede gerade Linie in einer zusammenhängenden

Menge oder deren Komplement schneidet.
Lemma 1. Eine Menge ist kreiskonvex dann und nur dann, wenn ihr Komplement

kreiskonvex ist.
Lemma 2. Es sei S eine ebene kreiskonvexe Menge mit Rand öS. Dann ist öS ein

Kreis (möglicherweise zu einer Geraden, einem Punkt oder der Nullmenge degeneriert)
und dSn S ist daher ein Kreisbogen (eine Strecke, das Komplement einer Strecke,
ein Punkt, leer).
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Beweis. Nach unserer Definition ist eine kreiskonvexe Menge auch projektiv
konvex. Nach H. Kneser [2] enthält entweder die Menge oder ihr Komplement eine
gerade Linie und ist daher mit einer konvexen Menge oder deren Komplement
projektiv äquivalent, oder sie ist durch zwei gerade Linien begrenzt. Im letzteren Fall
ist die Menge offensichtlich nicht kreiskonvex. Wenn im ersten Fall der Rand, öS,
aus zwei konvexen Kurven besteht, so muss es einen Kreis geben, der die beiden
Kurven berührt, und S ist daher nicht kreiskonvex. Wenn nun öS eine unendliche
konvexe Kurve, aber nicht eine gerade Linie ist, dann gibt es auf ihr Punkte, p, an
denen die Krümmung, x, existiert und positiv (oder (oo ist. Ein Kreis mit Krümmung
< x, der öS in p tangiert und in der gleichen Richtung gekrümmt ist, schneidet
dann öS in dem isolierten Punkt p und anderen Punkten so, dass S nicht kreiskonvex
ist. Es sei endlich öS eine geschlossene konvexe Kurve, so sei p ein Punkt, an dem die
Krümmung x existiert (oder x oo). Nach dem obigen Argument muss jeder Kreis K
mit Krümmung < x, der öS in p tangiert und in der gleichen Richtung gekrümmt ist,
die ganze Kurve öS enthalten, während jeder Kreis k mit Krümmung > x, der öS

in p tangiert und in der gleichen Richtung gekrümmt ist, in öS enthalten sein muss.
Das ist nur möglich, wenn öS selbst ein Kreis ist.

Lemma 3. Die kreiskonvexen Mengen des dreidimensionalen Raumes sind genau
die in Satz 1 beschriebenen Mengen.

Beweis. Es sei S eine kreiskonvexe Menge in E3. Nach Lemma 2 schneidet öS jede
Ebene in einem Kreis (gerade Linie, Punkt, Nullmenge). Das ist bekanntlich nur
möglich, wenn dS selbst eine Kugel (Ebene, Punkt, Nullmenge) ist. Die Forderungen
für dS O 5 folgen unmittelbar aus Lemma 2.

Lemma 4. Eine Untermenge, S, eines Kreises oder einer Geraden mit der F-Eigen-
schaft für die Spiegelungen des Kreises (der Geraden) auf sich selbst ist ein Kreisbogen

(der ganze Kreis, ein Punkt, leer), eine Strecke (ganze Gerade, Halbgerade,
Punkt, leer) oder deren Komplement.

Beweis. Die Spiegelung an der Geraden g lässt die Punkte S O g fest. Das Spiegelbild

St von S muss daher alle Punkte von 5 auf einer Seite von g enthalten, da sonst
S - 5 n Sj Punkte auf beiden Seiten von g aber keine g-Punkte enthielte, also

nicht zusammenhängend wäre. Es ist daher nicht möglich, zwei getrennte
gleichgerichtet kongruente Kreisbögen (s,t) und (s1,t1) zu finden, für die s,s1eS und
t, tx $ S, da es sonst eine Spiegelung s <—> tx und t <—> sx gäbe.

Betrachten wir zuerst den Fall, in dem S auf einem echten Kreis - sagen wir dem
Einheitskreis - liegt. Wenn S weder der ganze Kreis noch leer ist, so gibt es zwei
Punkte t etr$S, s etaeS mit beliebig kleinem Abstand; wir können ohne

Beschränkung der Allgemeinheit annehmen, dass a 0, 0 < r und dass es Punkte
exx' $ S mit beliebig kleinem r' > 0 gibt. Nach der obigen Bemerkung ist also für
jedes st eta* g S mit % <ax<2n— x auch s2 et{(Tl+z) e S und für jedes tx

etr* $ S mit 2 r < xx < 2 n auch t2 el^~x) $ S.

Wenn es nun s0 0* a°eS und 2O==0*T°^S gäbe, so dass 2 r < <r0 < r0 < 2n — 2 r,
dann hätten wir die Punkte

und
h ___ ^t.-jt) ^ s für / =_ o, 1, [2jt^Y°].
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Im Besonderen könnten wir also

r<a0+kr<r0 — l r < a0 + (k + 1) r < rQ — (l — 1) r < 2tz
oder

r<r0 — lr<cr0 + kr<r0— (l— l)r<a0+(k + l)r<27i
finden. In beiden Fällen gäbe das zwei getrennte gleichgerichtet kongruente Kreisbögen

der Länge | (t0 — a0) — (l + k) r\ mit einem Endpunkt in 5 und dem anderen
im Komplement von S. Wie oben bemerkt widerspricht dies der F-Eigenschaft. Da r
beliebig klein gewählt werden kann, folgt nun, dass überhaupt die Bedingung
0 < or0 < r0 < 2n mit eta°eS, etr°$S nicht erfüllbar ist. Mit anderen Worten:
5 ist ein Kreisbogen {eia | 0 < <x fg a ^ 2 tc}.

Im Fall dass S auf einer Geraden liegt, zeigt man auf ganz analoge Weise, dass
vier Punkte s < t < sx < tx mit s, sxe S',t,tx$ S der F-Eigenschaft widersprechen
würden. Es muss also 5 aus einer Strecke (Gerade, Halbgerade, Punkt, Nullmenge)
oder deren Komplement bestehen.

Satz 1 folgt nun, da eine Menge der F-Eigenschaft für Spiegelungen an Ebenen
nach Lemma 4 kreiskonvex ist und daher nach Lemma 3 die angegebenen
Eigenschaften besitzt.

Der Begriff der F-Eigenschaft wirft viele interessante Fragen auf. Zum Beispiel
hat jede projektivkonvexe Menge die F-Eigenschaft für Translationen, das führt zu
folgender Frage:

Problem. Ist jede abgeschlossene Menge eines reellen Vektorraumes mit der
F-Eigenschaft für Translationen projektivkonvex? In der Ebene lässt sich dieses
Problem leicht positiv beantworten. In höheren Dimensionen scheint die Antwort
komplizierter.

Beweis von Satz 2. Wir konstruieren eine ebene Menge S, die gleichzeitig mit ihrem
Komplement überall dicht ist und die Eigenschaft besitzt, dass für jede Menge Slt
die aus S durch nichtidentische orientationserhaltende Kongruenz entsteht, die
Menge S — 5 O S± jede die Ebene trennende Menge trifft. Diese Konstruktion
geschieht durch transfinite Induktion. Wir wohlordnen die Punkte {Xa} der Ebene,
die nichtidentischen orientationserhaltenden Kongruenzen {Ta} der Ebene und die
abgeschlossenen Mengen {Ma} der Ebene, die die Ebene trennen, nach dem initiellen
Ordnungstyp der Mächtigkeit C. Es seien nun für die Ordnungstypen ß < a,
(| a | < C), die Mengen Sß und Sß so definiert, dass

(Sß - Ty(Sß) nSß)nM$ ±0 und (Sß - Ty(S'ß) nS'ß)nM8 ±0 für alle y, b < ß

Und
|S,|<C, \Sß\<C, SßCtSß 0.

Dann setzen wir Sa UaU Va und S'a UaU V'a, woC/a=U Sß und U'a U Sß.
ß<a ß<a

Die Mengen Va und V'^ werden selbst induktiv definiert durch Va U Vaß und
ß<*

V'a U V'zß, wo Vaß aus dem ersten Element Xy von Mß besteht, das nicht Fix-
ß<*

punkt einer der Transformationen T8, d < a ist und für das

Iy^;uUF; und r^ljS^uü^ füralle d<*.
e<ß e<ß
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Da | Mß | C und die rechtsgeschriebenen Mengen von einer Mächtigkeit < C sind,
muss so ein Xy existieren. Wir definieren nun

y'aß u Tf\vaß) u {__;>,

wo X'e das erste Element von M* ist, das nicht zu [/„uU Vol8 gehört.
ö<ß

Wenn nun S U Sa, dann enthält für jedes Paar von Ordinalzahlen ß, y
(\ß I, Iy I < Q die Menge (S - Tß(S)) n My die Punkte von Vay für jedes
oc > max{ß, 7}. Die Menge S — Tß(S) ist also zusammenhängend und 5 ist überall
dicht. Andererseits trifft die Komplementärmenge S' U S« nach Konstruktion
auch jedes My, ist also sicher überall dicht.

Mit derselben Methode könnte man folgende Verallgemeinerung von Satz 2

beweisen:
Satz 2''. Es sei T eine Menge von eineindeutigen Abbildungen eines reellen Vektorraumes

V der Dimension < x0 in sich, so dass | T | < C und die Fixpunkte von
weniger als C Abbildungen aus T den Raum nicht trennen. Dann gibt es eine Menge
S C V, die zugleich mit ihrem Komplement überall dicht ist und die die F-Eigenschaft

für T hat. Paul Erdös, Mathematisches Institut, Budapest und
E. G. Straus*), University of California, Los Angeles
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Ungelöste Probleme

Nr. 49. Es bezeichne R den dreidimensionalen euklidischen Raum, Z e R einen
fest gewählten Ursprung und A C R einen eigentlichen Eikörper, der den Ursprung
enthält, so dass fortab stets Z e A vorausgesetzt ist. Bedeutet V das Volumen, so

gilt offenbar V(A) > 0. Ferner bezeichne Eu C R die durch Z hindurchgehende
Ebene, deren Normalenrichtung durch den Einheitsvektor u gegeben ist. Schliesslich
soll / den ebenen Flächeninhalt anzeigen, so dass /(in Eu) die Schnittfläche
darstellt, welche die Ebene Eu aus dem Eikörper A ausschneidet.

Unser Interesse gilt den beiden durch die Ansätze

* sup inf [/(/inEjpiy(__)]-• (1)
A u

q ini sup U(AnEu)r[V(A)}-* (2)
A u

definierten Zahlwerten. Die Existenz von q ist trivial, diejenige von p ergibt sich
weiter unten.

Das mit (1) angesetzte Problem in etwas anderer gleichwertiger Weise formuliert,
lautet wie folgt:
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