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L. FEjEs TérH: Eine Kennzeichnung des Kreises 27

Es seien nun RS und TU die grossten weissen Bogen, die auf unserem Kreis die
betrachteten weissen Punkte enthalten. Die Punkte R, S, T, U sind schwarz. (Dabei
kénnen S und T oder U und R zusammenfallen.) Wir betrachten eine Drehung, die R
in einen Punkt R* des Bogens RS und T in einen Punkt 7* des Bogens TU {iber-
fithrt. Wir behaupten, dass s und die gedrehte Punktmenge s* einander kreuzen.

Die Punkte R* und T* von s* liegen ausserhalb s. Es sei R*T* ein beliebiger zu s*
gehoriger Kurvenbogen (Figur 3). Diesem Bogen entspricht in der Drehung s* - s
ein Kurvenbogen RT in s. Da aber die Kurvenbégen R*7T* und RT einander kreuzen,

Figur 3

ist s* — s*s nicht zusammenhingend. In dhnlicher Weise sieht man ein, dass sich die
ausserhalb s* liegenden Punkte S und U innerhalb s nur durch einen iiber s* fithrenden
Kurvenbogen verbinden lassen. Deshalb ist s — ss* auch nicht zusammenhéingend.

Damit ist der Beweis beendet. L. FejEs T6tH, Budapest

Bewmerkungen der Redaktion: Beziiglich der Frage, was beim Weglassen der Bedingung
der Abgeschlossenheit passiert, siche P. ERp6s und E. Gr. Straus: Uber eine geome-
trische Frage von FEjEs TOTH (erscheint in dieser Zeitschrift)

LITERATURVERZEICHNIS

(1] R.P. BamBan und C. A. RoGERrs, Covering the Plane by Convex Sets, J. London Math.
Soc. 27, 304-314 (1952).

[2] L. Feyes TotH, Isoperimetric Problems Concerning Tessellations, Acta Math. Acad.
Sci. Hung. 74, 343-351 (1963).

[3] L. FEyEs TOTH, Regulive Figuren (Budapest 1965), S. 161.

-

Eine geometrische Charakterisierung der Differenzierbarkeit
fiir Funktionen zweier Verinderlicher

M. FRECHET hat vor einiger Zeit in einer ausfiihrlichen, didaktisch orientierten
Arbeit?) verschiedene Definitionen der Differenzierbarkeit bzw. des Differentials von
Funktionen zweier Verinderlicher dargestellt und ihre Aquivalenz untereinander ge-

1) Siehe Literaturverzeichnis [3], S. 34.
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zeigt. Er hat weiter in einpragsamer Weise deutlich gemacht, dass bei dem durch diese
Definition erfassten Begriff des Differentials eine vollstindige Analogie zum Falle
einer Verdnderlichen besteht. .

Im folgenden wird eine von den genannten Definitionen unabhingige und wohl
auch neue Differenzierbarkeitsdefinition fiir Funktionen zweier Verdnderlicher
mitgeteilt, die sich auf den Begriff der Konvexitit stiitzt und ohne Limes-Operationen
auskommt: Auch sie lidsst sich vollig analog zu der entsprechenden Definition im Falle
einer Verdnderlichen, wie sie in [4]2) gegeben wurde, formulieren. IThre Bedeutung
liegt weniger in der praktischen Anwendbarkeit als vielmehr darin, dass sie eine
suggestive geometrische Illustration des Differenzierbarkeitsbegriffs gibt. Der Beweis
fiir die Aquivalenz der neuen Definition mit den bekannten Definitionen ist natur-
gemdss etwas miithsamer als im Falle einer Verdnderlichen (vgl. [4]) und soll daher im
zweiten Teil dieser Mitteilung ausgefiihrt werden.

1. Eine Funktion f zweier Verdnderlicher kann mit ihrem Graphen, das heisst mit
der Punktmenge {(x,v,z2)|z=f(x,v)} im dreidimensionalen Raum identifiziert
werden. Die Kownvexitit der Funktion f ist dann in geometrischer Ausdrucksweise
dadurch definiert, dass erstens ihr Definitionsbereich D (die Projektion des Graphen
auf die xy-Ebene) konvex ist und zweitens der Graph keinen Punkt enthélt, der ober-
halb der Verbindungsstrecke von irgendzweien seiner Punkte liegt — bzw. keinen
Punkt, der unterhalb einer solchen Verbindungsstrecke liegt. Im ersten Falle, d.h.
wenn

FOAx+ 2y, Ay + pys) <Af(x, v1) + puflxs, vo)
fir alle (x4,7,), (*2,¥9) eDund alled, u > Omit A 4+ pu=1

gilt, heisst f von unten konvex,; im zweiten Falle, d.h. wenn hierbei > statt < steht,
heisst f von oben konvex?3).

Es sei k eine konvexe Funktion und (x,, ¥,) ein innerer Punkt ihres Definitions-
bereichs K. Eine lineare Funktion s mit s(x, ) = a ¥ + b y + ¢ heisst Stiitzebene an k
in Py = (%, ¥, R(%y, ¥p)) (oder auch in (x,, y,)), wenn erstens P, auf s liegt und
zweitens einer der beiden durch s bestimmten offenen Halbrdume keinen Punkt von %
enthilt, das heisst also im Falle der Konvexitit von unten, wenn

s(%g, Vo) = R(%g, o) sowie s(x, y) < k(x, y) fiir alle (x,y)e K ;

im Falle der Konvexitit von % von oben steht hierin > statt <{. Bekanntlich besitzt %
in P, stets mindestens eine Stiitzebene?).

Wir definieren zunichst:

Def. 1. Die konvexe Funktion k heisse glatt in Py (oder auch in (xy, v,)), wenn k

in Py hichstens eine Stiitzebene besitzt.

Somit ist # dann und nur dann glatt in P,, wenn % in P, genau eine Stiitzebene hat.
Die angekiindigte Definition der Differenzierbarkeit (hier zunichst anders genannt)
lautet : ’,

Def. 2. Die Funktion f heisse glatt einschliessbar in Py = (x,, vy, (%, ¥,)) (oder

auch in (%, Vo)), wenn es zu (x,,y,) eine konvexe Umgebung K (enthalten im

%) Siehe Liter:’aturvérzeichnis, S. 34. )

3) Oft werden nur die von unten konvexen Funktionen ¢konvex» genannt und die von oben konvexen

Funktionen ¢konkav» (oder umgekehrt).
4) Siehe hierfiir etwa Literaturverzeichnis [1], § 16.
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Defimitionsbereich D von f) und zwei in K definierte konvexe, in (xy, y,) glatte
Funktionen ky, ky gibt, derart dass gilt:

k1(%0, ¥o) = f (%0, ¥o) = k2%, ¥o) ;
ky(x, ) < flx, ) < ko(x, y) fiir alle (x,y) € K .

Es macht hier offenbar nichts aué, wenn k, als von oben, &, als von unten konvex
angenommen wird. Denn sind zum Beispiel 2, und %, beide von unten konvex, so
kann die Funktion &, durch ihre Stiitzebene in P, ersetzt werden; lineare Funktionen
(und nur diese) sind aber zugleich vqn unten und von oben konvex. Weiter siecht man
sofort, dass jede in P glatte konvexe Funktion & auch glatt einschliessbar in P, ist;
man setze hierzu &, = & = &,. Ist umgekehrt die in P glatt einschliessbare Funktion f
konvex, z.B. von unten konvex, so ist auch &, von unten konvex, und aus der An-
nahme, f wire nicht glatt in P, d.h. es gibe in P, zwei Stiitzebenen s,, s, an f, folgt
wegen f(x, ¥) << ky(%, ¥), dass s, und s, auch Stiitzebenen der konvexen Funktion %, in
P, sind, im Widerspruch zur Glattheit von &,. Fiir konvexe Funktionen stimmen also
die Begriffe «glatty und «glatt einschliessbar» iiberein.

Im folgenden beweisen wir, dass der Begriff «glatt einschliessbar gleichbedeutend ist
mit dem bekannten Begriff der Differenzierbarkeit — der kurz als «lineare Approxi-
mierbarkeit» charakterisiert werden kann, wobei die betreffende lineare Niherungs-
funktion im wesentlichen das Differential in dem betrachteten Punkt (x,, y,) und ihr
Graph die Tangentialebene in P, ist. Dabei wird sich zugleich die Tatsache ergeben,
dass bei einer in P, glatt einschliessbaren Funktion f die Stiitzebenen der beiden
konvexen Funktionen &,, %, in P, iibereinstimmen und dass durch diese gemeinsame
Stiitzebene die Tangentialebene in P, an f gegeben ist.

2. Die vorstehenden Behauptungen sind in den folgenden Sitzen 1 und 2 ent-
halten. Bei ihrem Beweis machen wir von der Tatsache Gebrauch, dass die auf-
tretenden Begriffe invariant gegeniiber solchen affinen Transformationen sind, durch
die eine Funktion fin die Funktion f* mit

¥, y) =flayx —a,y+ b, a9x+a;y+by) +c1x+ ¢y + ¢y,

wobei a2 + aZ > 0 sei, iibergefithrt wird (allgemeinere Transformationen werden
nicht benétigt).

Satz 1. Fiir jede konvexe Funktion k gilt (wenn (xy, vo) ein innerer Punkt thres
Definitionsbereichs K ist und Py = (x4, Yo, R(%q, ¥o)) gesetzt wird):

a) Ist k differenzierbar in (x4, ¥,), so ist k glatt in Py, und die Tangentialebene an k
in Py ist gugleich Stiitzebene.

b) Ist k glatt in P, so ist k differenzierbar in (xy, y,).

Dieser Satz ist zweifellos nicht neu. Jedenfalls ist die Aussage a) wohlbekannt:
Ist % differenzierbar in (x,, ¥,), so kann k in P, offenbar keine Stiitzebene haben, die
von der Tangentialebene verschieden ist. Folglich gibt es hochstens eine, also genau
eine Stiitzebene in P,, und diese ist mit der Tangentialebene identisch. Die Aussage b)
ist — anders als die analoge Aussage im Falle einer Verdnderlichen — nicht so einfach
einzusehen. Da ein Beweis in der bekannteren Literatur anscheinend nicht leicht zu
finden ist, soll er hier kurz ausgefiihrt werden.
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Beweis von b). I. Ohne Beschrinkung der Allgemeinheit nehmen wir an, dass & von
unten konvex und dass (x,, y,) = (0, 0), (0, 0) = 0 sowie k(x, y) > Ofiiralle (x, y) e K
sei (so dass die xy-Ebene die Stiitzebene an & in (0, 0, 0) ist). Dann existiert fiir alle
%, y der Limes

klerey) _
Q_IP(') ) —'h'(x’ y)’

>0

und die hierdurch fiir alle x, y definierte Funktion %5) hat die Eigenschaften:

0 <hlx,y); (1)
hAx,Ay)=Ah(x,y) fir A>0; (2)
h(x,y) < k(x,y) firalle (x,y)eK; (3)

h ist von unten konvex (und daher stetig) . 4)

Aus (2) und (4) folgt:
h(Axy+ pxg, Ay + uys) <Ah(xy,y)) + ph(x,,y,), firalled, u >0.  (5)
II. Bezeichnet E den Einheitskreis in der xy-Ebene?®), so ist fiir jedes « € E durch
m(e) = h(cosa, sine)

die Steigung der Halbtangente an % im Punkte (0, 0, 0) in Richtung « gegeben, und
wegen (2) ist der Graph der Funktion % gerade die von allen diesen Halbtangenten
gebildete Flache. Die Funktion m mit dem Definitionsbereich E ist, wie 4, stetig und
nichtnegativ. Wir werden zeigen, dass

m(a) = O fir allea € E . (6)

Diese Aussage, fiir « = 0 (« = 0 bezeichne die Richtung der positiven x-Achse) sowie
tiir o = /2, 7, (3 )/2 genommen, liefert die Existenz der beiden partiellen Ableitun-
gen von k, und daraus kann wegen der Konvexitdt von % leicht auf die behauptete
Differenzierbarkeit geschlossen werden.

II1. Zum Beweis von (6) nehmen wir das Gegenteil an: es gebe ein oy € E mit
m(og) > 0 ;

wir werden daraus folgern, dass £ in (0, 0, 0) eine zweite Stiitzebene besitzt, im Wider-
spruch zu der vorausgesetzten Glattheit von k.

Sind «,, a, zwei einander nicht gegeniiberliegende Punkte auf E mit m(«,;) =
h(cosa;, sina;) = 0 (¢ = 1, 2), so folgt aus (1) und (5), dass m(x) = O fiir alle Punkte «
des kiirzesten Bogens von «; nach «y; denn fiir jedes solche o gilt mit geeigneten
A u>0:

(cosa, sina) = A(cosa,, sine;) + u(cosa,, sinay) .

5) Es handelt sich hierbei um die sogenannte Richtungsderivierte von % an der Stelle (0, 0); siehe hierfiir
etwa Literaturverzeichnis [2], Nr. 13. Dort sind auch die einfachen Beweise der Eigenschaften (2) bis (4)
ausgefiihrt.

%) E wird in iiblicher Weise mit der Zahlenmenge {a | 0 < & < 2 7} identifiziert, die aber mit der von
der xy-Ebene induzierten Topologie versehen wird.
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Hieraus ergibt sich ohne Miihe, wenn die Stetigkeit von » und die Annahme m(xy) > 0
beriicksichtigt werden, dass die Menge A = {x € E | m(x) = 0} abgeschlossen und in
einem (abgeschlossenen) Halbkreisbogen enthalten ist. Ohne Beschrinkung der Allge-
meinheit kannalso 4 = {a € E |7 + § <o <27 — §} mit § > 0 geschrieben werden.
Nun sind zwei Fille zu unterscheiden:

Fall 1. Es gibt b > 0, so dass ‘;b sinae < m(a) fiir alle a € E (Fig. 1). Dann ist
brsina <7 h(cosa, sina) = A(r cosa, 7 sina) fiir alle » >> 0, das heisst by < h(x, y)
fiir alle x, y. Wegen (3) folgt

by <k(x,y) firalle (x,y)eK.

Somit ist die Ebene s mit s(x, y) = by (wobei & > 0) eine zweite Stiitzebene von £,
wie verlangt. Der Fall 1 liegt wegen der Stetigkeit von m stets vor, wenn é > 0 ist;

man kann dann b = Min m(x) wihlen. Ist d = 0, also m(0) = m(n) = 0, so kommt
0<asn
es auf die Grenzwerte

— Im inf @ — Lm inf ¥ =9
G=jmi e o e im i

an; sind beide strikt positiv (eventuell auch unendlich), so liegt ebenfalls der Fall 1

vor, wie man leicht bestdtigt. Andernfalls, das heisst wenn g, = 0 oder g, = O ist,

liegt der Fall 2 vor.

Fall 2. Es gibt kein b > 0 mit b sina < m(e) fiir alle « € E (Fig. 2). Ohne Be-
schrinkung der Allgemeinheit werde g, = 0 angenommen. Dann gibt es, wenn

b=} Max m(«) gesetzt wird, wegen der Stetigkeit von m jedenfalls zwei Punk-
0<a<n
te a;, o, mit

m(ay) > b sino, (7)

m(oy) = b sinay (7')

und 0 < a, < a, << 7w. Offenbar gibt es jetzt zwei Zahlen 4, 4 > 0, so dass

(cosay, sina;) = A(1, 0) + p(cosa,, sinay) ;
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nach (5) folgt hieraus
h(cosa,, sinay) < 4 (1, 0) 4+ u A(cosa,, sinay) ,
also nachder Definition von m und wegen #(0) = 0, (7') und sin«, = u sina, schliesslich
moy) < pumog) = p b sine, = b sine, .

Das Ergebnis m(«;) << b sina, steht im Widerspruch zu (7); der Fall 2 kann also nicht
eintreten. — Damit ist der Beweis von Satz 1 abgeschlossen.

Satz 2. Fiir jede Funktion f gilt (wenn (xy, v,) ein innerer Punkt ihres Definitions-
bereichs D ist und Py = (%, ¥y, f (%o, Vo)) gesetzt wird):

a) Ist f differenzierbar in (x,, v,), so ist f glatt einschliessbar in P,.

b) Ist f glatt einschliessbar in Py, so ist f differenzierbar in (x,, v,), und die Tangen-
tialebene von f in P, ist Stiitzebene an ky und an k.

Bei diesem Satz ist die Aussage b) leicht einzusehen: Auf Grund von Satz 1 b) sind
die Funktionen %, und %,, zwischen denen f eingeschlossen ist, beide in (x,, v,)
differenzierbar. Hieraus und aus &,(x,, v,) = Es(%g, ¥0o), R1(%, ¥) << Ry(x, y) folgt leicht,
dass in P, ihre Tangentialebenen, das heisst ihre Stiitzebenen iibereinstimmen. Die
Funktion f ist nun gemiss Def. 2 zwischen zwei differenzierbaren Funktionen einge-
schlossen, die in P, dieselbe Tangentialebene s (d.h. dieselbe lineare Nidherungs-
funktion) besitzen; daraus folgt ohne Miihe, dass auch fin (x,, y,) differenzierbar ist
und dass s die Tangentialebene von fin P, ist. — Der Beweis von a) ist mithsamer; er
lasst sich jedoch weitgehend analog zu dem in [4] dargestellten Beweis fiir die ent-
sprechende Aussage im Falle einer Veridnderlichen fiithren.

Bewers von a). I. Ohne Beschrankung der Allgemeinheit nehmen wir an, dass f den
Definitionsbereich D = {(x, y) | J#* + y® <<1} hat und dass (x4, y,) = (0, 0) und
(0, 0) = £,(0, 0) = f,(0, 0) = 0 ist (f; und f, bezeichnen die beiden partiellen Ableitun-
gen von f). Wir konstruieren in einer konvexen Umgebung K, C D von (0, 0) eine nicht
negative, von unten konvexe und in (0, 0) glatte Funktion %, mit den Eigenschaften:

ky(0,0) =0, f(x,v) <PAyx,y) firalle (r,y)eK,.

Die gleiche Konstruktion, fiir — f statt f ausgefiihrt, liefert eine konvexe Funktion
— k, mit dem konvexen Definitionsbereich K; C D. Schrinkt man die so erhaltenen
Funktionen %, und £, schliesslich auf K = K, 0 K, ein, so ist hiermit die Bedingung
der Definition 2 erfiillt.

IT. Wir legen eine Folge (m,), . ;,o,.. mit den Eigenschaften

m, > m,,, >0 (fir alle ), (1)
lim m, =0 (2)
7 —>00

zugrunde und setzen

r, = inf {r | es gibt (x, y) € D mit Vx2 + 9% =7und f(x,y) > m,r}; (3)

ist f(x,y) <m,)/s* + y? fiir alle (x, y) €D, so sei 7, = 1. Hierdurch ist eine Folge
(*a)n =1, 2,... definiert, und es gilt

1>7,>r,,,und r,>0 (fiir alle n) . 4)
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Die ersten dieser Ungleichungen sind klar; die letzte ergibt sich indirekt : Die Annahme
7, = 0 wiirde ja bedeuten, dass in beliebiger Nahe des Nullpunktes noch Punkte von f
oberhalb des Kegels mit der Gleichung z = m,, }/42 + y2 liegen, im Widerspruch zu der
vorausgesetzten Differenzierbarkeit von f. Aus (3) folgt sofort

flx,y) <m, Vx2 + 2 fiir alle (x, y) mit ‘/x"3 +y2<v,. (5)
Nach (4) existiert
limr,=a>0. (6)

Ist a 2> 0, so gilt nach (5) fiir alle (v, y) mit }/*% + 32 < a:

fl(x,v) <man2 +y2 <m,a, firalle n,

also wegen (2) f(x,y) <O; fir k, kann man also die xy-Ebene mit K, =
{(x,y) | /2 + ¥2 < a} nehmen.
ITI. Es sei nun a = 0 vorausgesetzt und ohne Beschrinkung der Allgemeinheit

angenommen, dass 7, > 73 (> 0) ist?). Dann lisst sich, wie in [4] ausfiihrlich gezeigt
wird, induktiv eine Folge (a,),_ 1, o mit (fiir alle n)

Ay =7y, a4, <ty (7)
a,> a,,, und a, >0, (8)

also
lim a,=0 (9)

definieren, die iiberdies die Eigenschaft hat, dass die Steigungen /, der durch
ln(an) =m,a,, ln(arH—l) = My41 11 (10)

gegebenen linearen Funktionen /, (einer Verdnderlichen, siehe Fig. 3) monoton ab-
nehmen:
rL>1

n n+1

(fuir alle #) . (11)

aﬂ’fz aﬂ*l aﬁ

Figur 3

") Die Numerierung entspricht der in [4] gewihlten.
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Aus (1), (8), (10) folgt
mn+1 4 < ln(r) fur r > an+1 ’
und aus (5), (7) folgt

flx,y) < mnﬂi/x +y , wenn Vx2+y2<a
somit gilt

fl(x,v) (‘/x2 +y ), wenn a,,; < sz +9y2<a,. (12)

IV. Nun setzen wir

0, wenn x =y =0 ;
kolx, y) =

l, (‘/x2 +;5) , wenn a,.; << V;c;—i- y2<a, (m=1,2..).
Wegen (7), (8), (9) ist hierdurch eine Funktion %k, mit dem Definitionsbereich

Ky={(x,9) | V22 + 2 < a; = r,}

gegeben, und K, ist (nach unserer Annahme iiber D) in D enthalten. Offenbar ist
ky(x, ¥) > 0 fur (x, y) = (0, 0), und auf Grund von (12) gilt

f(x, y) < ky(x, y) fiir alle (v, y) € K, .

Weiter ergibt sich mit (10) sofort die Stetigkeit von %, und hieraus mit (11) die
Konvexitdt von unten. Schliesslich tiberzeugt man sich mit Hilfe von (2) und (8)
leicht davon, dass &, glatt ist, das heisst dass es keine von der xy-Ebene verschiedene
Stiitzebene an &, in (0, 0, 0) gibt. Damit ist Satz 2 bewiesen.

ArNoOLD KirscH, G6ttingen
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Elementare Bestimmung der gefdhrlichen Fliche beim
riumlichen Riickwirtsschnitt

Als rdumlichen Riickwdrtsschnitt bezeichnet man die Aufgabe, zu einem vorge-
gebenen Dreieck A mit den Ecken A4, B, C jenen Raumpunkt P zu bestimmen, aus
welchem die Dreiecksseiten unter vorgegebenen Winkeln a, f, ¢ erscheinen. Der Ort
aller Punkte, aus welchen zwei feste Punkte 4, B unter konstantem Winkel y gesehen
werden, besteht in der Ebene nach dem Peripheriewinkelsatz aus zwei Kreisen iiber
der Sehne A4 B. Rotation dieser Kreise um [4 B] ergibt einen Torus als entsprechende
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