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12 J. Spilker: Über eine Vertauschbarkeit von Addition und Multiplikation

Über eine Vertauschbarkeit von Addition und Multiplikation
Sei N die Menge der natürlichen Zahlen 1,2,... versehen mit der üblichen Addition

und Multiplikation. Es bezeichne a die Additionsabbildung

<x:N x N->N: (a,b) -+a + b

und ja die Multiplikationsabbildung

p: N x N->N:(a,b)-+ab.
Eine bijektive Abbildung tz: N x N —> N heisst Peano-Abbildung. Mit diesen
Bezeichnungen lautet ein Problem von Ulam ([3], Seite 32): Gibt es eine Peano-Abbildung
tz, so dass ju tz*1 a a tz~x ju auf N x N gilt Diese Frage ist von Gao [1] und Kopfermann

[2] negativ beantwortet worden. Es stellt sich deshalb das folgende Problem:
Existieren zwei Peano-Abbildungen n und q mit der Eigenschaft ju tz"1 a a £-1 ju

Allgemeiner kann man fragen, in welchem Sinne Addition und Multiplikation
vertauschbar oder nicht vertauschbar sind. Ein Resultat in dieser Richtung enthält der

Satz: 1. Es gibt keine Peano-Abbildungen tz, q, a, x mit or-1 ju tz'1 oc t_1 oc £-1 ju

aufN x N.
2. Es gibt Peano-Abbildungen n, q, a, x mit ju n~x a er1 a q~x ju r_1 auf N.

Um den ersten Teil des Satzes zu beweisen, nehme man an, es gäbe Peano-Ab-
bildungen n,q,o, x, für die das folgende Diagramm kommutativ ist.

<y,N^NxN-^N<2
NxN NxN

^ N—>NxN—>H/*
Offenbar ist a-1(n) nur für n 1 leer, was tz ju'1 a r_1(l) {1} zur Folge hat, und

^(n) nur für n 1 einelementig, weshalb a t_1(1) {1} gilt. Ferner enthält
tz ju'1 a r~"1(2) zwei verschiedene Elemente a > 1, b > 1. Weil q a-1(2) einelementig
ist, folgt ju (1, a — 1) ju (1, b — 1) und daraus der Widerspruch a b.

Im nachfolgenden zweiten Teil des Beweises werden induktiv Peano-Abbildungen
tz, q sowie eine Bijektion <p von NxN auf sich konstruiert, die das Diagramm

NxNAnXnxNn^
N-i

NxN—»-N--? NxN/1
kommutativ machen. Weil am rechten Ende des Diagramms jede natürliche Zahl
n > 1 auftreten kann, definiere man n(l, 1): 1 und weiter

»(1,2): 2, »(2,1):-3,
.(1,1): 4,

f[l, 1): (1. 4), <p{l, 2): (2, 2), ?{2,1): (4,1)
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Dann kommutiert die Figur fur alle Urbilder von n 2, namhch fur (1, 1), (1, 2),
(2, 1) Fur ein « > 2 seien Injektionen tz von ju'1 {1, 2, n — 1} m N und q von
oc-1 {1, 2, n — 1} m N sowie eme Bijektion 9? von ol^tz ju'1 {1, w — 1} auf
yW-1 £ oc-1 {1, n — 1} so definiert, dass das Diagramm kommutativ ist Hat dann n
die Primfaktorzerlegung n II pq* mit paarweise verschiedenen Primzahlen pv, so

existieren genau mn II (qv + 1) formal verschiedene Zerlegungen n apbv m
natürliche Zahlen a„, &„ (1 < v < wn) Wenn N — q ol'1 {1, n — 1} {cx, c2, }
mit ^ < c2 < ist, dann definiere man q (1, n — 1) — clf q (2,n — 2) c2,

e(n-2,2) =cn_2
Ferner setze man jr (ax, 6X) ^, tt (#mM_i, &mM_-i) dmn_x, sofern

N — tz jat1 {1, ^ — 1} {dx, d2, } mit dx< d2< gilt Sodann wähle man
n (*«„, ^mj aus N - (jr^-1 {1, n - 1} <j {^, ^M_x}) so gross, dass

gilt Da es beliebig grosse natürliche Zahlen l gibt, fur die mt einen vorgegebenen Wert
> 2 hat, kann man eme Zahl q (n — 1, 1) aus N — (q ol'1 {1, n — 1} u {cx,
cn_2}) mit der Eigenschaft

^K> &!) + •••+ ^KM> &„J - wB w_(1 M_1} + + me{M 22) + wff(n_M)
bestimmen Dann haben die Mengen ol'1 tz ju~x(n) und //_1 @ a_1(n) gleiche Elementezahl,

und <p lasst sich fortsetzen zu einer Brjektion von oc-1 tz pr1 {1, w} auf
pr1 g a'1 {1, n) Auf diese Weise smd rekursiv Peano-Abbildungen tz, q und eme
Bijektion cp von NxN auf sich mit der Eigenschaft ju tz'1 ol ol q'1 ju cp konstruiert
Nimmt man fur x schliesslich eine beliebige Peano-Abbildung und setzt o x cp,

dann gilt ju tz'1 ol o*1 olq'1 ju t-1, womit auch der zweite Teil des Satzes bewiesen ist

J Spilker, Freiburg 1 Br
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Zur Zerlegung von Permutationen in elementfremde Zyklen
1. Definitionen und Bezeichnungen

Ausgehend von der Tatsache, dass jede Permutation cp abgesehen von der Reihenfolge

auf g£nau eme Weise in elementfremde Zyklen zerfallt1), ordnen wir cp ihre
Zyklenzahl z(<p) zu, hierbei sind die eingliedrigen Zyklen mitzuzahlen Eme Permutation

<p von n Elementen mit z((p) ~ k nennen wir fortan eine [n, k)~Permutation, und es

bezeichne p(n, k) deren Anzahl Die (n, 1)-Permutationen werden auch «zyklisch»
genannt, und im Falle n > 2 heissen die (n, n — 1)-Permutationen Transpositionen

Es sollen m dieser Note die Zahlen p(n, k) bestimmt und eme durch sie auf naturliche

Weise induzierte Klassifikation der Permutationen betrachtet werden Dabei
beschranken wir uns auf die Behandlung des nichtentarteten Falles 1 < k < n.

*) Vergleiche zum Beispiel [1], p 10 oder [3], p 28.
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