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Axially Symmetric Polygons Inscribed in and Circumscribed
about Convex sets’)

In determining lower bounds for certain measures of central symmetry (centrality)
for ovals — planar convex sets with non-void interior — it is useful to establish the
existence of central polygons inscribed in (and circumscribed about) these sets [8].
Thus, e.g., BEsicovitcH [1] has shown the existence of an affine-regular hexagon
inscribed in every oval with the added property that the ratio of their areas is never
less than 2/3. In this paper we consider analogous questions with regard to axial
symmetry (axiality). Some of these results are new, and others are collected together
in this context for the first time. Many unsolved problems and conjectures still exist.
For the application of these results to measures of axiality, see [3].

Since axiality is similarity-invariant, it is sufficient to consider ovals whose diame-
ter is 1. In what follows, K shall denote an arbitrary oval, K, a central oval, and K,
an oval of constant breadth 1.

The interesting elementary axial polygons which can be inscribed in (circum-
scribed about) an oval are the isosceles triangle, kite (a quadrilateral symmetric about
a diagonal), rhombus, rectangle, square, hexagon, and octagon. A polygon is properly
inscribed in (circumscribed about) an oval K when each of its vertices (sides) is
(contains) a point of 8 K, the boundary of K. We shall consider only properly inscribed
(circumscribed) polygons, and shall discuss, in particular, the ratios of the areas and
perimeters of these polygons of those of the given oval.

I. Area Ratios. The area of a set S is denoted by [S].
A. The Isosceles Triangle.
Theorem 1. In every oval K there is an isosceles triangle I'(K) such that

I'(K)] o 3

K] 7w

Proof. 1t is sufficient to prove the theorem for strictly convex ovals, since an
arbitrary oval can be realized as the limit of an appropriate sequence of strictly

1) This paper represents part of the author’s PH. D. thesis presented to the University of Minnesota,
advisor Professor H. W. GUGGENHEIMER. Its preparation was partially supported by grant AF-AFOSR-
661-64, Air Force Office of Scientific Research.
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convex ovals, and since the limit of a sequence of isosceles triangles is again an isosceles
triangle. For every direction ¢ in the plane, there is, among all the triangles inscribed
in an oval K with a side in this direction, at least one, denoted T, which has maximal
area. There is also a (not necessarily unique) triangle 7= A4; A, A4 of maximal area
among all the triangles T,. If T is isosceles, for a particular K, then the theorem
follows from a result of BLASCHKE [2, p. 50], which states that in every oval K there
is a triangle T(K) (though not necessarily isosceles in general) such that [T(K)]/[K] >
3)/3/4 n ~ 0.413, with equality if and only if K is an ellipse. We may assume, then,
that T is not isosceles. Let a;, ¢ = 1, 2, 3, denote the side of T opposite 4;, H; the
foot of the altitude to a; (extended if necessary), and a;, a, the segments 4, , H;,
H; A, respectively, where the addition in the indices is modulo 3. Clearly, a;/a; =
cot A, /cotA,.,, and since T is not isosceles, none of the ratios a;/a; has the value 1.
We may assume, with no loss in generality, that a;/a{ > 1; then at least one of the
other ratios, say as/as, is less than 1 (for the product of the three ratios is 1). Let ¢,
be the direction of ;. Since T is a triangle of maximal area in K, T,=T,1=1,2,3.

Under the hypothesis of strict convexity, the ratios a;/a; are continuous functions
of . Let A be the vertex of T, opposite the side a lying in the direction ¢, and define
f(@p) = a’[a" asabove. As @ varies from ¢, to ¢,, f(@) varies from a{/a{ > 1 to ajfa; <1,
so that for some direction ¢, € (¢, @a), f(@e) = 1, i.e. T, . is isosceles. HODGES [10]
has shown that ir;f{[Tq,] [[K1} > 3/8, so that this inequality must also be true for the

isosceles triangle T, . This proves the theorem.

It is doubtful that the bound 3/8 is the best possible. We conjecture, rather, that
the result of BLASCHKE, mentioned above, remains true under the restriction that the
inscribed triangle T(K) is isosceles, and thus provides the greatest lower bound in
this case. Since the circle is both central and an oval of constant breadth, the result of
BLASCHKE proves that no greater bound can be conjectured for this area ratio when
the oval K is central or an oval of constant breadth. However, EGGLESTON and
TAYLOR [7] have shown that in every oval K, of constant breadth 1 there is an
inscribed equilateral triangle A'(K,) of side length at least A ~ 0.8534, with equality
for the 'REULEAUX pentagon’ P, and since the circle C, is the curve of constant
breadth 1 enclosing the greatest area, we have the improved inequality

I'(Ky)]  [4(K,)] [A(Ky] _ [4(Py]
K] C Kl © (6 = ¢y 04015, (1)

for ovals of constant breadth.

Theorem 2. About every oval K, there is a circumscribed isosceles triangle I”(K)
such that [K]/[I"(K)] > 1/2, with equality for parallelograms.

Proof. EGGLESTON [5] has established the ‘dual’ of the result of HonpGES mentioned
above, viz. that if T is a triangle of minimal area circumscribed about an oval K
with one side in the direction ¢, then i%f {{K]/[T,]} > 1/2, and that [K]/[T,] = 1/2

for every direction ¢ only when K 1s a parallelogram. Therefore, it is sufficient to
show that for at least one direction g, the triangle T,. is isosceles. The proof of this
fact is exactly like that of Theorem 1, and will be omitted.

_ Since parallelograms are central, no greater bound for this ratio is possible when
K is restricted to the class of central ovals. It is well known (HADWIGER, DEBRUNNER,
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KLEE [9, p. 14]), that every oval of diameter 1 is contained in an equilateral triangle

A" of side length p = /3, with equality for C,. Since the REULEAUX triangle T, has
least area among all ovals of constant breadth 1, it follows from these facts that

(K] (K] [Ty _ 3
ey o M e — 3) ~0.5426
Ty Z o (73— 3) ~ 054 @
is a better inequality for this ratio on the class of curves of constant breadth. We
conjecture that (K] C C
1 > [wlL_ [ ,1] ~~~n:— ~ 0.6046 3
Ky = TCa] A T 3y G)

is the best possible inequality on this class, with equality only for C,.

B. The Kite. A diameter of K is a chord of maximal length and a width is a chord
of minimal length.

Lemma 1. A diameter and a width of an oval K cannot both be subsets of § K.

The proof of this lemma is straightforward, and will be omitted.

Theorem 3. In every oval K, there is an inscribed kite Q'(K) such that
[Q'(K))/(K] > 1/2.

Proof Assume, without loss of generality, that a diameter AB of K does not lie
in B K, and draw (parallel) support lines to K through the points 4 and B. Let CD
be the chord of K on the perpendicular bisector of 4B, and draw support lines to K
through C and D. These four support lines determine a trapezoid circumscribed about
K. The quadrilateral ACBD (which is not degenerate by the above assumption) is
symmetric with respect to its diagonal CD, and clearly has area half that of the
circumscribed trapezoid, so that the desired inequality follows. That this bound
cannot be improved may be seen by choosing for K a ‘thin’ rectangle. It is not known
whether the bound is realized for any oval.

Since a rectangle is central, this same bound is also the best possible on the
subclass of central ovals. However, for ovals of constant breadth, we have a better
result.

Let S = ABCD be a unit square circumscribed about an oval K; of constant
breadth 1, E and F the midpoints of 4B and CD, respectively, and { the closed
(shaded) region in Fig. 1, constructed by drawing circular arcs of radius 1 about
E and F, and about the intersections of these arcs with the other two sides of S.
We may rotate K, inside S so that E and F belong to § K. For this position of K,
which we shall call a standard position of K, with respect to S, we have the following

Lemma 2. B K, C C.

This lemma is a direct consequence of simple properties of ovals of constant
breadth.

Theorem 4. [Q'(K,)]/[K,] > 2/n ~ 0.6366, with equality only for C,.

Proof. This theorem is an immediate consequence of the preceding lemma and of
the isoperimetric inequality.

Concerning circumscribed kites of minimal area, nothing is known except for
ovals of constant breadth, where, if we consider the circumscribed unit square S as a
kite, we find that

] UG 5 T P (n - )/3) ~0.7048., 4
0w S 5] 2 (=~ 3) (4)
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We conjecture that the best possible result for ovals of constant breadth is

[K,] [C4] . [Cy] _ ~
&)~ T0CoT ~ 5] — & 078, ©)

with equality only for C,.

C. The Rhombus. Nothing is known here regarding arbitrary ovals. For central
ovals, the inscribed kite of Theorem 3 is always a rhombus, so that the same bound
holds in this case.

Theorem 5. In every oval K, of constant breadth 1, there is an inscribed rhombus
R'(K,) with a diagonal of length 1 such that [R'(K,)]/[K,] = «, ~ 0.5483.

Proof. 1f S = ABCD is a unit square circumscribed to K,, we can rotate K,
through an angle ¢ inside S such that the points of contact E' = E(¢) and F' = F(p)
of B K, with AD and BC, respectively, make the distance DE’ = CF' a minimum.
If Y = Y(p) and Z’' = Z(p) are the points of contact of the perpendicular bisector of
E'F' with § K,, we may select these such that Y'X' > Z'X’, where X' =
E'FF0OY'Z. I YX' =2'X', then E'Z'F'Y’ is the desired rhombus, and we are
done. Assume, then, that Y' X’ > Z’' X’. Rotating K, in S through an angle & from
@ to ¢+, we obtain E" =E (p+7n) =ADNBK,, F"=F (p+a)= BCOK,
and AE" =DE'=BF"=CF'. Y'=Y (p+a) and Z"=Z (p + «) are defined
analogously to Y’ and Z’, so that Y" X" =2'X’' and Z"X" = Y' X', where X" =
E"F"0Y"Z". Since § K, is a continuous curve, the length Y'X' — Z' X' = f(¢)
is a continuous function of ¢. The above remarks show that Y'X' — Z'X’' =
fl@) > 0> flp+a)=Y"X"—Z"X", so that there is a g, in the interval (¢, ¢ + n)
such that f(g,) = 0, which implies that the quadrilateral EZFY for this position g,
is a thombus, since its diagonals are mutual perpendicular bisectors. Since EF =1,
the existence of the desired rhombus is established.

Referring to Lemma 2 and Fig. 1, an easy computation shows that the shorter

diagonal of the inscribed rhombus has minimum length d = 2‘/{1 — (/3 —1)%4} — 1
for the REULEAUX triangle T,. Therefore,

[R(K)] -, [R(TY] - [R[’g;l)) — 24, ~0.5483.
1

(K] (K]
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We conjecture that the best possible inequality in this case is

[R'(K,
(K]

(R(TyY] _ 4

)]
ST ATy

~ 0.611, (6)

with equality only for T;.

D. The Rectangle. Rapz1sZEWSKI [12] has shown the existence, in every oval K,
of an inscribed rectangle of area at least half that of K. That this bound cannot be
improved for central ovals may be seen by taking for K a rhombus with an angle
o < m/4. We conjecture that, in ovals of constant breadth, inscribed rectangles of
maximal area are squares.

It is easy to see that, about every oval K, a rectangle may be circumscribed with
area no greater than twice that of K. For this purpose, it is sufficient to take a side
of the rectangle in the direction of a diameter of K. By considering a ‘thin’ rhombus
with an angle nearly zero, we see that this bound cannot be improved on central
ovals. For ovals of constant breadth, every circumscribed rectangle is a square.

E. The Square. Inscribed and circumscribed squares are of interest only for ovals
of constant breadth, for with arbitrary and central ovals the area ratio may be near
zero. EGGLESTON [6] established the existence, in every K,, of an inscribed square
S’(K,) of edge length at least ¢ ~ 0.6474, with equality only for T,. Hence,

[S'(Ky)] o [SU(TY) - [SUT)] _ 40t _
Kl = Kl = €1 — a0 @)

We conjecture that

K)o ST 20
KD © O Loy PR )

Since the unit square S is the only one which may be circumscribed about any K,,
we clearly have

T —
> Lal - (= -)/3) ~ 07048, (9)

F. The Hexagon. The set of midpoints of all chords of an oval K in a fixed direction
@ is called the load curve (‘Schwerlinie’) of K in the direction ¢, and denoted A,(K).
The basic facts about load curves are contained in a paper of ZINDLER [14]. Here we
make use of the simple observations that every load curve of an oval is connected,
and that in the direction @, normal to a diameter d of K, the endpoints of 1, (K) are

also endpoints of this diameter. This last remark follows from the well known fact
that the support lines to an oval K in the direction ¢, meet 8 K in only one point, viz.
an endpoint of the diameter 4.

Theorem 6. In every oval there is an inscribed axial hexagon.
Proof. Let A and B be endpoints of a diameter of K, and g, the direction normal
to A B. Since 4 and B are also endpoints of the load curve 4, ,(K), which is a connected

set, there is at least one line % in the direction parallel to 4 B which intersects 4,,

in two separate points distinct from 4 and B. (This line could contain the segment
AB, if A,, = AB.) These two points in Ay, Nk determine two chords of K in the
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direction ¢, which are bisected by %; their four endpoints, together with the two
points 2N B K, form the vertices of a hexagon inscribed in K and symmetric with
respect to k. (Clearly, such a hexagon need not be unique.)

No non-trivial area ratios are known for inscribed and circumscribed hexagons.

Theorem 7. About every oval there is a circumscribed axial hexagon. (It is
sufficient to prove the theorem for regular ovals, since the general case can then be
obtained by approximation. We prefer, however, to give a constructive proof for the
general case since a too hasty application of the approximation principle sometimes
leads to errors. For example, the proof in YAGLOM-BoLTYANSKIJ [13, p. 144] that an
equiangular hexagon having an axis of symmetry can be properly circumscribed about
every oval is correct only for regular ovals, since, in particular, the statement is not
true for a triangle with an angle > 27/3.)

Proof. In case K is regular, the hexagon may be obtained from a circumscribed
rhombus (which always exists, by an easy application of Bolzano’s theorem) by
snipping off opposite corners with support lines to K parallel to the diagonal through
the other two vertices. Difficulties arise if K is not regular, for then support lines may
pass through the vertices of the circumscribed rhombus. We distinguish several cases.

Case I. All four vertices of the circumscribed rhombus R are points of § K. In this
case R coincides with K. At a pair of opposite vertices of K draw segments whose
midpoints are these vertices, and which are parallel to and of smaller length than the
diagonal joining the other pair of vertices. The endpoints of these two segments and
of this diagonal are vertices of the desired hexagon.

Case II. A pair of adjacent vertices of R belong to 8 K. Let A and B be these two
vertices, and AC, BD the diagonals of R. We may assume that neither C nor D is a
point of B K, for if both are, then this case reduces to the preceding case, and if one is,
to the following. Let Pe BDNB K, P+ B, and E any point of the open segment
PD° (Fig. 2). Draw support lines m, and m, to K parallel to BD. Since 4 € § K, one
of these lines, say m,, passes through 4 ; m, does not pass through C, by hypothesis.
Through E draw two support lines to K ; these are unique, once E is fixed. Through B
draw two support lines to K making, with m, and m,, respectively, angles equal to
those made with these two lines by the support lines through E. These six support
lines determine the desired hexagon.

Figur 2
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Case III. A pair of opposite vertices of R belong to f K. Let A and C be these
vertices and assume that K lies entirely to one side of the diagonal AC (Fig. 3). By
convexity, AC C # K. Draw support lines m, and m, through 4 and C, respectively,

k
fil H A m
£ M L
J
5 Y
K
G My
I'e

Figur 3

and parallel to BD. Let % be the support line to K parallel to, and distinct from AC,
and let F = k0 m,, G =k m,. Choose any two points H € AF and I € CG such
that AH = CI, and draw the support lines to K through H and I meeting in J;
finally, construct JL | BD and select the point M € JL such that A\ JHI ~ /\ MAC,
and M is on the same side of AC as D. Then AMCI JH is the desired hexagon.

If K does not lie to one side of AC, or if only one vertex of R belongs to # K, then
an axial hexagon is easily constructed as in the case when K is regular. Since this
exhausts all possibilities, the theorem is proved in general.

About every oval of constant breadth 1, there is circumscribed a regular hexagon
H of edge length }/3/3 (EGGLESTON [4, p. 127]), so that if H"(K,) denotes the circum-
scribed axial hexagon of minimal area, we have

K] S K] S [T (/3 3) L 0.8137 10
AT > i 3 @3- 3) ~ 08157 (10)

G. The Octagon. Properly inscribed and circumscribed octagons do not exist for
every oval (e.g. the triangle). However, for a central oval K, a result of NoHL [11]
shows the existence of an inscribed axial (and central) octagon O'(K,) such that

-[9[—}(1{])—] > 2(f2 — 1)~0.828, (11)
with equality for a certain class of parallelograms. A ‘dual’ result is the following

Theorem 8. About every central oval K, there is a circumscribed axial (and
central) octagon O"(K,) such that [K_]/[0"(K,)] > V2/2 ~ 0.707.

Proof. No difficulty arises in this case in proving the theorem for regular central
ovals, and then using an approximation argument to obtain full generality. For every
direction @ in the plane, let R, be a rectangle circumscribed about K, with a pair of
sides in this direction. Since K, is central, its center O coincides with that of R,.
Let A B and CD be the sides of R, in the direction . Since K, is regular, by hypothesis,
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the vertices of R, do not belong to § K, so we may draw support lines EF and GH
to K, making equal angles with 4 B, as in Fig. 4. Let P, Q be the midpoints of 4B,

A F P 6 B8
H
£
a
4 0
I
4
L
D K J C
Figur 4

BC, respectively. If FP = PG, then the octagon O” = EFGHI JKL (where I, |, K, L
are images, respectively, of the points E, F, G, H reflected in O) is axial, and the
theorem is proved. Suppose that this is not the case, but that, in particular, F P < PG;
then AF > GB, AE > BH, and ER = QI < QH. Define a(p) = FP and b(p) = PG;
then a (p + n/2) = HQ and & (p + n/2) = Q1. The above inequalities imply that
a(p) — b(ep) < 0 and a (p + xnf2) — b (p + =/2) > 0, and since it is geometrically
obvious that the function f(p) = a(p) — b(¢) is continuous, it follows that for some
intermediate direction ¢, the circumscribed octagon O, has an axis of symmetry.

A unique (up to congruence) parallelogram P may be properly inscribed in an
axial and central octagon O” by joining its alternate vertices. If O” is circumscribed
about a central oval K, we now show that [K,]/[0"] > [P]/[0"]. For this purpose,
let A’, B, C', D', E’, F', G', H' be the points of contact of 8 K, with 0", selected so
that B'e AB, C'e BC, ..., A" e HA (two of these may coincide at a vertex of O”,
but this does not affect the proof), and let O’ denote the octagon determined by them.
Since O’ C K, [0'] <[K_]. The vertices of O’ and of 0" are symmetric with respect
to the center O of K,. We now show that [O0'] > [P].

Either BB’ > CD' or BB’ < CD’; assume the latter (with no loss in generality);
then [B’C'D’] > [B’' BD’] and (by symmetry) [F'G'H'] > [F'F H'], so that [0'] >
[A'B'BD'E'F'FH'] >|A'BD'E'FH']. Now BD'E'F=BD'E'y4E'FB and
either [BD'E'"] >[BCE'] or [BD'E'] >[BDE’]. Suppose the former; then
[BD'E'F]=[BD'E'l+[E'FB] >[BCE']+ [E'FB]=|BCE'F] > [BDF]; on
the other hand, if thelatter inequality istrue,then [BD'E'F|=[BD'E'|+ [E'F B] >
[BDE') + [E'FB] =[BDE'F] > [BDF]. By symmetry, we alsohave [FH' A’ B] >
[FHB], so that [A'BD'E'FH'] =[BD'E'F]+ [FH'A’'B] > [BDF|+ [FHB] =
[BDF H] = [P], which implies, by a previous inequality, that [0"] > [P]. '

We now determine the minimum value of the ratio [P]/[0"]. We may assume,
without loss of generality, that the lengths of two sides of O” which lie along the
edges of the circumscribed rectangle R are 1 and %, where 0 < %2 < oo. Then, referring
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toFig.5,[Pl=k+ky+x+2xy,[0"1=k+2ky+ 2x+ 2xy, and the function
f(k, x, y) = [P]/[0"] has the unique minimum value of }/2/2 when x = y = J/2/2 and
k = 1, as can be shown by elementary calculus. In this case, O” is a regular octagon,
and P is a square. Therefore, [K,]/[0"] > [0']/[0"] > [P]/[0"] > V2]2.

L

Figur 5

I1. Perimeter Ratios. The perimeter of a set S is denoted | S |. The known results
here are rather meager, and most of these concern ovals of constant breadth.

A. The Isosceles Triangle. Using the result of EGGLESTON and TAYLOR mentioned
on p. 3, and the notation of the preceding section, we can conclude immediately, as
regards ovals of constant breadth, that

[ 1'(K,) | A (K A'(P 34
since it is well known that every oval of constant breadth 1 has perimeter z.
As far as circumscribed isosceles triangles are concerned, the best possible result
is known and follows from a theorem of EGGLESTON [5]: About every oval K there is a
circumscribed equilateral triangle A”(K) such that

| K| i
- = — ~0.6046 , 13
4"(K)] = 3)/3 13

with equality only for the circle.

B. The Kite.

Theorem 9. In every oval K, there is an inscribed kite Q'(K) such that
|Q"(K)|/| K| > By — &€ ~0.649 — &, where ¢ > 0 is arbitrarily small.

Proof. With AB = 1 a diameter of K, K can be covered by a lens-shaped region
(Fig. 6) bounded by circular arcs of radius 1. The points 4, B and the points of inter-
section C and D of 8 K with the perpendicular bisector OP of AB are vertices of a
kite inscribed in K. (The case where A B C B K and the kite degenerates to an isosceles
triangle does not affect the first part of the proof, and will be dealt with later.) Draw
support lines EH and FG to K parallel to 4 B. Then, if Q' = ACBD and K' = EFGH,
Q' C K C K’ implies |Q'|/|K| > |Q'|/|K’|. For a fixed @', the minimum value of

the ratio |Q’'|/| K’| occurs for a maximum value of the arc length EF, which in turn
occurs when a support line to K through C (respectively D) coincides with either AC
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or BC (respectively AD or BD), as, for example, is the case when K is a circular
sector of radius 1 (see Fig. 7).

£ - f

H
3 6

<” ” <v

Figur 6 Figur 7

With B the origin of a rectangular coordinate system, referring to Fig. 7, we set
OD = xand definea=AD + BD = /{4 2+ 1}; b= AF + FG + BG = 2arctan (2 x) +

2|f{4 22+ 1} — 2;¢c=AC + CB;d = AE + EH + HB. By symmetry, it is sufficient
to determine the minimum value of only one of the ratios a/b and c¢/d. For this purpose
we define f(x) = a/b; this function has a unique minimum value §, ~ 0.649 on the
interval [0, /3/2] achieved for x = x, ~ 0.28. From this it follows that

l%gﬁ” > IQII((I,iH > !égggll = Zi; = min {a/b, ¢/d} = min f(x) = B,,
which proves the theorem, provided Q' is not degenerate.

If Q' degenerates to an isosceles triangle for some oval K, it is easy to construct a
proper kite Q" inscribed in K such that |Q”| > |Q’| — € for every € > 0, by con-
structing one diagonal of Q" parallel to, and arbitrarily close to, the diameter 4B,
but lying (except for its endpoints) entirely in the interior of K. The theorem is thus
proved in general. '

For a result concerning central ovals, we defer to the next section.

Theorem 10. For ovals of constant breadth,| Q'(K,)|/|K,| >2V2/n ~ 0.9002,
with equality only for those ovals having two diameters which are mutual perpendicu-
lar bisectors.

Proof. With K, in standard position with respect to the circumscribed square S,
the points of contact of 8 K, with S are vertices of an inscribed kite. It is well known
that, among all triangles with fixed base and area, the isosceles triangle on this base
has least perimeter. Therefore, this inscribed kite has minimum perimeter when itis a
square, and the theorem follows easily. An example of an oval of constant breadth
which is not a circle and which admits an inscribed square of diagonal 1 is given in

Fig. 8, and is constructed by drawing circular arcs AB and CD of radius 1/2 about the
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center O of the circumscribed square S, and circular arcs A’E, E’l\), and BC of radius 1
about the points C, B and E, where 4, B, C, and D are midpoints of the sides of S.

Figur 8

C. The Rhombus. Nothing is known in this case for arbitrary ovals.

Theorem 11. In every central oval K, there is an inscribed rhombus R’(K,) such
that |R'(K,)|/| K,| =y, ~ 0.8045.

Proof. Every central oval K, of diameter 1 is contained in a circle of diameter 1
with the same center 0. Let 4 B be a diameter of K, CD the chord through O which is
perpendicular to 4 B, and EG, FH support lines to K, through C and D, respectively

Figur 9

(Fig. 9). Since K, is central, EG | FH, and the quadrilateral ADBC is a rhombus.
The perimeter of this rhombus is smallest, for a fixed circumscribing figure K’ =
EFHG, when its diagonal CD is a minimum, which occurs when EG | CD. Let
R = R(K’) denote this minimum rhombus.

If O is the origin of a rectangular coordinate system, then (see Fig. 10) we have

e oo e o — —

a=AD + DB = {4 x2 4 1} and b = AF + FH + HB = arcsin(2 x) + /{1 — 4 #%}.
Defining g(x) = a/b, we find that g has a unique minimum value y, ~ 0.8045 on the
interval [0, 1/2] attained for x = x, ~ 0.2565. Therefore

IRII({KICH = Iﬁl((l’{]c” >~|*K“7T=7)“>ming(x)=70-
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As an analogue of Theorem 5 we have the following

A
£ f
E X\
g
6 #
B
Figur 10

Theorem 12. In every oval of constant breadth 1 there is an inscribed rhombus
R'(K,) with a diagonal of length 1 such that |R'(K,)|/|K;| > d, ~ 0.8402, with
equality for the REULEAUX triangle T}.

Proof. The existence of R’(K,) has been established in Theorem 5, from which it

also follows that | R’(K,;)| has the minimum value p =4 {1/4 + (‘/[—l/?/éj - 1/2)2}’
as an easy computation shows, when K; is the REULEAUX triangle. Therefore,

| R'(Ky) |

> BT _ P _ 5 08402,
EA

K, n

D. The Rectangle. No results are known in this connection for rectangles other
than squares.

E. The Square. As was pointed out in the previous section, the only interesting
case is that of ovals of constant breadth. Using the result of EGGLESTON [6] mentioned
on p. 7, and the notation of that paragraph, we can conclude immediately that

| S"(K,y) | |S"(Ty) | 4

o
P R = - ~0.8243, (14)

with equality for T;.

The analogous result for circumscribed squares is obvious.

F. The Hexagon. Since there is a regular hexagon H of side length }/3/3 circum-
scribed about every oval of constant breadth 1, if H”(K,) denotes the circumscribed
axial hexagon of minimal perimeter, we have

| K, | > | K, | L
=K~ THI 23

~ 0.9069 . (15)

G. The Octagon. No perimeter ratios are known for inscribed or circumscribed axial
octagons. B. ABEL DE VALCOURT, College of Santa Fe
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Kleine Mitteilungen

Bestimmung einer oberen Schranke fiir den Inhalt des Parallelrisses
eines regelmissigen Korpers

1. Im dreidimensionalen euklidischen Raum E, gibt es bekanntlich fiinf regelmissige,
konvexe oder PLaTonische Korper. Ist s eine beliebige Sehstrahlrichtung und =z eine zu s
normale Bildebene, so ist der scheinbare Umriss eines solchen PraTonischen Koérpers I7
ein ebenes konvexes Polygon I1*, das im folgenden kurz als der Normalriss von II be-
zeichnet werden soll; F sei sein Flicheninhalt. Das PLaToNische Polyeder IT habe p (unter-
einander kongruente und regelmissige) Polygone zu Seitenflichen s; (¢ = 1, 2, ... p), die
alle denselben Flacheninhalt f besitzen. Ist ¢; die Tragerebene von s; und «; der Neigungs-
winkel von ¢; gegen die Bildebene z, so hat der Normalriss s7 von s; einen durch

f; = [ cosa (1)

gegebenen Fliacheninhalt. Da jeder Sehstrahl s, der mit dem konvexen Polyeder II innere
Punkte gemeinsam hat, den Rand R(II) von IT in genau zwei Punkten trifft, ist jeder
innere Punkt des Normalrisses I7* von IT Normalriss von genau zwei Punkten des Randes
R(IT) von IT und es gilt mithin fiir den Flicheninhalt F von II":

2F=ffi. (2)
i=1

Ist O der Mittelpunkt des PLaToNischen Korpers und O; der Mittelpunkt seiner Seiten-

fliche s;, so ordnen wir jeder Seitenfliche s; einen zum Vektor OO proportionalen Vektor
m; zu, dessen Betrag mit dem Inhalt f von s iibereinstimmt. ]eder Vektor m; steht somit
auf der Tréigerebene ¢; von s; normal; die Spltzen der Vektoren m; bestimmen in ihrer
Gesamtheit als von O ausgehende Ortsvektoren ein zu dem gegebenen PraTonNischen
Polyeder IT «duales» regelméssiges Polyeder.
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