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H. StacHeL: Elementare Bestimmung der gefihrlichen Fliche beim riumlichen Riickwirtsschnitt 37

Die Punkte P’, A, T,, T, und P’, C, T,, T, liegen nach dem Satz von Thales je
auf einem Kreis (siehe Figur 2). Bei allgemeiner Wahl von P’ ergeben sich aus dem
Peripheriewinkelsatz folgende gleiche Winkel: é= < P'AB = < P'T,T,, n=

Figur 2

X P'CB = < P'T,T,. Also unterscheiden sich § und  um <¢ 7,,7,7T,. Genau dann,
wenn T, T,, T, auf einer Geraden liegen, miissen & und 7 gleich sein, daher die vier
Punkte 4, B, C, P’ auf einem Kreis liegen. Also: Dann und nur dann liegen T,, T, T,
auf einer Geraden, wenn P’ auf den Umkreis des Dreiecks /\ fallt.

In Verbindung mit der Deutung von (4) erhilt man das Ergebnis: Die gefihrliche
Fliche beim raumlichen Riickwdrtsschnitt ist jener Drehzylinder, der die Ebene € nach
dem Umbkreis des Dretecks )\ schneidet. H. StacHEL, Graz

On a Diophantine Equation

A. ScHiNzeL and W. S1ERPINSKI [2]1) have recently showed that all solutions of
the equation

— x\2 2
-1 -1 =((275) -1 &)
in natural numbers %, y, x < y are of the form x = x,,, y = x,,.,, # =0, 1, ..., where
%=1, =3, x,.9=062x,,, —x,. Equation (1) is a special case of the equation
(2 —1) (p?—1) = (& — 1) (2)

whose all solutions are still unknown (cf. [2]-[5]). Moreover, the only known solution
of (2) which is not a solution of (1) is x = 4, y = 31, z = 11 ([5]; cf. [2], [3]).

The purpose of this note is to give all solutions in natural numbers ¢, x, y of the
equation

- - = ((275) -#). 3

1) Numbers in brackets refer to References, page 38.



38 K. Szvmiczek: On a Diophantine Equation

We shall prove the following
Theorem. All solutions of the Equation (3) in distinct natural numbers?, x, y, x < v,
are of the form

t=|m2—2n? |k, x=m2+ 20k, y=(3m*+8mn+6n)k, (4)

where m, n, k are natural numbers.
Proof. As in [2] we observe that

— 2 2
- -t~ ((2535) —8) = - s e+ @ —6xy 8.
Thus (3) is equivalent to
#2—6xy+y2+82=0,

which may be written in the form
(y —3x)2 =28 (x2—1¢?). (5)

First of all, ¢ < x. Further, from (5) it follows that 4 |y —3x, so y —3x =42,
where z > 0, since otherwise (y — 4)/2 < x and from ¢ << x <<y and (3) we get
(#% — £2) (y? — 3) < (»% — %)%, y < x, which is impossible.

Thus z > 0 and (5) can be written as

2242 =42, | (6)

Consequently, every solution of (5) in natural numbers ¢, %, y, x << y, gives a solution
of (6) in natural numbers ¢, x, z, where 4 z = y — 3 x. On the other hand, if ¢, x, zis a
solution of (6) in natural numbers, then the numbers ¢, x, y = 3 x + 4 z are natural,
x < v, and they form a solution of (5).
Thus, in order to find all solutions of (3) in natural numbers ¢, x, y, x < y it
suffices to know all solutions of (6) in natural numbers ¢, x, z and put y =3 x + 4 z.
But all solutions of (6) are the following (cf. [1], p. 41):

t=|m2—2n2 |k, x=m2+2n%k, 2=2mnk,

where m, n, k are natural numbers. If we put here y = 3 x + 4 z, we get the formulae
(4), which completes the proof. K. Szymiczek, Katowice, Poland

REFERENCES

[1] L. E. DicksoN, Introduction to the Theory of Numbers, Dover Publications, New York
1957.

[2] A. ScHINZEL et W. SIERPINSKI, Sur l'équation diophantienne (x* — 1) (y2 — 1) =
[((y — #)/2)* — 1]%, EL Math. 78, 132-133 (1963).

[3] A. ScHINzEL i W. SierpriNsKI, O rdwnaniu x* — 2 y? = k, Roczniki PTM, Seria II:
Wiadomosci Matematyczne 7, 229-232 (1964).

[4] K. Szymiczek, L'équation u v = w? en nombres triangulaives, Publications de I'Institut
Mathématique Beograd 3 (17), 139-141 (1963).

[5] K. SzyMICzZEK, O pewnych réwnaniach diofantycznych zwiazanych z liczbami tvéjkgtnymi,
Zeszyty Naukowe Wyzszej Szkoly Pedagogicznej w Katowicach, Sekcja Matematyki
4, 17-22 (1964).



	On a diophantine equation

