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12 J. SpiLker: Uber eine Vertauschbarkeit von Addition und Multiplikation

Uber eine Vertauschbarkeit von Addition und Multiplikation

Sei N die Menge der natiirlichen Zahlen 1, 2, ... versehen mit der iiblichen Addi-
tion und Multiplikation. Es bezeichne « die Additionsabbildung

«NXN-—=>N:(a,b) >a+b
und u die Multiplikationsabbildung

u:NxN—->N:(a,b)—>ab.

Eine bijektive Abbildung 7z: N X N — N heisst Peano-Abbildung. Mit diesen Be-
zeichnungen lautet ein Problem von Urawm ([3], Seite 32) : Gibt es eine Peano-Abbildung
m,sodassywla=azn!uauf N X Ngilt? Diese Frage ist von Gao [1] und KOPFER-
MANN [2] negativ beantwortet worden. Es stellt sich deshalb das folgende Problem:
Existieren zwei Peano-Abbildungen & und p mit der Eigenschaft pymla=oag 1 p?
Allgemeiner kann man fragen, in welchem Sinne Addition und Multiplikation ver-
tauschbar oder nicht vertauschbar sind. Ein Resultat in dieser Richtung enthilt der

Satz: 1. Es gibt keine Peano-Abbildungen m, 0, 0, T mit ol pn o=ty
auf N X N.

2. Es gibt Peano-Abbildungen n, o, 0, T mit pw oo™t = oo™t u 771 auf N.

Um den ersten Teil des Satzes zu beweisen, nehme man an, es gibe Peano-Ab-
bildungen 7, g, o, 7, fiir die das folgende Diagramm kommutativ ist.

“ oy NZo Nx N5 N~
N XN N x N

M\AN?NXN—?N4

Offenbar ist a~1(»n) nur fiir » = 1 leer, was # y~! ¢ T=(1) = {1} zur Folge hat, und
uY(n) nur fiir » =1 einelementig, weshalb ¢ t~1(1) = {1} gilt. Ferner enthilt
7 u~t o T71(2) zwei verschiedene Elemente a > 1, b > 1. Weil g «~1(2) einelementig
ist, folgt u (1,2 — 1) = u (1, b — 1) und daraus der Widerspruch a = b.

Im nachfolgenden zweiten Teil des Beweises werden induktiv Peano-Abbildungen
7, 9 sowie eine Bijektion ¢ von N X N auf sich konstruiert, die das Diagramm

NxNJ;NileN\Q

Q N

NxN—+N7ijN/:
u

kommutativ machen. Weil am rechten Ende des Diagramms jede natiirliche Zahl
n > 1 auftreten kann, definiere man #(1, 1): = 1 und weiter

n(l,2): =2, n(2,1): =3,
o(1,1): =4,
p(1,1): = (1,4), ¢(1,2): = (2,2), ¢(2,1): = (4.1).
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Dann kommutiert die Figur fiir alle Urbilder von » = 2, namlich fiir (1, 1), (1, 2),

(2, 1). Fiir ein # > 2 seien Injektionen 7z von #1{1,2,...,7 — 1} in N und ¢ von
a1{l,2,...,n— 1} in N sowie eine Bijektion ¢ von a 'z u1{1,...,n — 1} auf
putoat{l,...,n — 1} so definiert, dass das Diagramm kommutativ ist. Hat dann »

die Primfaktorzerlegung »n = II p% mit paarweise verschiedenen Primzahlen ,, so

existieren genau m,: = II (9, + 1) formal verschiedene Zerlegungen # = a, b, in
natiirliche Zahlen a,, b, (1 <» <m,). Wenn N —pa1{1,... ,n — 1} =:{c;, ¢y, ...}
mit ¢; < ¢y < ... ist, dann definiere man o (1, — 1):=¢;, 0 (2, — 2): =c,, ...,
o(n—2,2):=c¢c,_,.

Ferner setze man m(ay, b):=4dy, ..., (A, 4, b, _1): =4d,,_,, sofern
N—zmput{1,...,n—1}=:{d;, dy, ...} mit d; < d, < ... gilt. Sodann wihle man
7@y s bp,) AUS N — (2 {1,...,n— 1} u{dy, ..., d,,_4}) so gross, dass

m(ay, by) + o+ 7W(Bp,s b)) — My = My gyt My g4+ 2

gilt. Da es beliebig grosse natiirliche Zahlen / gibt, fiir die m, einen vorgegebenen Wert
> 2 hat, kann man eine Zahl p (n — 1,1) aus N — (o1 {1, ... ,n — 1} u{cy, ...,
¢,_o}p) mit der Eigenschaft

.715(611, bl) + ot n(a’mn’ bm”) - m, = mg(l,n-1) + ot m@(n—Z,Z) + mg(n——l,l)
bestimmen. Dann haben die Mengen a7 x~1(n) und u* o «~1(n) gleiche Elemente-
zahl, und ¢ ldsst sich fortsetzen zu einer Bijektion von a 'z u~1{1,...,n} auf
utoa1{l,..., n}. Auf diese Weise sind rekursiv Peano-Abbildungen 7, ¢ und eine
Bijektion ¢ von N X N auf sich mit der Eigenschaft u 7!« = o o u @ konstruiert.
Nimmt man fiir v schliesslich eine beliebige Peano-Abbildung und setzt o: = 7 ¢,
danngilt y 7t o 07! = a o~ p 71, womit auch der zweite Teil des Satzes bewiesen ist.

J. SPILKER, Freiburg i. Br.
LITERATUR

[1] H. Gao, Solution to a Problem of S. Ulam, Sci. Sinica 73, 1005-1006 (1964).

[2] K. KOPFERMANN, Ldsung eines Problems iiber Peano-Abbildungen, Math.-Phys.
Semesterber. 70, 273-275 (1964).

[3] S. Uram, 4 Collection of Mathematical Problems, Interscience, New York 1960.

Zur Zetlegung von Permutationen in elementfremde Zyklen
1. Definitionen und Bezeichnungen

Ausgehend von der Tatsache, dass jede Permutation ¢ abgesehen von der Reihen-
folge auf génau eine Weise in elementfremde Zyklen zerfillt!), ordnen wir ¢ ihre
Zyklenzahl z(p) zu; hierbei sind die eingliedrigen Zyklen mitzuzihlen. Eine Permuta-
tion ¢ von # Elementen mit z(p) = % nennen wir fortan eine (, k)- Permutation, und es
bezeichne p(n, k) deren Anzahl. Die (», 1)-Permutationen werden auch «zyklisch»
genannt, und im Falle #» > 2 heissen die (#, » — 1)-Permutationen Transpositionen.

Es sollen in dieser Note die Zahlen p(n, &) bestimmt und eine durch sie auf natiir-
liche Weise induzierte Klassifikation der Permutationen betrachtet werden. Dabei
beschrinken wir uns auf die Behandlung des nichtentarteten Falles 1 <k <.

1) Vergleiche zum Beispiel [1], p. 10 oder (3], p. 28.
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