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Tangram - ein Puzzle-Problem für den Computer

1 Die Frage, auf wieviele Arten sich em Paket von n Karten auf m Spieler
verteilen lasse, kann mit elementaren kombinatorischen Mitteln durch einen geschlossenen
Ausdruck m n und m beantwortet werden

Das klassische Geldwechselproblem (auf wieviele Arten lasst sich eine Summe von
n Rappen in den existierenden Munzsorten wechseln ist, obschon um einiges
schwieriger als die erste Frage, einer analytischen Behandlung in dem Sinne noch
zugänglich, dass z B die erzeugende Funktion explizit angegeben werden kann, deren

Reihenentwicklungskoeffizienten gerade die gesuchten Anzahlen smd (siehe [2]1))
Bei noch komplizierteren kombinatorischen Aufgaben ist aber bald einmal der

Punkt erreicht, wo die Losung nur noch durch effektives Abzahlen aller möglichen
Falle erhalten wird Allerdings - und dies sollen die folgenden Ausfuhrungen
illustrieren - kann der Abzahlprozess mehr oder weniger geschickt angelegt werden
Jedenfalls nimmt bei verwickeiteren Problemen der Aufwand derartige Ausmasse an,
dass man nicht mehr ohne die Hilfe eines Computers durchkommt Damit tauchen
aber sofort Probleme der Formulierung und Darstellung auf welche beim Arbeiten
mit Papier und Bleistift allein weit weniger ms Gewicht fallen

Die Anregung zu den folgenden Betrachtungen verdanke ich meinem Kollegen
Professor E Specker

2 Unter dem Stichwort Tangram findet man im Oxford Enghsh Dictionary die

folgenden Erklärungen The name given to a Chinese geometncal puzzle consistmg of a

square dissected into five triangles, a square, and a rhomboid, which can be combmed so as

to make two equal Squares, and also so as to form several hundred figures, havmg a rudt
resemblance to houses, boats, bottles, glasses, ums, birds, beasts, men, ete

t\_DZ7
Tigur 1

Die Steine des Tangram Puzzles

*) Die Ziffern in eckigen Klammem verweisen auf das Literaturverzeichnis, Seite 85
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Zunächst stellt sich also die Aufgabe, die sieben in Figur 1 wiedergegebenen Steine
zu einem Quadrat, bzw. zu den zwei kleineren Quadraten zusammenzusetzen. Allerdings

sind diese beiden Aufgaben doch etwas zu dürftig, als dass es sich lohnen würde,
dafür ein Computer-Programm zu schreiben. Auf der anderen Seite geht die Frage
nach allen möglichen Zusammensetzungen wieder zu weit, da offensichtlich über
abzählbar viele verschiedene Figuren aus den gegebenen Steinen gebildet werden können.
Und diejenigen Figuren herauszusondern, welche die erwähnte Ähnlichkeit mit Häusern

usw. zeigen, dürfte die Fähigkeiten unserer heutigen Automaten noch
übersteigen.

Eine willkürliche, aber gewiss sinnvolle Beschränkung ergibt sich nun aus der
Forderung, dass die Figuren konvex sein sollen. (Man möge sich schon an dieser Stelle
überlegen, ob nur endlich viele Lösungen existieren und, wenn ja, die Anzahl grob zu
schätzen versuchen).

Für die folgenden drei Probleme wurden im Laufe der Zeit vom Verfasser
Lösungsverfahren programmiert:

Programm 1: Gegeben eine konvexe Figur mit dem richtigen Flächeninhalt. Kann
die Figur aus den Tangram-Steinen aufgebaut werden

Programm 2: Konstruktion aller verschiedenen konvexen Zusammensetzungen,
die sich aus den Tangram-Steinen bilden lassen, gruppiert nach dem äusseren Umriss.

Programm 3: Verallgemeinerung von Programm 2 für eine beliebige Anzahl von
(im weiter unten präzisierten Sinne) beliebigen Steinen.

Unsere Puzzle-Programme, und zwar vor allem Programm 3, sollen den Anlass
darstellen, um im Rahmen dieser Zeitschrift einige typische Schwierigkeiten und
Fragen zu diskutieren, die sich bei der Programmierung derartiger nichtnumerischer
Aufgaben immer einstellen. Solche Fragen prinzipieller Natur sind zum Beispiel die

folgenden:
1. Wie lässt sich ein Sachverhalt, der mir klar ist, und den ich in Worten beschreiben

kann - besonders gut anhand einer Skizze! - maschinengerecht formulieren?
(Unsere digitalen Computer sind daraufhin konzipiert, mit Zahlen zu rechnen und
nicht, mit geometrischen Figuren umzugehen).

2. Sollen in das Programm viele raffinierte Überlegungen gesteckt werden, womit
unter Umständen die Rechenzeit beträchtlich abgekürzt werden kann und dafür das

Programm lang und kompliziert wird, oder soll das Programm einfach und übersichtlich

angelegt sein und (zum Beispiel bei kombinatorischen Aufgaben) viele Fälle stur
durchprobieren, welche bei näherer Betrachtung zum vornherein hätten
ausgeschlossen werden können

3. Wie zuverlässig sind die Resultate, welche mein Programm liefert (Die
Lösungen eines linearen Gleichungssystems sind relativ leicht auf ihre Richtigkeit zu
prüfen. Dies gilt keineswegs für Probleme, wie das hier vorliegende.)

3 Im folgenden wird nun in groben Zügen geschildert, was sich abspielt vom
Moment an, da das Programm von Lochkarten die gegebene Anzahl und Form der
Puzzle-Steine liest, bis zur automatischen Ausgabe der konstruierten Figuren, zum
Beispiel mittels eines am Computer angeschlossenen Zeichengerätes (siehe Figur 8).
Bevor aber auf das Konstruktionsverfahren eingegangen werden kann, muss schon
etwas über die maschinenmässige Erfassung der vorkommenden Figuren gesagt werden,

da so erst die Aufgabenstellung präzise formuliert werden kann: Die spezielle
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Gestalt der in Figur 1 dargestellten Tangram-Steine legt nämlich die Veimutung
nahe, dass sich alle aus ihnen zusammengesetzten Figuren in ein Quadratnetz legen
lassen, wodurch die ziffernmässige Verschlüsselung einer solchen Figur auf einfachste
Weise durch die Angabe von besetzten Feldnummern gegeben werden könnte. Diese

Vermutung trifft aber nur für konvexe Figuren zu; es gilt dann der etwas allgemeinere
Satz: Ein konvexes Polygon, das in kongruente gleichschenklig rechtwinklige Dreiecke

(Elementardreiecke genannt) zerlegt werden kann, lässt sich so in ein Quadratnetz

legen, dass die Ecken aller Elementardreiecke auf Netzpunkte fallen.
Aus dem Satz folgt sofort, dass unser Problem nur endlich viele Lösungen besitzt;

für jede Gesamtfläche F lässt sich diese Anzahl leicht einschränken. Die Aussage des
Satzes scheint durchaus plausibel, muss aber doch genau geprüft werden, da die
Voraussetzung der Konvexität auf nicht ganz durchsichtige Art hineinspielt.

Knappe Skizze des Beweises: Aus der Voraussetzung folgt, dass das Polygon nur
Winkel von k • 45° (k 1, 2, 3) besitzt, also im allgemeinsten Falle ein Achteck
gemäss Figur 2 ist. Die at und bt sind nichtnegative ganze Zahlen, wobei die Katheten
des Elementardreiecks gleich 1 angenommen werden. Es ist nun weiter zu zeigen, dass,

falls (für jp > 0) nicht alle ax 0 oder alle bt 0 sind, im Ausdruck für F j/2-Anteile
stehen bleiben, im Widerspruch zur Voraussetzung. Das ist nicht ohne weiteres ein-

bz+dzY2

dj+bjYZf2a,+b

*akyz

a^^yz
a5+b5tf

e,f2

+<%)£

Figur 2

Allgemeinste Gestalt des konvexen Netzpolygons.

zusehen, wenn F als Fläche eines Rechtecks mit abgeschnittenen Ecken berechnet

wird, da dann im quadratischen Polynom für F auch negative Koeffizienten
auftreten. Wenn hingegen das Polygon durch die von einer Ecke ausgehenden Diagonalen
in Dreiecke zerlegt wird, erscheinen nur positive Koeffizienten, und die

Zwischenbehauptung lässt sich leicht verifizieren.
Somit kann der Umriss des Polygons in das Quadratnetz gelegt werden, und die

ganze Figur lässt sich in der Folge von aussen her durch Elementardreiecke, die
ebenfalls im Netz liegen, abbauen. Damit ist der Satz bewiesen.

Die Aufgabenstellung für das vorher erwähnte Programm 3 soll nun dahingehend

präzisiert werden, dass als Steine nur solche Polygone zugelassen werden, die sich im
Sinne des obigen Satzes in das Quadratnetz legen lassen. Die Einzelsteine brauchen
aber selbst durchaus nicht konvex zu sein.

4 Um ein Konstruktionsverfahren aufzustellen, darf man sich ruhig einmal
überlegen, auf welche Weise man wirkliche Steine von Hand auf dem Tisch auslegen würde:
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Sicher würde man in irgendeiner Reihenfolge die Steine aneinanderfügen und so
versuchen, eine konvexe Figur zu erzeugen. Vielleicht würde man gelegentlich schon vor
dem letzten Stein feststellen, dass keine Aussicht besteht, die Teilkonfiguration zu
einer konvexen Figur zu ergänzen und würde dann schon den betreffenden Stein
verschieben. Wenn man endlich eine Lösung gefunden hätte, würde man wohl nicht
völlig neu beginnen, sondern zuerst versuchen, den letzten Stein anders zu plazieren,
wenn nötig noch weitere Steine usw.

Wenn es nun darum geht, ein derartiges Verfahren zu programmieren, so sieht
man zunächst einmal, dass kein Grund mehr dafür besteht, die Steine so aneinander
zu legen, dass sie sich von Anfang an berühren. Im Gegenteil, wenn die Steine in einer
festen Reihenfolge gesetzt werden sollen, was sicher Vorteile bietet, ist dies gar nicht
mehr möglich. Wir werden also innerhalb eines maximalen Bereiches die Steine der
Reihe nach setzen, wobei im gegebenen Bereich alle Lagen zulässig sind, ausgenommen

natürlich diejenigen, bei welchen mit schon früher gesetzten Steinen Kollisionen
entstünden.

Betrachtet man den inneren Zusammenhang der einzelnen Schritte im eben
angedeuteten Verfahren, so erkennt man leicht die Struktur eines Baumes, der sich an
allen Zwischenstellen stark verzweigt: Jeder Punkt im baumartigen Graphen
entspricht dem Setzen eines Steines, die von diesem Punkte ausgehenden Zweige führen
zu allen möglichen Positionen des nächsten Steines. Und das Konstruktionsverfahren
besteht nun darin, dass, ausgehend vom obersten Punkt in der schematischen
Darstellung von Figur 3, der ganze Baum systematisch nach solchen Endpunkten
abgesucht wird, welche einer Lösung entsprechen. Dabei geht man nach einer festen
Ordnung vor, indem man zum Beispiel in jedem Punkt den am meisten links liegenden
noch unbenutzten Weg wählt. Der Prozess als ganzes bietet das Bild einer auf- und
abwärts pulsierenden Bewegung des laufenden Punktes im Graphen.

1. Stein

2 Stein

IStem

Figur 3

Baumstruktur, schematisch dargestellt. Eme momentane Situation im Konstruktionsverfahren.

Da die Anzahl der Endpunkte des Baumes, d.h. also die Anzahl der Kandidaten
für eine Lösung mit der Zahl der Stufen (Puzzle: Zahl der Steine) exponentiell
anwächst, erhebt sich bald sehr gebieterisch die Forderung, den Suchprozess derart zu
verfeinern, dass «unfruchtbare» Zweige schon möglich früh, d.h. weit oben im
Graphen erkannt und damit eliminiert werden können. Zur Illustration dieser Forderung

diene eine kleine Überschlagsrechnung für den Fall Tangram: Man überlegt sich
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leicht, dass alle konvexen Netzfiguren mit der Fläche F 16 Elementardreiecke in
einem Quadrat der Seitenlänge 9 Platz finden. Wenn man weiter berücksichtigt, dass,

ausser dem quadratischen, alle Steine in vier verschiedenen Orientierungen gesetzt
werden können, ergibt sich eine Anzahl von ca. 5 • 1016 Endpunkten des Baumes. Mit
einem Computer, der 103 Fälle pro Sekunde erledigt, käme man so auf eine Rechenzeit

von einer Million Jahren.
Um hier Abhilfe zu schaffen, wurde folgendes versucht: In Programm 2 wird jedesmal,

wenn ein neuer Stein gesetzt ist, bei dem keine Überdeckung mit schon besetzten
Feldern stattfindet, das kleinste konvexe Netzachteck bestimmt, welches alle jetzt
besetzten Felder enthält (also eine Art «diskrete konvexe Hülle»). Wenn nun diese Hülle
eine Fläche F > 16 erreicht, scheidet die Lage des neuen Steines aus; ist F < 16, so kann
der Stein bleiben, aber bei F 16 werden alle folgenden Steine nur noch in die Hülle
hineingelegt, bei F < 16 sind sie zunächst noch frei.

Trotz diesen Massnahmen muss in diesem Programm bis die letzte Lösung
gefunden ist immer noch 154396mal ein Stein gesetzt werden (nur die Fälle ohne
Kollision gezählt), und die Rechenzeit ist entsprechend lang. Das geschilderte
Verfahren hat den weiteren Nachteil, dass die Lösungen in regelloser Folge entdeckt werden

und somit alle gespeichert und am Schluss nach dem äusseren Umriss der Figur
sortiert werden müssen.

In Programm 3 wird ein anderer Weg beschritten: Wir bestimmen zunächst in
einem Vorspann alle konvexen Netzachtecke der (durch die Steine festgelegten)
Fläche F, d.h. alle möglichen Umrisse. Die Gestalt eines Umrisses ist eindeutig
definiert zum Beispiel durch die Grössen s2, s4, sx, s3

kommen teilweise für verschiedene Sixtupel s2,

s5, s7 (siehe Figur 4). Dagegen
kongruente Achtecke heraus.

Figur 4

Festlegung der Umrisse.

Um die Aufgabe genau zu formulieren, betrachten wir die ganzzahligen
nichtnegativen Lösungen der Gleichung

F 2s2st-(s21 + sl + s25 + s*)

(F gegeben, immer gemessen in Elementardreiecken), welche den Nebenbedingungen

sx + s3 < s2; s3 + s5 < s4

s5 + s7 < s2; sx + s7 < s4
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genügen. Diese Menge von Lösungen zerfällt in Klassen (Transitivitätsgebiete), innerhalb

derer die Lösungen infolge der Symmetrietransformationen des Quadrates
permutiert werden. Aus jeder solchen Klasse soll ein Repräsentant angegeben werden.

Die Anzahl N dieser Klassen (d.h. die Anzahl verschiedener Achtecke) ist offenbar
eine sehr komplizierte zahlentheoretische Funktion von F, sie verläuft zum Beispiel
keineswegs monoton. Einige Werte:

JP 123456789 10 16 (Tangram)
N 1326375 11 5 10 20

Das Teilproblem, die im obigen Sinne wesentlich verschiedenen Lösungen der
angegebenen diophantischen Gleichung einigermassen rationell zu erzeugen, stellt
übrigens eine sehr dankbare Übungsaufgabe im Programmieren dar.

Im Hauptprogramm werden nun die Steine nur noch in allen möglichen Positionen
in die vorbestimmten Umrisse hineingelegt. Damit ist der Baum gegenüber
Programm 2 ganz beträchtlich zusammengestutzt worden. Im Tangrambeispiel, nach
Programm 3 durchgerechnet, muss nur noch 13616mal ein Stein gesetzt werden.

5 Ein weiterer Aspekt kommt nun noch dazu, der das Verfahren wesentlich
kompliziert, dafür den Baum nochmals erheblich zu reduzieren gestattet: Wenn, wie
bis dahin unterstellt, jeder Stein an jede freie Stelle gelegt wird, dann erzeugt man
in manchen Fällen dieselbe Figur mehrmals, nur eventuell in anderer Lage. Und zwar
tritt dieser Fall genau dann ein, wenn der Umriss Symmetrien besitzt, oder wenn
mindestens ein Stein in mehreren Exemplaren vorhanden ist. Es ist nun äusserst
wichtig, dass Ansätze zu solchen überflüssigen Konfigurationen schon im Keime
erstickt, d.h. möglichst hoch oben im Baume entdeckt werden, und nicht erst, wenn
alle Steine gesetzt sind. Damit können wieder ganze Zweige eliminiert werden.

Ein möglicher Weg, dieses Ziel zu erreichen, ist der folgende: Die Positionen der
einzelnen Steine müssen ohnehin durchnumeriert sein, da das Durchlaufen des

Baumes nach einer festen Ordnung zu erfolgen hat. (Zur Definition der «Position»
eines Steines gehören sowohl die Lage eines starr mit ihm verbundenen Bezugspunktes
als auch seine Orientierung. Je nach Symmetrieeigenschaft besitzt ein Stein eine bis
acht verschiedene Orientierungen). Damit ergibt sich eine lexikographische Ordnung
innerhalb aller Teilkonfigurationen von der gleichen Anzahl Steine, indem man dem
zuerst gesetzten Stein das höchste Gewicht zumisst usw. Nun wird jedesmal, wenn
beim Abwärtsschreiten im Baum eine neue Steinsorte an die Reihe kommt (wir
setzen voraus, dass alle Exemplare desselben Steines direkt aufeinanderfolgend
gesetzt werden), die Symmetriegruppe U der momentanen Teilkonfiguration - d.h. bei
der ersten Steinsorte diejenige des äusseren Umrisses - festgestellt. (Mit zunehmender
Tiefe im Baum gehen höchstens Symmetrien verloren, es können keine neuen
hinzukommen.) Wenn jetzt innerhalb dieser Steinsorte ein neues Exemplar an der Reihe
ist, wird es erstens nur in Positionen gebracht, welche in der Numerierung nach den
schon gesetzten Steinen derselben Sorte kommen. Damit vermeiden wir die kongruenten

Konfigurationen, welche durch Permutation von gleichen Steinen ineinander
übergehen. Wenn zweitens das neue Exemplar wirklich im noch freien Bereich
gesetzt weiden kann, wird diese Teilkonfiguration versuchsweise in alle Lagen gemäss U
gebracht. Falls eine dieser Lagen in der oben erwähnten lexikographischen Ordnung
früher kommt als die direkt erzeugte Konfiguration, dann scheidet diese sofort aus,



P. Lauchli Tangram - em Puzzle-Problem fur den Computer 79

da sie nur auf Lösungen führen könnte, welche kongruent zu vorher erzeugten wären.
Um nochmals das Beispiel Tangram heranzuziehen: 13616mal wird versucht,

einen Stein zu setzen. Dabei hat der Stein in 1451 Fällen wirklich Platz in der
Restfigur, und in 1326 von diesen Fällen erlaubt auch der Symmetrie-Test diese Position.

Der relativ kleine Unterschied zwischen den letzten zwei Zahlen ist vielleicht
etwas irreführend; man möge jedoch bedenken, dass jedemal, wenn der Symmetrie-
Test eine Position ausschliesst, dadurch ein ganzer Zweig aus dem Baum geschnitten
wird, welcher sonst auch durchlaufen würde.

6 In diesem Abschnitt sollen einige besonders wichtige Details des Programmes
in zwangloser Folge etwas näher erläutert werden.

Fur die Darstellung, d.h. ziffernmassige Verschlüsselung von Emzelstemen und ganzen
Konfigurationen werden zwei verschiedene Prinzipien nebeneinander verwendet:

1. Liste der besetzten Felder im Quadratnetz. Fur jedes Feld benotigt man dabei die
Koordinaten zum Beispiel seines Zentrums, sowie die Angabe, ob das Feld ganz oder auf
welche der vier möglichen Arten nur durch em Elementardreieck besetzt ist.

2. Liste der Kanten (auch innere) der Figur. Kanten definiert durch die Koordinaten
der beiden Endpunkte.

So liest zum Beispiel zu Beginn das Programm die Puzzle-Steine m der Kantendarstellung

von Karten (ganzzahlige Koordinaten, Quadratnetz), da diese Form fur die
Eingabe bequemer ist, es wandelt die Information aber auch noch m die Felderdarstellung um.
Nachher werden beide Darstellungen verwendet Fur die Angabe des momentan noch
freien Teiles eines Achteckes kommt nur die Felderdarstellung m Frage, denn dieses
Gebiet kann eme sehr komplizierte Form besitzen; es braucht zum Beispiel nicht
zusammenhangend zu sein. Auch die Prüfung, ob em probeweise gesetzter Stein in diesem Gebiete
Platz findet, lasst sich so durch Vergleich von Feldnummern relativ leicht durchfuhren.
Wenn dagegen ein Stein in einer bestimmten Position diesen, sowie auch den Symmetrie-
Test bestanden hat, dann werden seine Kanten entsprechend dieser Lage gespeichert, da
spater bei der Ausgabe einer Losungsfigur die Kanten «gezeichnet» werden sollen.

Bei der Eingabe\der Steine am Anfang wird naturlich nur eme Lage fur jeden Stein
verlangt; das Programm muss selbst herausfinden, welche Symmetrien vorhanden smd. Dies

0 Indentitat

7

2 r^y

3 |

k b.

5 /
6 tx

7 \
Figur 5

Die Elemente der Drehspiegelungsgruppe des Quadrates
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geschieht so, dass zuerst das umbeschriebene Achteck bestimmt wird (es sei nochmals
daran erinnert, dass die Ernzelsteme nicht konvex vorausgesetzt werden) Eme allfalhge
Symmetrie des Steines muss auch das Achteck besitzen Also entscheidet man zuerst mit
einem einfachen Unterprogramm, das spater auch wieder fur die Umrisse verwendet wird,
auf Grund der Grossen s2, s4, sx, s3, s5, s7 welche der Symmetrien 1 bis 7 (siehe Figur 5)
beim Achteck vorhanden smd, und dann fur diese, ob sie auch beim einbeschriebenen
Puzzle-Stein gelten Natürlich macht man davon Gebrauch, dass eme Symmetrie-Achse
durch das «Zentrum» des Achtecks gehen, bzw em Symmetrie-Zentrum mit ihm
zusammenfallen muss

Smd so die Symmetrien ausgemacht worden, dann braucht es fur die Bestimmung des

Symmetrie-Typs nur noch eme recht einfache Entschlüsselung Es sei dem Leser ubei-
lassen, auf Grund des in Figur 6 symbolisch dargestellten Untergruppenverbandes der
Quadratgruppe selbst eme derartige Entschlusselungspyramide zu entwerfen

1ZM567

+

025 701Z3Olkb

+ /

Figur 6

Die 10 Untergruppen der Quadratgruppe
Die Ziffern in den Kreisen entsprechen der Numerierung der Gruppenelemente in Figur 5.

Spater, bei der Durchfuhrung des bereits erwähnten Symmetrie-Tests, welcher zur
Vermeidung kongruenter Konfigurationen notig ist, wird von den Symmetrie-Eigenschaften

der Steine Gebrauch gemacht Es muss dann festgestellt werden können, m welche
Orientierung em Stein gerat, der einem bestimmten Symmetrie-Typus angehört, wenn auf
ihn in einer bestimmten Orientierung eme bestimmte Transformation ausgeübt wird Zu
diesem Zweck bereitet das Programm am Anfang eme Tabelle vor, welche die benotigte
Information enthalt Man beachte, dass «Orientierung» eines Steines hier gleichbedeutend
ist mit Lmksrestklasse modulo seiner Symmetriegruppe

Es sei nur am Rande vermerkt, dass beim Symmetrie-Test durch einen zusatzlichen
Kunstgriff dafür gesorgt wird, dass im allgemeinen nicht alle Exemplare der laufenden
Steinsorte den Symmetrie-Transformationen unterworfen werden müssen, was sich
zeitsparend auswirkt.

Eine wichtige Frage, welche bei jedem Programm sehr sorgfaltig studiert werden muss,
betrifft den Umfang der zu speichernden Information Oft gilt es, Speicherbedarf und
Rechenzeit gegeneinander abzuwägen Em Beispiel aus unserem Puzzle-Programm möge
dies illustrieren Die Liste der momentan noch unbesetzten Felder innerhalb des Umrisses
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muss jederzeit zur Verfugung stehen. Sie wird sich aber, entsprechend der Auf- und Ab-
bewegung im Baum, standig verlangern und verkurzen. Nun stellen sich zwei Möglichkeiten

fur die Behandlung dieser Liste. Entweder speichert man bei jedem Abwärtsschritt
im Baum, d.h. fur jedes Niveau (nicht fur jeden Punkt') die Liste ab und findet sie somit
wieder beim Aufwartsschreiten. Oder man fuhrt die Liste nur in einem Exemplar und muss
dann bei jedem Aufwartsschritt den früher an dieser Stelle gesetzten Stein nochmals
suchen und die Liste um dessen Felder verlangern. Offensichtlich benotigt die zweite
Variante weniger Speicherplatz, aber mehr Zeit. Da in unserem Programm vor allem die
Rechenzeit forciert werden sollte, haben wir die erste Variante gewählt.

7 Bevor auf einzelne Resultate naher eingegangen wird, soll erwähnt werden, dass
die hier skizzierten Programme in der Formelsprache ALGOL geschrieben wurden.
Diese Sprache erlaubt es, auch derartige nichtnumerische Probleme in einer sehr
handlichen und leicht lesbaren Form zu programmieren, soweit nicht (z.B. um
Speicherplatz oder Zeit zu sparen) von der maschineninternen Darstellung der Zahlen
im Dualsystem explizit Gebrauch gemacht werden muss. Allerdings werden die

Möglichkeiten der Sprache in unserem Falle nicht ausgeschöpft, da wir nur ganzzahlig
rechnen. Das Programm 3, von welchem jetzt immer die Rede war, hat eine Länge von
ca. 850 Zeilen (Karten).

Einige Angaben zum Beispiel Tangram, von welchem unsere Betrachtungen ja
ausgegangen smd: Zur Fläche F 16 (Elementardreiecke) gibt es 20 verschiedene
konvexe Achtecke. Von diesen lassen sich 13 in die Tangram-Steine zerlegen. Bei den

übrigen 7 Umrissen ist dies zum Teil trivialerweise nicht möglich, da schon das grosse
Dreieck nicht Platz hat (z.B. Rechteck mit den Seiten 1 und 8), in anderen Fällen
muss der Baum lange abgesucht werden bis herauskommt, dass keine Lösung existiert
(z. B. Parallelogramm mit den Seiten 2 und 4 j/2. 672 zum Teil erfolgreiche Versuche,
einen Stein zu setzen). Selbstverständlich übt die Reihenfolge, in welcher die
verschiedenen Steine dem Programm gegeben und in welcher sie dann auch gesetzt
werden, einen wesentlichen Einfluss aus auf die notwendige Anzahl von Versuchen;
es wäre zum Beispiel ungünstiger mit den kleineren Steinen anzufangen.

Die Anzahl verschiedener Zerlegungen pro Umriss ist sehr ungleich; sie schwankt
zwischen 1 (beim Quadrat) und 36 (beim rechtwinkligen Trapez mit den Seiten 3, 2, 5

und 2 j/2). Im ganzen existieren 142 Lösungen.
Die totale Rechenzeit (d. h. einschliesslich Übersetzung des ALGOL-Programms

in den maschineninternen Code sowie Ausgabe der Resultate auf das Magnetband als

Zwischenträger) betrug auf einer CDC 1604-A für Tangram mit Programm 2 88 Minuten.

Mit Programm 3 dagegen nur noch 6 Minuten 40 Sekunden, obschon das letztere

Programm allgemeiner ist. Neben einer Anzahl von kleineren und grösseren
Kunstgriffen, welche zeitsparend wirken sollten, ist wohl vor allem die Vorausberechnung
der Umrisse für diese drastische Reduktion verantwortlich.

Für die Wiedergabe der Lösungen wurde zunächst der normale Zeilendrucker
verwendet. Die Kanten unserer Figuren lassen sich recht gut zum Beispiel durch Reihen

von Sternchen darstellen, und wenn man beachtet, dass auf dem Druckgerät der

Abstand von zwei Zeichen in der Zeile in grober Approximation gleich dem halben

Zeilenabstand ist, erhält man auch die schrägen Geraden in brauchbarer Form.

Allerdings muss durch ein ziemlich kompliziertes Unterprogramm auf Grund der

Koordinaten der Kantenenden für jede Zeile berechnet werden, an welchen Stellen

Sterne zu drucken sind.
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Figur 7 gibt einen Ausschnitt aus dem Zeilendrucker-Output, wobei zur Illustration
des Suchprozesses jedesmal, wenn ein Stein mit Erfolg gesetzt werden konnte, d.h
auch den Symmetrie-Test bestand, ein Zwischenresultat herausgegeben wurde. Zur
besseren Unterscheidung wurden für den äusseren Umriss Sterne, für die gesetzten
Steine der Buchstaben X verwendet. Wie man sieht, konnte z. B. nach der vierten und
fünften Zwischenfigur der fünfte Stein (das Dreieck mit der Hypotenuse 2) nicht
mehr plaziert werden. Deshalb musste in der sechsten Figur der dritte Stein (Quadrat),
und in der neunten Figur sogar der zweite Stein (grosses Dreieck) an eine neue Stelle
gesetzt werden.

Sämtliche Zwischenresultate
Reproduktion eines BlatteSj

*******

*******

********

X X X X X X X

X X

X X

X X

X X X X

*******

******

X X

x x
x x x x

******'.

*******

XX X

XXXX X

x x x x

*******

*******

*******

*******
Figur 7

bis zur ersten Zerlegung eines bestimmten Umrisses im Tagram-Beispiel,
das der automatische Zellendrucker liefert, kolonnenweise zusammengefugt.

Wesentlich schönere Figuren erhält man mit einem richtigen Zeichengerät
(Plotter). In Figur 8 sind die 18 Lösungen für ein anderes, etwas einfacheres Puzzle
wiedergegeben, welches übrigens, in Holz ausgeführt, als Kinderspielzeug existiert.
Auch diese Figuren sind selbstverständlich, einschliesslich doppelt ausgezogenem
Umriss vollautomatisch, d.h. durch das Computer-Programm gesteuert, entstanden.

8 Schliesslich möge nochmals kurz auf die am Schluss von Abschnitt 2
angeschnittenen Fragen zurückgekommen werden:

Zu 1. sind in Abschnitt 6 genügend Beispiele geliefert worden.
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Was 2 betrifft, so durfte aus den bisherigen Ausfuhrungen hervorgegangen sein,
dass m unserem Programm ziemlich extrem darauf tendiert wurde, Zeit her
abzuwirtschaften, was gewiss auch Anlass zu einigen interessanten Überlegungen bot Auf
der anderen Seite muss aber doch betont werden, dass man es sich in manchen
praktischen Fallen, vor allem wenn em Programm nicht standig wieder gebraucht
wird, nicht leisten kann, soviel Arbeit in die Programmierung zu investieren wie dies
beim vorliegenden Lehrbeispiel geschah, sondern dass man lieber etwas längere
Rechenzeiten m Kauf nimmt Hier muss die Erfahrung helfen, von Fall zu Fall das

richtige Mass zu finden

t

Figur 8

Die vollständige Losung fur ein Beispiel mit fünf Steinen (worunter zwei gleiche)

Reproduktion eines Streifens, welcher aus dem automatischen Zeichengerat (Plotter) kommt
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Die unter 3. aufgeworfene Frage der Zuverlässigkeit eines Programms (richtiges
Funktionieren des Computers vorausgesetzt) darf in ihrer Bedeutung nicht
unterschätzt werden. Ganz besonders peinlich wird das Problem bei Programmen wie
unserem zweiten, da dort beim Ausprüfen keine Parameter variiert werden können.
Hier bleibt nicht viel anderes übrig als das folgende Vorgehen: In der ganzen
Testphase wird ohnehin einmal die Rechenzeit für einen Lauf des Programms auf einen
kleinen Bruchteil der Zeit beschränkt, welche später für die vollständige
Durchrechnung des Problems benötigt wird. Dann kommt zuerst die Ausmerzung von
Schreib- und Tippfehlern (Programm auf Lochkarten!), welche zu Verstössen gegen
die Grammatik der Programmsprache führen, und infolge derer das Programm
überhaupt noch nicht zur Ausführung gelangt, oder welche, wenn das Programm schon

läuft, groben Unsinn produzieren. Wenn dieses Stadium überwunden ist, müssen an
möglichst vielen Stellen durch zusätzliche, später wieder zu eliminierende
Druckbefehle, Zwischenresultate herausgegeben werden, welche in mühsamer Kleinarbeit
nachzuprüfen sind. Für Programm 2 wurde noch der folgende, allerdings schwache
Test durchgeführt: Völlig unabhängig vom eigentlichen Programm wurden (wie
später in Programm 3) sämtliche konvexen Achtecke der Fläche 16 konstruiert und
mit den Lösungsfiguren verglichen, die ja hier auf ganz andere Art entstanden waren.

Zur Illustration der angetönten Schwierigkeiten sei das folgende Detail erwähnt:
Programm 2 lieferte, nachdem es vermeintlich auf Herz und Nieren geprüft und zu
einem vollständigen Durchlauf frei gegeben worden war, 141 Lösungen. Als dann
einige Monate später mit dem allgemeinen Programm 3 nochmals das Tangram-
Beispiel gerechnet wurde, kamen zu unserer Überraschung 142 Lösungen heraus.
Daraufhin wurde natürlich Programm 2 wieder vorgenommen, und eine nochmalige
sorgfältige Analyse ergab, dass tatsächlich infolge eines kleinen Überlegungsfehlers,
der in einer etwas komplizierten Symmetrie-Bedingung drin steckte, eine Lösung
unterschlagen worden war.

Programm 3 bietet gegenüber dem vorhergehenden den Vorteil, dass es anhand
von leicht überprüfbaren einfachen Fällen (nur zwei oder drei Steine) durchgetestet
werden konnte. Der Verfasser glaubt, mit ziemlicher Sicherheit annehmen zu dürfen,
dass es richtig funktioniert; eine absolute Sicherheit besteht jedoch auch hier nicht.

Die bisherigen Ausführungen mögen genügen, um eine Übersicht zu vermitteln.
Der Verfasser ist aber gerne bereit, allfälligen Interessenten über weitere Einzelheiten
betreffend Programm und Resultate Auskunft zu geben.

(Nach der Eindeichung dieses Aufsatzes wurde der Verfasser auf eine frühere
Arbeit hingewiesen, welche sich mit ähnlichen Fragen befasst: Fu Traing Wang and
Chuan-Chih Hsiung, A Theorem on the Tangram, Amer. Math. Monthly 49, 596

(1942)).
Verwandte Probleme wurden auch an anderen Stellen bearbeitet; als Beispiel sei

auf das Pentomino-Puzzle hingewiesen (siehe [1]). Die Pentomino-Probleme sind
insofern einfacher als unsere Tangram-artigen, als dort nur im reinen Quadratnetz,
d.h. ohne Schräglinien, gearbeitet wird, und dass von jedem Stein nur ein Exemplar
verwendet wird, wodurch die Symmetrieschwierigkeiten weitgehend wegfallen.

Die Baumstruktur, welche ja bei unseren Betrachtungen stark im Vordergrund
stand, ist selbstverständlich nicht an solche Aufgaben geometrischer Natur gebunden,
sie ist vielmehr typisch für eine ganze Klasse von nichtnumerischen Problemen. Als
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einziges Beispiel möge die automatische Berechnung von Stundenplanen angeführt
werden (siehe [4]) Dort geht es, im Gegensatz zu unserer Puzzle-Aufgäbe, nicht darum,
alle Losungen zu finden, sondern man wird im allgemeinen damit zufrieden sein, eine
Losung gefunden zu haben, welche mit allen Nebenbedingungen vertraglich ist, und
dann die Durchmusterung des Baumes abbrechen Allenfalls können noch
Optimierungsforderungen dazu kommen

Ganz allgemein muss bei kombinatorischen Problemen unterschieden werden
zwischen der Frage nach der Anzahl von Losungen und der Aufgabe, die Losungen
effektiv zu konstruieren Nun ist es aber so, dass auch in Fallen, da die erste der
beiden Aufgaben emigermassen elementar gelost werden kann, die zweite zum
mindesten nicht ganz trivial zu sein braucht, und dass dann die Aufgabe, einen
vernunftigen Algorithmus (lies em Computerprogramm) aufzustellen, oft sehr reizvoll
ist Eme hübsche Zusammenstellung von Problemen, die es zum Teil verdienen, auch
von diesem Standpunkte aus betrachtet zu werden, findet man m [3]

P Lauchli, Zürich
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The Congruence 2P x 1 (mod/2) and Quadratic Forms
with High Density of Primes

(In memory of N G W H Beeger, who died October 5, 1965)

There are not too many great mathematicians m the field where number theory
and recreational mathematics overlap, and the most recent decenmum took two
away Maurice Bonsovich Kraitchik, who died August 19,1957, in Brüssels, 75 years
old, and Nicolaas George Wijnand Henri Beeger, who died in Amsterdam, over
80 years old Both were fnends and ennched each other and the world with their
fruitful work

In hononng N G W H Beeger it may be permitted to digress a httle from the

subject Beeger's modesty and unselfishness went so far, that as head of a commission
for pubhshmg the prime numbers of the llth milhon and as the editor of this work,
he didn't even mention himself m the title [2]1), or, when he found in 1938 the quadratic

form x2 + x — 53509 with high density of primes, the smallest prime factor

appeanng in it being 61, he communicated this pearl to Luigi Poletti of Pontremoh

*) Numbers in brackets refer to References, page 88.
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