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Tangram - ein Puzzle-Problem fiir den Computer

1 Die Frage, auf wieviele Arten sich ein Paket von # Karten auf m Spieler ver-
teilen lasse, kann mit elementaren kombinatorischen Mitteln durch einen geschlossenen
Ausdruck in # und m beantwortet werden.

Das klassische Geldwechselproblem (auf wieviele Arten ldsst sich eine Summe von
n Rappen in den existierenden Miinzsorten wechseln?) ist, obschon um einiges
schwieriger als die erste Frage, einer analytischen Behandlung in dem Sinne noch zu-
ganglich, dass z.B. die erzeugende Funktion explizit angegeben werden kann, deren
Reihenentwicklungskoeffizienten gerade die gesuchten Anzahlen sind (siehe [2]1)).

Bei noch komplizierteren kombinatorischen Aufgaben ist aber bald einmal der
Punkt erreicht, wo die Losung nur noch durch effektives Abzdhlen aller moglichen
Fille erhalten wird. Allerdings — und dies sollen die folgenden Ausfithrungen illu-
strieren — kann der Abzidhlprozess mehr oder weniger geschickt angelegt werden.
Jedenfalls nimmt bei verwickelteren Problemen der Aufwand derartige Ausmasse an,
dass man nicht mehr ohne die Hilfe eines Computers durchkommt. Damit tauchen
aber sofort Probleme der Formulierung und Darstellung auf, welche beim Arbeiten
mit Papier und Bleistift allein weit weniger ins Gewicht fallen.

Die Anregung zu den folgenden Betrachtungen verdanke ich meinem Kollegen
Professor E. SPECKER.

2 Unter dem Stichwort Tangram findet man im Oxford English Dictionary die
folgenden Erklarungen: The name given to a Chinese geometrical puzzle consisting of a
square dissected into five triangles, a square, and a rhomboid, which can be combined so as
to make two equal squares, and also so as to form several hundred figures, having a rude
resemblance to houses, boats, bottles, glasses, urns, birds, beasts, men, etc.

NN anxnoz

Figur 1
Die Steine des Tangram-Puzzles.

1y Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 85.
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Zunichst stellt sich also die Aufgabe, die sieben in Figur 1 wiedergegebenen Steine
zu einem Quadrat, bzw. zu den zwei kleineren Quadraten zusammenzusetzen. Aller-
dings sind diese beiden Aufgaben doch etwas zu diirftig, als dass es sich lohnen wiirde,
dafiir ein Computer-Programm zu schreiben. Auf der anderen Seite geht die Frage
nach allen moglichen Zusammensetzungen wieder zu weit, da offensichtlich iiberab-
zdhlbar viele verschiedene Figuren aus den gegebenen Steinen gebildet werden kénnen.
Und diejenigen Figuren herauszusondern, welche die erwihnte Ahnlichkeit mit Hiu-
sern usw. zeigen, diirfte die Fihigkeiten unserer heutigen Automaten noch iiber-
steigen.

Eine willkiirliche, aber gewiss sinnvolle Beschrinkung ergibt sich nun aus der
Forderung, dass die Figuren konvex sein sollen. (Man moge sich schon an dieser Stelle
iiberlegen, ob nur endlich viele Losungen existieren und, wenn ja, die Anzahl grob zu
schidtzen versuchen).

Fiir die folgenden drei Probleme wurden im Laufe der Zeit vom Verfasser Losungs-
verfahren programmiert:

Programm 1: Gegeben eine konvexe Figur mit dem richtigen Flicheninhalt. Kann
die Figur aus den Tangram-Steinen aufgebaut werden ?

Programm 2: Konstruktion aller verschiedenen konvexen Zusammensetzungen,
die sich aus den Tangram-Steinen bilden lassen, gruppiert nach dem dusseren Umriss.

Programm 3: Verallgemeinerung von Programm 2 fiir eine beliebige Anzahl von
(im weiter unten prazisierten Sinne) beliebigen Steinen.

Unsere Puzzle-Programme, und zwar vor allem Programm 3, sollen den Anlass
darstellen, um im Rahmen dieser Zeitschrift einige typische Schwierigkeiten und
Fragen zu diskutieren, die sich bei der Programmierung derartiger nichtnumerischer
Aufgaben immer einstellen. Solche Fragen prinzipieller Natur sind zum Beispiel die
folgenden:

1. Wie lidsst sich ein Sachverhalt, der mir klar ist, und den ich in Worten beschrei-
ben kann — besonders gut anhand einer Skizze! — maschinengerecht formulieren ?
(Unsere digitalen Computer sind daraufhin konzipiert, mit Zahlen zu rechnen und
nicht, mit geometrischen Figuren umzugehen).

2. Sollen in das Programm viele raffinierte Uberlegungen gesteckt werden, womit
unter Umstdnden die Rechenzeit betrichtlich abgekiirzt werden kann und dafiir das
Programm lang und kompliziert wird, oder soll das Programm einfach und iibersicht-
lich angelegt sein und (zum Beispiel bei kombinatorischen Aufgaben) viele Fille stur
durchprobieren, welche bei nidherer Betrachtung zum vornherein hitten ausge-
schlossen werden koénnen ?

3. Wie zuverlissig sind die Resultate, welche mein Programm liefert? (Die L6-
sungen eines linearen Gleichungssystems sind relativ leicht auf ihre Richtigkeit zu
priifen. Dies gilt keineswegs fiir Probleme, wie das hier vorliegende.)

3 Im folgenden wird nun in groben Ziigen geschildert, was sich abspielt vom
Moment an, da das Programm von Lochkarten die gegebene Anzahl und Form der
Puzzle-Steine liest, bis zur automatischen Ausgabe der konstruierten Figuren, zum
Beispiel mittels eines am Computer angeschlossenen Zeichengerites (siehe Figur 8).
Bevor aber auf das Konstruktionsverfahren eingegangen werden kann, muss schon
etwas iiber die maschinenmissige Erfassung der vorkommenden Figuren gesagt wer-
den, da so erst die Aufgabenstellung prizise formuliert werden kann: Die spezielle
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Gestalt der in Figur 1 dargestellten Tangram-Steine legt ndmlich die Vermutung
nahe, dass sich alle aus ihnen zusammengesetzten Figuren in ein Quadratnetz legen
lassen, wodurch die ziffernmassige Verschliisselung einer solchen Figur auf einfachste
Weise durch die Angabe von besetzten Feldnummern gegeben werden kénnte. Diese
Vermutung trifft aber nur fiir konvexe Figuren zu; es gilt dann der etwas allgemeinere
Satz: Ein konvexes Polygon, das in kongruente gleichschenklig rechtwinklige Drei-
ecke (Elementardreiecke genannt) zerlegt werden kann, lasst sich so in ein Quadrat-
netz legen, dass die Ecken aller Elementardreiecke auf Netzpunkte fallen.

Aus dem Satz folgt sofort, dass unser Problem nur endlich viele Lésungen besitzt ;
fiir jede Gesamtflache F ldsst sich diese Anzahl leicht einschrianken. Die Aussage des
Satzes scheint durchaus plausibel, muss aber doch genau gepriift werden, da die
Voraussetzung der Konvexitidt auf nicht ganz durchsichtige Art hineinspielt.

Knappe Skizze des Beweises: Aus der Voraussetzung folgt, dass das Polygon nur
Winkel von %-45° (k =1, 2, 3) besitzt, also im allgemeinsten Falle ein Achteck
gemdss Figur 2 ist. Die g, und b, sind nichtnegative ganze Zahlen, wobei die Katheten
des Elementardreiecks gleich 1 angenommen werden. Es ist nun weiter zu zeigen, dass,
falls (fiir F > 0) nicht alle a; = 0 oder alle b, = 0 sind, im Ausdruck fiir F }/2-Anteile
stehen bleiben, im Widerspruch zur Voraussetzung. Das ist nicht ohne weiteres ein-

b+8,Y2
&+b¥2 8+b;Y2
by +agY2
b,+a,V2
a,+b, Y2
ag+bsV2
By +85V2
Figur 2

Allgemeinste Gestalt des konvexen Netzpolygons.

zusehen, wenn F als Fliche eines Rechtecks mit abgeschnittenen Ecken berechnet
wird, da dann im quadratischen Polynom fiir F auch negative Koeffizienten auf-
treten. Wenn hingegen das Polygon durch die von einer Ecke ausgehenden Diagonalen
in Dreiecke zerlegt wird, erscheinen nur positive Koeffizienten, und die Zwischen-
behauptung lisst sich leicht verifizieren.

Somit kann der Umriss des Polygons in das Quadratnetz gelegt werden, und die
ganze Figur lisst sich in der Folge von aussen her durch Elementardreiecke, die
ebenfalls im Netz liegen, abbauen. Damit ist der Satz bewiesen.

Die Aufgabenstellung fiir das vorher erwihnte Programm 3 soll nun dahingehend
prizisiert werden, dass als Steine nur solche Polygone zugelassen werden, die sich im
Sinne des obigen Satzes in das Quadratnetz legen lassen. Die Einzelsteine brauchen
aber selbst durchaus nicht konvex zu sein.

4 Um ein Konstruktionsverfahren aufzustellen, darf man sich ruhig einmal iiber-
legen, auf welche Weise man wirkliche Steine von Hand auf dem Tisch auslegen wiirde:
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Sicher wiirde man in irgendeiner Reihenfolge die Steine aneinanderfiigen und so ver-
suchen, eine konvexe Figur zu erzeugen. Vielleicht wiirde man gelegentlich schon vor
dem letzten Stein feststellen, dass keine Aussicht besteht, die Teilkonfiguration zu
einer konvexen Figur zu erginzen und wiirde dann schon den betreffenden Stein ver-
schieben. Wenn man endlich eine Losung gefunden hitte, wiirde man wohl nicht
vollig neu beginnen, sondern zuerst versuchen, den letzten Stein anders zu plazieren,
wenn noétig noch weitere Steine usw.

Wenn es nun darum geht, ein derartiges Verfahren zu programmieren, so sieht
man zunichst einmal, dass kein Grund mehr dafiir besteht, die Steine so aneinander
zu legen, dass sie sich von Anfang an beriihren. Im Gegenteil, wenn die Steine in einer
festen Reihenfolge gesetzt werden sollen, was sicher Vorteile bietet, ist dies gar nicht
mehr moéglich. Wir werden also innerhalb eines maximalen Bereiches die Steine der
Reihe nach setzen, wobei im gegebenen Bereich alle Lagen zulissig sind, ausgenom-
men natiirlich diejenigen, bei welchen mit schon friiher gesetzten Steinen Kollisionen
entstiinden.

Betrachtet man den inneren Zusammenhang der einzelnen Schritte im eben ange-
deuteten -Verfahren, so erkennt man leicht die Struktur eines Bawumes, der sich an
allen Zwischenstellen stark verzweigt: Jeder Punkt im baumartigen Graphen ent-
spricht dem Setzen eines Steines, die von diesem Punkte ausgehenden Zweige fithren
zu allen moglichen Positionen des nidchsten Steines. Und das Konstruktionsverfahren
besteht nun darin, dass, ausgehend vom obersten Punkt in der schematischen Dar-
stellung von Figur 3, der ganze Baum systematisch nach solchen Endpunkten abge-
sucht wird, welche einer Losung entsprechen. Dabei geht man nach einer festen Ord-
nung vor, indem man zum Beispiel in jedem Punkt den am meisten links liegenden
noch unbeniitzten Weg wihlt. Der Prozess als ganzes bietet das Bild einer auf- und
abwirts pulsierenden Bewegung des laufenden Punktes im Graphen.

1. Stein
2.5tein
3Stein

Figur 3
Baumstruktur, schematisch dargestellt. Eine momentane Situation im Konstruktionsverfahren.

Da die Anzahl der Endpunkte des Baumes, d.h. also die Anzahl der Kandidaten
fiir eine Lésung mit der Zahl der Stufen (Puzzle: Zahl der Steine) exponentiell an-
wichst, erhebt sich bald sehr gebieterisch die Forderung, den Suchprozess derart zu
verfeinern, dass «unfruchtbare» Zweige schon mdglich frith, d.h. weit oben im
Graphen erkannt und damit eliminiert werden kénnen. Zur Illustration dieser Forde-
rung diene eine kleine Uberschlagsrechnung fiir den Fall Tangram: Man {iberlegt sich



P. LAvucHri: Tangram — ein Puzzle-Problem fiir den Computer 77

leicht, dass alle konvexen Netzfiguren mit der Fliche I = 16 Elementardreiecke in
einem Quadrat der Seitenldnge 9 Platz finden. Wenn man weiter bertiicksichtigt, dass,
ausser dem quadratischen, alle Steine in vier verschiedenen Orientierungen gesetzt
werden koénnen, ergibt sich eine Anzahl von ca. 5 - 101¢ Endpunkten des Baumes. Mit
einem Computer, der 10% Fille pro Sekunde erledigt, kime man so auf eine Rechen-
zeit von einer Million Jahren.

Um hier Abhilfe zu schaffen, wurde folgendes versucht: In Programm 2 wird jedes-
mal, wenn ein neuer Stein gesetzt ist, bei dem keine Uberdeckung mit schon besetzten
Feldern stattfindet, das kleinste konvexe Netzachteck bestimmt, welches alle jetzt be-
setzten Felder enthilt (also eine Art «diskrete konvexe Hiille»). Wenn nun diese Hiille
eine Fliche F > 16 erreicht, scheidet die Lage desneuen Steines aus;ist F <16, sokann
der Stein bleiben, aber bei ¥ = 16 werden alle folgenden Steine nur noch in die Hiille
hineingelegt, bei F < 16 sind sie zunichst noch frei.

Trotz diesen Massnahmen muss in diesem Programm bis die letzte Losung ge-
funden ist immer noch 154396mal ein Stein gesetzt werden (nur die Félle ohne
Kollision gezdhlt), und die Rechenzeit ist entsprechend lang. Das geschilderte Ver-
fahren hat den weiteren Nachteil, dass die Losungen in regelloser Folge entdeckt wer-
den und somit alle gespeichert und am Schluss nach dem dusseren Umriss der Figur
sortiert werden miissen.

In Programm 3 wird ein anderer Weg beschritten: Wir bestimmen zunéchst in
einem Vorspann alle konvexen Netzachtecke der (durch die Steine festgelegten)
Fliche F, d.h. alle moglichen Umrisse. Die Gestalt eines Umrisses ist eindeutig
definiert zum Beispiel durch die Gréssen s,, s4, S;, S3, S5, S; (siehe Figur 4). Dagegen

kommen teilweise fiir verschiedene Sixtupel s,, ... kongruente Achtecke heraus.
- Sy =
5 S
! i —F_-|
S;t 1S,
"
S4
|
. |
85 [ J |87
R I T
Ss 8
Figur 4

Festlegung der Umrisse.

Um die Aufgabe genau zu formulieren, betrachten wir die ganzzahligen nicht-
negativen Losungen der Gleichung

F=2s,5,— (s> + 83+ s; + s7)
(F gegeben, immer gemessen in Elementardreiecken), welche den Nebenbedingungen

$1+ 53 < Sg; Sg+ S5 < Sy
S5+ $7 < Sa; Sy + S < 8y
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geniigen. Diese Menge von Losungen zerfillt in Klassen (Transitivititsgebiete), inner-
halb derer die Losungen infolge der Symmetrietransformationen des Quadrates
permutiert werden. Aus jeder solchen Klasse soll ein Repriasentant angegeben werden.

Die Anzahl N dieser Klassen (d.h. die Anzahl verschiedener Achtecke) ist offenbar
eine sehr komplizierte zahlentheoretische Funktion von F, sie verlduft zum Beispiel
keineswegs monoton. Einige Werte:

F 1 2 3 4 5 6 7 8 9 10 16 (Tangram)
N 1 3 2 6 3 7 5 11 5 10 20

Das Teilproblem, die im obigen Sinne wesentlich verschiedenen Lésungen der
angegebenen diophantischen Gleichung einigermassen rationell zu erzeugen, stellt
iibrigens eine sehr dankbare Ubungsaufgabe im Programmieren dar.

Im Hauptprogramm werden nun die Steine nur noch in allen méglichen Positionen
in die vorbestimmten Umrisse hineingelegt. Damit ist der Baum gegeniiber Pro-
gramm 2 ganz betrdchtlich zusammengestutzt worden. Im Tangrambeispiel, nach
Programm 3 durchgerechnet, muss nur noch 13616mal ein Stein gesetzt werden.

5 Ein weiterer Aspekt kommt nun noch dazu, der das Verfahren wesentlich
kompliziert, dafiir den Baum nochmals erheblich zu reduzieren gestattet: Wenn, wie
bis dahin unterstellt, jeder Stein an jede freie Stelle gelegt wird, dann erzeugt man
in manchen Fillen dieselbe Figur mehrmals, nur eventuell in anderer Lage. Und zwar
tritt dieser Fall genau dann ein, wenn der Umriss Symmetrien besitzt, oder wenn
mindestens ein Stein in mehreren Exemplaren vorhanden ist. Es ist nun dusserst
wichtig, dass Ansdtze zu solchen iiberfliissigen Konfigurationen schon im Keime
erstickt, d.h. moglichst hoch oben im Baume entdeckt werden, und nicht erst, wenn
alle Steine gesetzt sind. Damit kénnen wieder ganze Zweige eliminiert werden.

Ein moglicher Weg, dieses Ziel zu erreichen, ist der folgende: Die Positionen der
einzelnen Steine miissen ohnehin durchnumeriert sein, da das Durchlaufen des
Baumes nach einer festen Ordnung zu erfolgen hat. (Zur Definition der «Position»
eines Steines gehoren sowohl die Lage eines starr mit ihm verbundenen Bezugspunktes
als auch seine Orientierung. Je nach Symmetrieeigenschaft besitzt ein Stein eine bis
acht verschiedene Orientierungen). Damit ergibt sich eine lexikographische Ordnung
innerhalb aller Teilkonfigurationen von der gleichen Anzahl Steine, indem man dem
zuerst gesetzten Stein das hochste Gewicht zumisst usw. Nun wird jedesmal, wenn
beim Abwirtsschreiten im Baum eine neue Steinsorte an die Reihe kommt (wir
setzen voraus, dass alle Exemplare desselben Steines direkt aufeinanderfolgend ge-
setzt werden), die Symmetriegruppe U der momentanen Teilkonfiguration — d. h. bei
der ersten Steinsorte diejenige des dusseren Umrisses — festgestellt. (Mit zunehmender
Tiefe im Baum gehen hochstens Symmetrien verloren, es kénnen keine neuen hinzu-
kommen.) Wenn jetzt innerhalb dieser Steinsorte ein neues Exemplar an der Reihe
ist, wird es erstens nur in Positionen gebracht, welche in der Numerierung nach den
schon gesetzten Steinen derselben Sorte kommen. Damit vermeiden wir die kongruen-
ten Konfigurationen, welche durch Permutation von gleichen Steinen ineinander
iibergehen. Wenn zweitens das neue Exemplar wirklich im noch freien Bereich ge-
setzt werden kann, wird diese Teilkonfiguration versuchsweise in alle Lagen gemiss U
gebracht. Falls eine dieser Lagen in der oben erwihnten lexikographischen Ordnung
friither kommt als die direkt erzeugte Konfiguration, dann scheidet diese sofort aus,
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da sie nur auf Losungen fithren kénnte, welche kongruent zu vorher erzeugten wiren.

Um nochmals das Beispiel Tangram heranzuziehen: 13616mal wird versucht,
einen Stein zu setzen. Dabei hat der Stein in 1451 Fillen wirklich Platz in der Rest-
figur, und in 1326 von diesen Fillen erlaubt auch der Symmetrie-Test diese Position.

Der relativ kleine Unterschied zwischen den letzten zwei Zahlen ist vielleicht
etwas irrefithrend ; man moge jedoch bedenken, dass jedemal, wenn der Symmetrie-
Test eine Position ausschliesst, dadurch ein ganzer Zweig aus dem Baum geschnitten
wird, welcher sonst auch durchlaufen wiirde.

6 In diesem Abschnitt sollen einige besonders wichtige Details des Programmes
in zwangloser Folge etwas ndher erldutert werden.

Fiir die Dayrstellung, d.h. ziffernméssige Verschliisselung von Einzelsteinen und ganzen
Konfigurationen werden zwei verschiedene Prinzipien nebeneinander verwendet:

1. Liste der besetzten Felder im Quadratnetz. Fiir jedes Feld benétigt man dabei die
Koordinaten zum Beispiel seines Zentrums, sowie die Angabe, ob das Feld ganz oder auf
welche der vier moglichen Arten nur durch ein Elementardreieck besetzt ist.

2. Liste der Kanten (auch innere) der Figur. Kanten definiert durch die Koordinaten
der beiden Endpunkte.

So liest zum Beispiel zu Beginn das Programm die Puzzle-Steine in der Kantendar-
stellung von Karten (ganzzahlige Koordinaten, Quadratnetz), da diese Form fiir die Ein-
gabe bequemer ist; es wandelt die Information aber auch noch in die Felderdarstellung um.
Nachher werden beide Darstellungen verwendet: Fiir die Angabe des momentan noch
freien Teiles eines Achteckes kommt nur die Felderdarstellung in Frage, denn dieses
Gebiet kann eine sehr komplizierte Form besitzen; es braucht zum Beispiel nicht zusam-
menhingend zu sein. Auch die Priifung, ob ein probeweise gesetzter Stein in diesem Gebiete
Platz findet, ldsst sich so durch Vergleich von Feldnummern relativ leicht durchfiihren.
Wenn dagegen ein Stein in einer bestimmten Position diesen, sowie auch den Symmetrie-
Test bestanden hat, dann werden seine Kanten entsprechend dieser Lage gespeichert, da
spater bei der Ausgabe einer Losungsfigur die Kanten «gezeichnet» werden sollen.

Bei der Eingabeider Steine am Anfang wird natiirlich nur eine Lage fiir jeden Stein ver-
langt; das Programm muss selbst herausfinden, welche Symmetrien vorhanden sind. Dies

0 Indentitgt

/S o\ p— D

Figur 5
Die Elemente der Drehspiegelungsgruppe des Quadrates.
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geschieht so, dass zuerst das umbeschriebene Achteck bestimmt wird (es sei nochmals
daran erinnert, dass die Einzelsteine nicht konvex vorausgesetzt werden). Eine allfdllige
Symmetrie des Steines muss auch das Achteck besitzen. Also entscheidet man zuerst mit
einem einfachen Unterprogramm, das spiter auch wieder fiir die Umrisse verwendet wird,
auf Grund der Gréssen s,, s,, S;, S3, S5, S; welche der Symmetrien 1 bis 7 (siehe Figur 5)
beim Achteck vorhanden sind, und dann fiir diese, ob sie auch beim einbeschriebenen
Puzzle-Stein gelten. Natiirlich macht man davon Gebrauch, dass eine Symmetrie-Achse
durch das «Zentrum» des Achtecks gehen, bzw. ein Symmetrie-Zentrum mit ihm zusam-
menfallen muss.

Sind so die Symmetrien ausgemacht worden, dann braucht es fiir die Bestimmung des
Symmetrie-Typs nur noch eine recht einfache Entschliisselung. Es sei dem Leser iiber-
lassen, auf Grund des in Figur 6 symbolisch dargestellten Untergruppenverbandes der
Quadratgruppe selbst eine derartige Entschliisselungspyramide zv entwerfen.

0’?’3 S

Figur 6

Die 10 Untergruppen der Quadratgruppe.
Die Ziffern in den Kreisen entsprechen der Numerierung der Gruppenelemente in Figur 5.

Spiter, bei der Durchfithrung des bereits erwdhnten Symmetrie-Tests, welcher zur
Vermeidung kongruenter Konfigurationen nétig ist, wird von den Symmetrie-Eigenschai-
ten der Steine Gebrauch gemacht. Es muss dann festgestellt werden kénnen, in welche
Orientierung ein Stein gerit, der einem bestimmten Symmetrie-Typus angehort, wenn auf
ihn in einer bestimmten Orientierung eine bestimmte Transformation ausgeiibt wird. Zu
diesem Zweck bereitet das Programm am Anfang eine Tabelle vor, welche die benétigte
Information enthilt. Man beachte, dass «Orientierung» eines Steines hier gleichbedeutend
ist mit Linksrestklasse modulo seiner Symmetriegruppe.

Es sei nur am Rande vermerkt, dass beim Symmetrie-Test durch einen zusitzlichen
Kunstgriff dafiir gesorgt wird, dass im allgemeinen nicht alle Exemplare der laufenden
Steinsorte den Symmetrie-Transformationen unterworfen werden miissen, was sich zeit-
sparend auswirkt.

Eine wichtige Frage, welche bei jedem Programm sehr sorgféltig studiert werden muss,
betrifft den Umfang der zu speichernden Information. Oft gilt es, Speicherbedarf und
Rechenzeit gegeneinander abzuwégen. Ein Beispiel aus unserem Puzzle-Programm moge
dies illustrieren: Die Liste der momentan noch unbesetzten Felder innerhalb des Umrisses
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muss jederzeit zur Verfiigung stehen. Sie wird sich aber, entsprechend der Auf- und Ab-
bewegung im Baum, stdndig verlingern und verkiirzen. Nun stellen sich zwei Moglich-
keiten fiir die Behandlung dieser Liste: Entweder speichert man bei jedem Abwirtsschritt
im Baum, d.h. fiir jedes Niveau (nicht fiir jeden Punkt!) die Liste ab und findet sie somit
wieder beim Aufwirtsschreiten. Oder man fiihrt die Liste nur in einem Exemplar und muss
dann bei jedem Aufwirtsschritt den frither an dieser Stelle gesetzten Stein nochmals
suchen und die Liste um dessen Felder verlingern. Offensichtlich benétigt die zweite
Variante weniger Speicherplatz, aber mehr Zeit. Da in unserem Programm vor allem die
Rechenzeit forciert werden sollte, haben wir die erste Variante gewahlt.

7 Bevor auf einzelne Resultate niher eingegangen wird, soll erwidhnt werden, dass
die hier skizzierten Programme in der Formelsprache ALGOL geschrieben wurden.
Diese Sprache erlaubt es, auch derartige nichtnumerische Probleme in einer sehr
handlichen und leicht lesbaren Form zu programmieren, soweit nicht (z.B. um
Speicherplatz oder Zeit zu sparen) von der maschineninternen Darstellung der Zahlen
im Dualsystem explizit Gebrauch gemacht werden muss. Allerdings werden die
Moglichkeiten der Sprache in unserem Falle nicht ausgeschopft, da wir nur ganzzahlig
rechnen. Das Programm 3, von welchem jetzt immer die Rede war, hat eine Linge von
ca. 850 Zeilen (Karten).

Einige Angaben zum Beispiel Tangram, von welchem unsere Betrachtungen ja
ausgegangen sind: Zur Fliche F = 16 (Elementardreiecke) gibt es 20 verschiedene
konvexe Achtecke. Von diesen lassen sich 13 in die Tangram-Steine zerlegen. Bei den
iibrigen 7 Umrissen ist dies zum Teil trivialerweise nicht moglich, da schon das grosse
Dreieck nicht Platz hat (z.B. Rechteck mit den Seiten 1 und 8), in anderen Fillen
muss der Baum lange abgesucht werden bis herauskommt, dass keine Losung existiert
(z.B. Parallelogramm mit den Seiten 2 und 4 ]/:2— 672 zum Teil erfolgreiche Versuche,
einen Stein zu setzen). Selbstverstdndlich iibt die Reihenfolge, in welcher die ver-
schiedenen Steine dem Programm gegeben und in welcher sie dann auch gesetzt
werden, einen wesentlichen Einfluss aus auf die notwendige Anzahl von Versuchen;
es wire zum Beispiel ungiinstiger mit den kleineren Steinen anzufangen.

Die Anzahl verschiedener Zerlegungen pro Umriss ist sehr ungleich; sie schwankt
zwischen 1 (beim Quadrat) und 36 (beim rechtwinkligen Trapez mit den Seiten 3, 2, 5
und 2 VZ) Im ganzen existieren 142 Losungen.

Die totale Rechenzeit (d.h. einschliesslich Ubersetzung des ALGOL-Programms
in den maschineninternen Code sowie Ausgabe der Resultate auf das Magnetband als
Zwischentriger) betrug auf einer CDC 1604-A fiir Tangram mit Programm 2 88 Minu-
ten. Mit Programm 3 dagegen nur noch 6 Minuten 40 Sekunden, obschon das letztere
Programm allgemeiner ist. Neben einer Anzahl von kleineren und grésseren Kunst-
griffen, welche zeitsparend wirken sollten, ist wohl vor allem die Vorausberechnung
der Umrisse fiir diese drastische Reduktion verantwortlich.

Fiir die Wiedergabe der Losungen wurde zunichst der normale Zeilendrucker ver-
wendet. Die Kanten unserer Figuren lassen sich recht gut zum Beispiel durch Reihen
von Sternchen darstellen, und wenn man beachtet, dass auf dem Druckgerit der
Abstand von zwei Zeichen in der Zeile in grober Approximation gleich dem halben
Zeilenabstand ist, erhilt man auch die schrigen Geraden in brauchbarer Form.
Allerdings muss durch ein ziemlich kompliziertes Unterprogramm auf Grund der
Koordinaten der Kantenenden fiir jede Zeile berechnet werden, an welchen Stellen
Sterne zu drucken sind.
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Figur 7 gibt einen Ausschnitt aus dem Zeilendrucker-Output, wobei zur Illustration
des Suchprozesses jedesmal, wenn ein Stein mit Erfolg gesetzt werden konnte, d.h.
auch den Symmetrie-Test bestand, ein Zwischenresultat herausgegeben wurde. Zur
besseren Unterscheidung wurden fiir den dusseren Umriss Sterne, fiir die gesetzten
Steine der Buchstaben X verwendet. Wie man sieht, konnte z. B. nach der vierten und
fiinften Zwischenfigur der fiinfte Stein (das Dreieck mit der Hypotenuse 2) nicht
mehr plaziert werden. Deshalb musste in der sechsten Figur der dritte Stein (Quadrat),
und in der neunten Figur sogar der zweite Stein (grosses Dreieck) an eine neue Stelle
gesetzt werden.
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Figur 7

Samtliche Zwischenresultate bis zur ersten Zerlegung eines bestimmten Umrisses im Tagram-Beispiel.
Reproduktion eines Blattes, das der automatische Zeilendrucker liefert, kolonnenweise zusammengefiigt.

.Wesentlich schénere Figuren erhdlt man mit einem richtigen Zeichengerit
(Plotter). In Figur 8 sind die 18 Losungen fiir ein anderes, etwas einfacheres Puzzle
wiedergegeben, welches iibrigens, in Holz ausgefiihrt, als Kinderspielzeug existiert.
Auch. diese Figuren sind selbstverstdndlich, einschliesslich doppelt ausgezogenem
Unriss vollautomatisch, d.h. durch das Computer-Programm gesteuert, entstanden.

8 Schliesslich moge nochmals kurz auf die am Schluss von Abschnitt 2 ange-
schnittenen Fragen zurtickgekommen werden:

Zu 1. sind in Abschnitt 6 geniigend Beispiele geliefert worden.



P. LAucHrr: Tangram — ein Puzzle-Problem fiir den Computer 83

Was 2. betrifft, so diirfte aus den bisherigen Ausfithrungen hervorgegangen sein,
dass in unserem Programm ziemlich extrem darauf tendiert wurde, Zeit herauszu-
wirtschaften, was gewiss auch Anlass zu einigen interessanten Uberlegungen bot. Auf
der anderen Seite muss aber doch betont werden, dass man es sich in manchen
praktischen Fillen, vor allem wenn ein Programm nicht stindig wieder gebraucht
wird, nicht leisten kann, soviel Arbeit in die Programmierung zu investieren wie dies
beim vorliegenden Lehrbeispiel geschah, sondern dass man lieber etwas lingere
Rechenzeiten in Kauf nimmt. Hier muss die Erfahrung helfen, von Fall zu Fall das
richtige Mass zu finden.

Figur 8

Die vollstiandige Losung fiir ein Beispiel mit fiinf Steinen (worunter zwei gleiche).
Reproduktion eines Streifens, welcher aus dem automatischen Zeichengerit (Plotter) kommt.
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Die unter 3. aufgeworfene Frage der Zuverlissigkeit eines Programms (richtiges
Funktionieren des Computers vorausgesetzt) darf in ihrer Bedeutung nicht unter-
schitzt werden. Ganz besonders peinlich wird das Problem bei Programmen wie
unserem zweiten, da dort beim Auspriifen keine Parameter variiert werden koénnen.
Hier bleibt nicht viel anderes iibrig als das folgende Vorgehen: In der ganzen Test-
phase wird ohnehin einmal die Rechenzeit fiir einen Lauf des Programms auf einen
kleinen Bruchteil der Zeit beschrinkt, welche spiter fiir die vollstindige Durch-
rechnung des Problems benétigt wird. Dann kommt zuerst die Ausmerzung von
Schreib- und Tippfehlern (Programm auf Lochkarten!), welche zu Versttssen gegen
die Grammatik der Programmsprache fithren, und infolge derer das Programm {iber-
haupt noch nicht zur Ausfithrung gelangt, oder welche, wenn das Programm schon
lauft, groben Unsinn produzieren. Wenn dieses Stadium iiberwunden ist, miissen an
moglichst vielen Stellen durch zusitzliche, spiter wieder zu eliminierende Druck-
befehle, Zwischenresultate herausgegeben werden, welche in mithsamer Kleinarbeit
nachzupriifen sind. Fiir Programm 2 wurde noch der folgende, allerdings schwache
Test durchgefiihrt: Vo6llig unabhingig vom eigentlichen Programm wurden (wie
spiter in Programm 3) simtliche konvexen Achtecke der Fliche 16 konstruiert und
mit den Losungsfiguren verglichen, die ja hier auf ganz andere Art entstanden waren.

Zur Illustration der angetonten Schwierigkeiten sei das folgende Detail erwdhnt:
Programm 2 lieferte, nachdem es vermeintlich auf Herz und Nieren gepriift und zu
einem vollstindigen Durchlauf frei gegeben worden war, 141 Losungen. Als dann
einige Monate spiter mit dem allgemeinen Programm 3 nochmals das Tangram-
Beispiel gerechnet wurde, kamen zu unserer Uberraschung 142 Losungen heraus.
Daraufhin wurde natiirlich Programm 2 wieder vorgenommen, und eine nochmalige
sorgfiltige Analyse ergab, dass tatsichlich infolge eines kleinen Uberlegungsfehlers,
der in einer etwas komplizierten Symmetrie-Bedingung drin steckte, eine Lésung
unterschlagen worden war.

Programm 3 bietet gegeniiber dem vorhergehenden den Vorteil, dass es anhand
von leicht iiberpriifbaren einfachen Fillen (nur zwei oder drei Steine) durchgetestet
werden konnte. Der Verfasser glaubt, mit ziemlicher Sicherheit annehmen zu diirfen,
dass es richtig funktioniert; eine absolute Sicherheit besteht jedoch auch hier nicht.

Die bisherigen Ausfithrungen mégen geniigen, um eine Ubersicht zu vermitteln.
Der Verfasser ist aber gerne bereit, allfalligen Interessenten tiber weitere Einzelheiten
betreffend Programm und Resultate Auskunft zu geben.

(Nach der Einteichung dieses Aufsatzes wurde der Verfasser auf eine friihere
Arbeit hingewiesen, welche sich mit dhnlichen Fragen befasst: Fu TraING WANG and
CHUAN-CHIH HsiunNGg, A Theorem on the Tangram, Amer. Math. Monthly 49, 596
(1942)).

Verwandte Probleme wurden auch an anderen Stellen bearbeitet; als Beispiel sei
auf das Pentomino-Puzzle hingewiesen (siehe[1]). Die Pentomino-Probleme sind
insofern einfacher als unsere Tangram-artigen, als dort nur im reinen Quadratnetz,
d.h. ohne Schriglinien, gearbeitet wird, und dass von jedem Stein nur ein Exemplar
verwendet wird, wodurch die Symmetrieschwierigkeiten weitgehend wegfallen.

Die Baumstruktur, welche ja bei unseren Betrachtungen stark im Vordergrund
stand, ist selbstverstdndlich nicht an solche Aufgaben geometrischer Natur gebunden,
sie ist vielmehr typisch fiir eine ganze Klasse von nichtnumerischen Problemen. Als
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einziges Beispiel moge die automatische Berechnung von Stundenplinen angefiihrt
werden (siehe [4]). Dort geht es, im Gegensatz zu unserer Puzzle-Aufgabe, nicht darum,
alle Losungen zu finden, sondern man wird im allgemeinen damit zufrieden sein, erne
Losung gefunden zu haben, welche mit allen Nebenbedingungen vertriglich ist, und
dann die Durchmusterung des Baumes abbrechen. Allenfalls konnen noch Optimie-
rungsforderungen dazu kommen.

Ganz allgemein muss bei kombinatorischen Problemen unterschieden werden
zwischen der Frage nach der Anzahl von Losungen und der Aufgabe, die Lésungen
effektiv zu konstruieren. Nun ist es aber so, dass auch in Fillen, da die erste der
beiden Aufgaben einigermassen elementar gelost werden kann, die zweite zum
mindesten nicht ganz trivial zu sein braucht, und dass dann die Aufgabe, einen ver-
niinftigen Algorithmus (lies: ein Computerprogramm) aufzustellen, oft sehr reizvoll
ist. Eine hiibsche Zusammenstellung von Problemen, die es zum Teil verdienen, auch
von diesem Standpunkte aus betrachtet zu werden, findet man in [3].

P. LAucHLI, Ziirich
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The Congruence 2°~" =1 (mod p*) and Quadratic Forms
with High Density of Primes

(In memory of N. G. W. H. BEEGER, who died October 5, 1965)

There are not too many great mathematicians in the field where number theory
and recreational mathematics overlap, and the most recent decennium took two
away : Maurice Borisovich KRAITCHIK, who died August 19, 1957, in Brussels, 75 years
old, and Nicolaas George Wijnand Henri BEEGER, who died in Amsterdam, over
80 years old. Both were friends and enriched each other and the world with their
fruitful work.

In honoring N. G. W. H. BEEGER it may be permitted to digress a little from the
subject. Beeger’s modesty and unselfishness went so far, that as head of a commission
for publishing the prime numbers of the 11th million and as the editor of this work,
he didn’t even mention himself in the title [2]1), or, when he found in 1938 the quad-
ratic form x% + x — 53509 with high density of primes, the smallest prime factor
appearing in it being 61, he communicated this pearl to Luigi PoLeTTI of Pontremoli

1) Numbers in brackets refer to References, page 88.
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