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L. Fejes Töth Eine Kennzeichnung des Kreises 27

Es seien nun RS und TU die grossten weissen Bögen, die auf unserem Kreis die
betrachteten weissen Punkte enthalten. Die Punkte R, S, T, U sind schwarz. (Dabei
können 5 und T oder U und R zusammenfallen.) Wir betrachten eine Drehung, die R
in einen Punkt 7?* des Bogens RS und T in einen Punkt T* des Bogens TU
überführt. Wir behaupten, dass s und die gedrehte Punktmenge s* einander kreuzen.

Die Punkte R* und 7* von s* liegen ausserhalb s. Es sei R*T* ein beliebiger zu s*
gehöriger Kurvenbogen (Figur 3) Diesem Bogen entspricht in der Drehung s* ^ s

ein Kurvenbogen RT in s. Da aber die Kurvenbögen R*T* und RT einander kreuzen,

Figur 3

ist s* — s*s nicht zusammenhangend In ähnlicher Weise sieht man ein, dass sich die
ausserhalb s* liegenden Punkte 5 und U innerhalb s nur durch einen über s* führenden
Kurvenbogen verbinden lassen Deshalb ist s — ss* auch nicht zusammenhängend.

Damit ist der Beweis beendet. L. Fejes Töth, Budapest

Bemerkungen der Redaktion Bezuglich der Frage, was beim Weglassen der Bedingung
der Abgeschlossenheit passiert, siehe P Erdos und E. Gr Straus Über eme geometrische

Frage von Fejes Töth (erscheint in dieser Zeitschrift)
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Eine geometrische Charakterisierung der Differenzierbarkeit
für Funktionen zweier Veränderlicher

M. Fr£chet hat vor einiger Zeit in einer ausführlichen, didaktisch orientierten
Arbeit1) verschiedene Definitionen der Differenzierbarkeit bzw. des Differentials von
Funktionen zweier Veränderlicher dargestellt und ihre Äquivalenz untereinander ge-

l) Siehe Literaturverzeichnis [3], S. 34.
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zeigt Er hat weiter m einprägsamer Weise deutlich gemacht, dass bei dem durch diese

Definition erfassten Begriff des Differentials eme vollständige Analogie zum Falle
einer Veränderlichen besteht

Im folgenden wird eme von den genannten Definitionen unabhängige und wohl
auch neue Differenzierbarkeitsdefimtion fur Funktionen zweier Veränderlicher
mitgeteilt, die sich auf den Begriff der Konvexität stutzt und ohne Limes-Operationen
auskommt Auch sie lasst sich völlig analog zu der entsprechenden Definition im Falle
einer Veränderlichen, wie sie in [4]2) gegeben wurde, formulieren Ihre Bedeutung
hegt weniger m der praktischen Anwendbarkeit als vielmehr dann, dass sie eme

suggestive geometrische Illustration des Differenzierbarkeitsbegnffs gibt Der Beweis
fur die Äquivalenz der neuen Definition mit den bekannten Definitionen ist natur-
gemass etwas mühsamer als im Falle einer Veränderlichen (vgl [4]) und soll daher im
zweiten Teil dieser Mitteilung ausgeführt werden

1 Eme Funktion / zweier Veränderlicher kann mit ihrem Graphen, das heisst mit
der Punktmenge {(x, y, z) | z f(x, y)} im dreidimensionalen Raum identifiziert
werden Die Konvexität der Funktion / ist dann in geometrischer Ausdrucksweise
dadurch definiert, dass erstens ihr Defmitionsbereich D (die Projektion des Graphen
auf die #y-Ebene) konvex ist und zweitens der Graph keinen Punkt enthalt, der oberhalb

der Verbindungsstrecke von irgendzweien seiner Punkte hegt - bzw keinen
Punkt, der unterhalb einer solchen Verbindungsstrecke hegt Im ersten Falle, d h
wenn

/(X xx + ja xz, X yx + fx y2) < Xf(xx, yx) + pf{x2, y2)

fur alle (xx,yx), (x2,y2) E & unc^ aue ^, /W > 0 mit X + /n 1

gilt, heisst f von unten konvex, im zweiten Falle, d h wenn hierbei > statt < steht,
heisst f von oben konvex*)

Es sei k eme konvexe Funktion und (x0, y0) em innerer Punkt ihres Definitionsbereichs

K Eme lineare Funktion s mit s(x, y) a x -f b y -f- c heisst Stutzebene an k

in Pq (x0, y0, k(xQ, y0)) (oder auch in (x0, y0)), wenn erstens P0 auf s hegt und
zweitens einer der beiden durch s bestimmten offenen Halbraume keinen Punkt von k

enthalt, das heisst also im Falle der Konvexität von unten, wenn

s(xo> yo) Hxo> y<>) sowie s(x, y) < k(x, y) fur alle (x, y) e K
im Falle der Konvexität von k von oben steht hierin > statt < Bekanntlich besitzt k

m P0 stets mindestens eine Stutzebene4)
Wir definieren zunächst
Def 1 Die konvexe Funktion k heisse glatt in P0 (oder auch m (x0, y0)), wenn k
%n Pq höchstens eine Stutzebene besitzt

Somit ist k dann und nur dann glatt m PQ, wenn k in P0 genau eme Stutzebene hat
Die angekündigte Definition der Differenzierbarkeit (hier zunächst anders genannt)
lautet

Def 2 Die Funktion f heisse glatt einschliessbar in P0 (xQ, y0,f(x0, y0)) (oder
auch m {x0,y0)), wenn es zu (x0,y0) eine konvexe Umgebung K (enthalten im

2) Siehe Literaturverzeichnis, S 34
a) Oft werden nur die von unten konvexen Funktionen «konvex» genannt und die von oben konvexen

Funktionen «konkav» (oder umgekehrt)
4) Siehe hierfür etwa Literaturverzeichnis [1], § 16
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Definitionsbereich D von f) und zwei in K definierte konvexe, in (x0, yQ) glatte
Funktionen kx, k2 gibt, derart dass gilt

ki(x0, y0) =/(*<>. yo) ^2(^0> y0) >

Kix> y) <f(x, y) < k2(x, y) für alle (x, y) e K

Es macht hier offenbar nichts aus, wenr kx als von oben, k2 als von unten konvex
angenommen wird Denn sind zum Beispiel kx und k2 beide von unten konvex, so
kann die Funktion kx durch ihre Stutzebene in P0 ersetzt werden, lineare Funktionen
(und nur diese) smd aber zugleich von unten und von oben konvex Weiter sieht man
sofort, dass jede m P0 glatte konvexe Funktion k auch glatt emschhessbar m P0 ist,
man setze hierzu kx k k2 Ist umgekehrt die m P0 glatt emschhessbare Funktion/
konvex, z B von unten konvex, so ist auch k2 von unten konvex, und aus der
Annahme,/wäre nicht glatt in _P0, d h es gäbe m P0 zwei Stutzebenen sx, s2 an/, folgt
wegen f(x, y) < k2(x, y), dass sx und s2 auch Stutzebenen der konvexen Funktion k2 in
P0 smd, im Widerspruch zur Glattheit von k2 Fur konvexe Funktionen stimmen also
die Begriffe «glatt» und «glatt emschhessbar» uberein

Im folgenden beweisen wir, dass der Begriff ((glatt emschhessbar)) gleichbedeutend ist
mit dem bekannten Begriff der Differenzierbarkeit - der kurz als «lineare Approxi-
mierbarkeit» charakterisiert werden kann, wobei die betreffende lineare Naherungs-
funktion im wesentlichen das Differential in dem betrachteten Punkt (x0, y0) und ihr
Graph die Tangentialebene m P0 ist Dabei wird sich zugleich die Tatsache ergeben,
dass bei einer in P0 glatt einschhessbaren Funktion / die Stutzebenen der beiden
konvexen Funktionen kx, k2 m P0 übereinstimmen und dass durch diese gemeinsame
Stutzebene die Tangentialebene m P0 an / gegeben ist

2 Die vorstehenden Behauptungen sind m den folgenden Sätzen 1 und 2
enthalten Bei ihrem Beweis machen wir von der Tatsache Gebrauch, dass die
auftretenden Begriffe invariant gegenüber solchen affinen Transformationen sind, durch
die eme Funktion / in die Funktion /* mit

f*(x,y) =f(axx-a2y+bx,a2x + axy + b2)-\-cxx + c2y + cs,

wobei a\-\- a\> 0 sei, übergeführt wird (allgemeinere Transformationen werden
nicht benotigt)

Satz 1. Fur jede konvexe Funktion k gilt (wenn (x0, y0) ein innerer Punkt ihres
Definitionsbereichs K ist und P0 (x0, y0, k(x0, y0)) gesetzt wird)
a) Ist k differenzierbar m (x0, y0), so ist k glatt m P0, und die Tangentialebene an k

m P0 ist zugleich Stutzebene

b) Ist k glatt m P0, so ist k differenzierbar in (x0, yQ)

Dieser Satz ist zweifellos nicht neu Jedenfalls ist die Aussage a) wohlbekannt
Ist k differenzierbar m (x0, y0), so kann k in P0 offenbar keine Stutzebene haben, die
von der Tangentialebene verschieden ist Folglich gibt es höchstens eine, also genau
eine Stutzebene in P0, und diese ist mit der Tangentialebene identisch. Die Aussage b)
ist - anders als die analoge Aussage im Falle einer Veränderlichen - nicht so einfach
einzusehen Da em Beweis in der bekannteren Literatur anscheinend nicht leicht zu
finden ist, soll er hier kurz ausgeführt werden
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Beweis von b) I. Ohne Beschrankung der Allgemeinheit nehmen wir an, dass k von
unten konvex und dass (xQ, y0) (0, 0), k(0, 0) 0 sowie k(x, y) > 0 fur alle (x, y)eK
sei (so dass die ^y-Ebene die Stutzebene an k m (0, 0, 0) ist) Dann existiert fur alle
x, y der Limes

k (q x, q y) 7.
hm<>

o
h(x> y} >

e-*o Q

Q>0

und die hierdurch fur alle x, y definierte Funktion h5) hat die Eigenschaften

0 < h(x, y) (1)

h(X x,Xy)=X h(x, y) fur X > 0 (2)

h(x, y) < k(x, y) fur alle (x, y) e K (3)

h ist von unten konvex (und daher stetig) (4)

Aus (2) und (4) folgt

h (X xx + ja x2, X yx + ja y2) < X h(xx, yx) + fi h(x2, y2), fur alle X, /u > 0 (5)

II Bezeichnet E den Einheitskreis in der ^y-Ebene6), so ist fur jedes ole E durch

m(<x) h(cosoc, sma)

die Steigung der Halbtangente an k im Punkte (0, 0, 0) m Richtung a gegeben, und
wegen (2) ist der Graph der Funktion h gerade die von allen diesen Halbtangenten
gebildete Flache Die Funktion m mit dem Definitionsbereich E ist, wie h, stetig und
nichtnegativ Wir werden zeigen, dass

m(oa) 0 fur alle oi.eE (6)

Diese Aussage, fur a 0 (a 0 bezeichne die Richtung der positiven x-Achse) sowie
fur a n\2, n, (3 ti)\2 genommen, liefert die Existenz der beiden partiellen Ableitungen

von k, und daraus kann wegen der Konvexität von k leicht auf die behauptete
Differenzierbarkeit geschlossen werden

III Zum Beweis von (6) nehmen wir das Gegenteil an es gebe em a0 e E mit

m(a0) > 0

wir werden daraus folgern, dass k m (0, 0, 0) eine zweite Stutzebene besitzt, im Widerspruch

zu der vorausgesetzten Glattheit von k

Smd olx, a2 zwei einander nicht gegenüberliegende Punkte auf E mit m(oLt)

h(cosoLt, sina,) 0 (i 1, 2), so folgt aus (1) und (5), dass w(a) 0 fur alle Punkte a
des kürzesten Bogens von <xx nach a2, denn fur jedes solche a gilt mit geeigneten
XfjLt>0

(cosa, sina) X(cosolx, smaj + /w(cosa2, sina2)

6) Es handelt sich hierbei um die sogenannte Richtungsdenvierte von k an der Stelle (0, 0), siehe hierfür
etwa Literaturverzeichnis [2], Nr 13 Dort sind auch die emfachen Beweise der Eigenschaften (2) bis (4)
ausgeführt

•) E wird in üblicher Weise mit der Zahlenmenge {oc | 0 < a < 2 n} identifiziert, die aber mit der von
der ^y-Ebene induzierten Topologie versehen wird
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Hieraus ergibt sich ohne Mühe, wenn die Stetigkeit von m und die Annahme w(a0) > 0

berücksichtigt werden, dass die Menge A {a 6 E | m(a) 0} abgeschlossen und in
einem (abgeschlossenen) Halbkreisbogen enthalten ist. Ohne Beschränkung der
Allgemeinheit kann also _4 {ae_5|^;-h(5<a<2jr — 6} mit d > 0 geschrieben werden.
Nun sind zwei Fälle zu unterscheiden:

Fall 1. Es gibt b > 0, so dass p sina < m((x) für alle oleE (Fig. 1). Dann ist
b r sina < r A(cosa, sina) h(r cosa, r sina) für alle r > 0, das heisst b y < h(x, y)
für alle x, y. Wegen (3) folgt

b y < &(%, y) für alle (#, y) e i£

JX*N

Figur 1

-'2JT

Somit ist die Ebene 5 mit s(x, y) b y (wobei b > 0) eine zweite Stützebene von k,
wie verlangt. Der Fall 1 liegt wegen der Stetigkeit von m stets vor, wenn d > 0 ist;
man kann dann b Min m(<x) wählen. Ist d 0, also m(0) w(tt) 0, so kommt

0< <x< n
es auf die Grenzwerte

#, lim inf
--?o, ->o

m (e) lim inf
e->0,e>0

m (n-

an; sind beide strikt positiv (eventuell auch unendlich), so liegt ebenfalls der Fall 1

vor, wie man leicht bestätigt. Andernfalls, das heisst wenn gx 0 oder g2 0 ist,
liegt der Fall 2 vor.

Fall 2. Es gibt kein b > 0 mit b sina < m(a) für alle ae£ (Fig. 2). Ohne
Beschränkung der Allgemeinheit werde g2 0 angenommen. Dann gibt es, wenn
b l Max m((x) gesetzt wird, wegen der Stetigkeit von m jedenfalls zwei Punk-

0< oc < n
te olx a2 mit

m(oix) > b skiax (7)

m(oi2) b sina2 (7')

Figur 2

^'lll

und 0 < olx < a2 < n. Offenbar gibt es jetzt zwei Zahlen X, ja > 0, so dass

(cosaj, sinax) A(l, 0) + /j(cosa2, sina2) ;
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nach (5) folgt hieraus

h(cos<x.x, sinai) < X h(l, 0) + [i A(cosa2, sina2)

also nach der Definition von m und wegen m(0) 0, (7') und sinax //sina2 schliesslich

m(oLx) < ii m(oL2) /ab sina2 b sinax.

Das Ergebnis m(cf.x) < b sinax steht im Widerspruch zu (7); der Fall 2 kann also nicht
eintreten. - Damit ist der Beweis von Satz 1 abgeschlossen.

Satz 2. Für jede Funktion f gilt (wenn (x0, y0) ein innerer Punkt ihres Definitionsbereichs

D ist und P0 (x0, y0ff(x0, y0)) gesetzt wird):
a) Istf differenzierbar in (x0, y0), so ist f glatt einschliessbar in P0.
b) Istfglatt einschliessbar in P0, so ist f differenzierbar in (x0, y0), und die
Tangentialebene von f in P0 ist Stützebene an kx und an k2.

Bei diesem Satz ist die Aussage b) leicht einzusehen: Auf Grund von Satz 1 b) sind
die Funktionen kx und k2, zwischen denen / eingeschlossen ist, beide in (x0,y0)
differenzierbar. Hieraus und aus kx(x0, y0) k2(x0, y0), kx(x, y) < k2(x, y) folgt leicht,
dass in P0 ihre Tangentialebenen, das heisst ihre Stützebenen übereinstimmen. Die
Funktion / ist nun gemäss Def. 2 zwischen zwei differenzierbaren Funktionen
eingeschlossen, die in P0 dieselbe Tangentialebene s (d.h. dieselbe lineare Näherungsfunktion)

besitzen; daraus folgt ohne Mühe, dass auch / in (x0, y0) differenzierbar ist
und dass s die Tangentialebene von/in P0 ist. - Der Beweis von a) ist mühsamer; er
lässt sich jedoch weitgehend analog zu dem in [4] dargestellten Beweis für die
entsprechende Aussage im Falle einer Veränderlichen führen.

Beweis von a). I. Ohne Beschränkung der Allgemeinheit nehmen wir an, dass/den
Definitionsbereich D {(x, y) \ Yx2 -f y2 < 1} hat und dass (x0, y0) (0, 0) und
/(0, 0) fx(0, 0) /2(0, 0) 0 ist (fx und/2 bezeichnen die beiden partiellen Ableitungen

von/). Wir konstruieren in einer konvexen Umgebung K2 C D von (0, 0) eine nicht
negative, von unten konvexe und in (0, 0) glatte Funktion k2 mit den Eigenschaften:

k2(0, 0) - 0 /(*, y) < k2(x, y) für alle (*, y) e K2 "

Die gleiche Konstruktion, für — / statt / ausgeführt, liefert eine konvexe Funktion
— kx mit dem konvexen Definitionsbereich KXC D. Schränkt man die so erhaltenen
Funktionen kx und k2 schliesslich auf K Kxn K2 ein, so ist hiermit die Bedingung
der Definition 2 erfüllt.

II. Wir legen eine Folge (mn)n
__ lt 2,.. mit den Eigenschaften

mn > mn+x > 0 (für alle n) (1)

lim mn 0 (2)

zugrunde und setzen

rn inf {r | es gibt (x, y) e D mit yx2 4- y2 r und f(x, y) > mnr} ; (3)

ist f(x, y) < mn ]/#* + y2 für alle (x, y) e D, so sei rn 1. Hierdurch ist eine Folge
(rn)n - i, 2,... definiert, und es gilt

1 > rn > rn+x und rn > 0 (für alle n) (4)
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Die ersten dieser Ungleichungen smd klar, die letzte ergibt sich indirekt Die Annahme
rn 0 wurde ja bedeuten, dass in beliebiger Nahe des Nullpunktes noch Punkte von/
oberhalb des Kegels mit der Gleichung z mn ]/x2 + y2 hegen, im Widerspruch zu der
vorausgesetzten Differenzierbarkeit von / Aus (3) folgt sofort

f(x, y) < mn ]jx2 + y2 für alle (x, y) mit ^x2 + y2<rn. (5)

Nach (4) existiert
hm rn a > 0 (6)

M->CO

Ist a > 0, so gilt nach (5) fur alle (x, y) mit ]/x2 -f y2 < a

f(x, y) < mn yx2 + y2 < mn a fur alle n

also wegen (2) f(x, y) < 0, fur k2 kann man also die #y-Ebene mit K2
{(x, y) | ]Jx2 + y2 < a) nehmen

III Es sei nun a 0 vorausgesetzt und ohne Beschrankung der Allgemeinheit
angenommen, dass r2 > r3 (> 0) ist7) Dann lasst sich, wie in [4] ausfuhrlich gezeigt
wird, induktiv eine Folge (an)n x 2 mit (fur alle n)

a„ < r„M, (7)

(8)

also

hm an 0 (9)

ai r2 > "n ^ ^»+1

an > an+i und an > 0

definieren, die überdies die Eigenschaft hat, dass die Steigungen l'n der durch

hian) =mnan> ln(an+l) ™n+l an+l (10)

gegebenen linearen Funktionen ln (einer Veränderlichen, siehe Fig 3) monoton ab-

C>C + i (für allen) (11)

nehmen

i y
/mn

/ /

kl
I

1 ^n+l

L>

^n*Z

dn+Z an+1 an 1

Figur 3

7) Die Numerierung entspncht der in [4] gewählten
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Aus (1), (8), (10) folgt
W»+l r < ln(r) fur ' > an+l >

und aus (5), (7) folgt

f(x, y) < mn+x yx2 + y2, wenn |/%2 -f y2 < a„
somit gilt

/(*. V) < /» (^2 + y2), wenn an+1 < |/%2 + y2 < an (12)

IV Nun setzen wir

10
wenn x y 0

/„ (|/*2 + y2), wenn an+x < f/^Ty2"< an (n 1, 2,

Wegen (7), (8), (9) ist hierdurch eine Funktion k2 mit dem Definitionsbereich

K2 {(x, y) | ]/x2 + y2<ax r2}

gegeben, und K2 ist (nach unserer Annahme uber D) in D enthalten Offenbar ist
k2(x, y) > 0 fur (x, y) * (0, 0), und auf Grund von (12) gilt

f(x, y) < k2(x, y) fur alle (x, y) e K2

Weiter ergibt sich mit (10) sofort die Stetigkeit von k2 und hieraus mit (11) die
Konvexität von unten Schliesslich überzeugt man sich mit Hilfe von (2) und (8)

leicht davon, dass k2 glatt ist, das heisst dass es keine von der #y-Ebene verschiedene
Stutzebene an k2 m (0, 0, 0) gibt Damit ist Satz 2 bewiesen

Arnold Kirsch, Gottingen
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Elementare Bestimmung der gefährlichen Flache beim
räumlichen Rückwärtsschnitt

Als räumlichen Ruckwartsschnitt bezeichnet man die Aufgabe, zu einem
vorgegebenen Dreieck /\ mit den Ecken A, B, C jenen Raumpunkt P zu bestimmen, aus
welchem die Dreiecksseiten unter vorgegebenen Winkeln ot, ß, y erscheinen Der Ort
aller Punkte, aus welchen zwei feste Punkte A, B unter konstantem Winkel y gesehen
werden, besteht m der Ebene nach dem Penphenewmkelsatz aus zwei Kreisen uber
der Sehne AB Rotation dieser Kreise um [AB] ergibt einen Torus als entsprechende
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