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TiBor SALAT: Zur Induktion im Kontinuum 63

a < B < b(wennf = aoder f = bist, kann man den Beweis dhnlich fithren). Aus der
Stetigkeit von fin 8 folgt die Existenz einer Zahl v > 0, so dass

0<7r<min(f—a,b—f) und |f(x') — f(x") | <e fir x,2"€(B—1,8+ 7).

Wihlen wir 4, so, dass # — v < 4y << B. Nach Voraussetzung hat die Zahl 4, die
Eigenschaft S(e), also existieren positive Zahlen d = d(e, 4,), 1 = 5(e, 4y), so dass
| f(x") — f(x") | < e ist fir ', 2" € (— 00,49+ n) und |2 — x”" | < §. Setzen wir
y=min (4g— (§—1),0,7) > 0. Es sei x,x"€(—o00,+6,), |2 —x"|<é,.
Dann ist mit Riicksicht auf die Wahl der Zahl §, entweder x’, x” € (— oo, 4,> oder
%', 2" € (B — 1, + 7) und in beiden Fillen ist nach dem Vorhergehenden | f(x’) —
f(x") | < e. Setzen wir y = + 6, > B. Aus dem Vorigen folgt, dass jedes A < y die
Eigenschaft S(e) hat (fiir ein A mit 8 << A < B + 9, geniigt es, d(¢, 1) = 6, n(e, A) =
B + 6, — A zu setzen).
Nach dem Prinzip der Induktion hat jede reelle Zahl die Eigenschaft S(e). Speziell
also hat die Zahl b die Eigenschaft S(e) (fiir jedes ¢ > 0), und daraus folgt schon un-

mittelbar die gleichmissige Stetigkeit von f. T1BOR SALAT, Bratislava
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Kleine Mitteilungen
Zur Hyperbel des Menaichmos

Dem MEeNaIcHMOS (ca. 350 v.Chr.) werden bekanntlich zwei Losungen des « Delischen
Problems» der Wiirfelverdoppelung zugeschrieben. Bei der einen soll er neben einer
Parabel eine gleichseitige Hyperbel als geometrischen Ort verwendet haben auf Grund
ihrer Asymptoteneigenschaft

xy = ab . : (1)

Seine Losung, die allerdings nur in einer spaten Fassung von EuTtoxios (5./6. Jh. n.Chr.)
iiberliefert ist, wird in deutscher Ubersetzung mitgeteilt bei E. HopPE [4] und im Original-
text des EuTokios mit etwas havarierter Ubersetzung bei C. A. BRETSCHNEIDER [1].
MenNaIcHMOS soll auch gezeigt haben, dass die von ihm beniitzten Kurven als ebene
Schnitte an Rotationskegeln auftreten, was allerdings von J. TROPFKE [5] ziemlich
kategorisch bezweifelt wird. Fiir die Parabel wire ein solcher Identitdtsnachweis zwar sehr
einfach, fiir die gleichseitige Hyperbel nur dann, wenn der Schnitt parallel zur Achse eines
rechtwinkligen Kegels gefiihrt wird (siehe K. FLADT [2]). Nach der (nicht unangefochtenen)
Uberlieferung hitten aber die Mathematiker vor ARCHIMEDES die Schnitte am Drehkegel
stets senkrecht zu einer Mantellinie angenommen und deshalb fiir die Hyperbel einen
stumpfwinkligen Kegel gebraucht (siche BRETSCHNEIDER [1], S. 156). ZEUTHEN [7] be-
riicksichtigt diesen Umstand fiir seine Rekonstruktion eines fiir MENAICHMOS moglichen
Beweises in seinem klassischen Buch.
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Figur 1

Der nachfolgende Versuch zeigt eine andere Moglichkeit, die Gleichung (1) fiir die
gleichseitige Hyperbel an einem geeigneten stumpfwinkligen Kegel unter den gleichen
Annahmen abzuleiten, wobei der zweite Scheitel der Kurve (von der urspriinglich doch
wohl nur der eine Ast in Betracht gezogen wurde) im Gegensatz zu ZEUTHEN nicht
beniitzt wird. Es werden nur elementarste Mittel verwendet, deren Kenntnis fiir die
Zeit des MENAICHMOS vorausgesetzt werden diirfen (Winkel im Halbkreis, Héhen- und
Kathetensatz im rechtwinkligen Dreieck, ein Strahlensatz), da sie schon bei der bekannten
stereometrischen Losung des Wiirfelverdoppelungsproblems durch ARCHYTAS beniitzt
sind (siehe z. B. HEATH [3] oder VAN DER WAERDEN([6]). Die Darstellung verwendet die
algebraische Schreibweise (wie iibrigens auch die von ZEUTHEN). In der geometrischen
Sprache der Antike wire allerdings der letzte Teil nicht gerade einfach darzustellen.

Es ist zunidchst ein Rotationskegel zu bestimmen, fiir welchen der ebene Schnitt
normal zu einer Mantellinie zwei zueinander senkrechte Asymptoten besitzt. Es sei ASB
ein Achsenschnitt eines solchen Kegels. Die Ebene E sei normal zu SB; ihre Schnittlinie e
mit der Ebene 4SB ist Symmetrieachse der Schnittkurve. Fiir MENAICHMOS kommt nur
der eine Ast der Kurve in Betracht. Wohl aber wird er erkannt oder einmal angenommen
haben, dass die Richtungen der nachzuweisenden Asymptoten durch die zu E parallelen
Mantellinien SC,, SC, gegeben sind. Deren Ebene schneide 4 B in C’. Dann ist einerseits

CC’? = AC’ C’'B (Thaleskreis und Hohensatz) , (2)
anderseits

SC’? = C’'M C'B (Kathetensatz) , (3)

mit M als Mittelpunkt des Grundkreises ACB. Sollen die beiden Mantellinien zueinander
normal sein, so muss SC’ = CC’ = 7, also nach (2) und (3) AC’ = C'M, d.h. AC = u
gleich dem halben Grundkreisradius sein, und es wird

nt=AC C'B=3u. (4)
Wir setzen nun voraus, dass der zugrunde gelegte Kegel dieser Forderung gemiss
konstruiert sei (also SM? = 2u? = 0,5 MA?).

Die (vermuteten) rechtwinkligen Asymptoten /, m mogen sich im Punkte O von ¢ im
Abstand a vom Scheitel G der Schnittkurve schneiden. Es sei P ein beliebiger Punkt dieser

Kurve, P’ seine Projektion auf ¢ und P’G = &. Der bisher als «Grundkreis» bezeichnete
Kreis sei gerade der durch P gelegte. Die Sekante PP’ treffe die Geraden /, m in R,, R,.
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Die Strecken PR, und PR, sind J/2-mal linger als die Abstinde #, y des Punktes P von
! und m. Es ist zu zeigen, dass das Produkt p = PR, PR, = 2 x y konstant, d.h. unab-

hingig von & ist, wenn a passend gewihlt wird. Wir setzen noch C'P’ = w, P'B = v, also
v+ w=3u.

Nun ist p= R, P'?— PP'? und R,P'=a+§& PP?=AP P'B= (u+ w)v
Da &/n = v/3 u und nach (4) 5 = u}/3, so ist & = v/)/3, und es wird

v 2 v+ w 2a 4w
= —_—— —_— —_— 2 —
p_<a+ V3) ( 3 +w)v—a (l/3 3)11.
Liasst man nun den Punkt P auf der Schnittkurve und damit den «Grundkreis» auf der
Kegelfliche variieren, so bleiben a und w konstant; der Koeffizient von v kann durch die

Wahl von a = 2 w/l/é zum Verschwinden gebracht werden. Damit ist die Konstanz von
p = 2xy = a? erreicht. C. BINDSCHEDLER, Kiisnacht
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Aufgaben

Aufgabe 525. Die Ecken eines gleichseitigen Dreiecks sind Zentren von drei gleichen
Kreisen K,, K,, K; vom Radius 7. Ein beliebiger Punkt P der Ebene des Dreiecks werde
an K, nach P, gespiegelt, ebenso P, an K, nach P, und P, an K, nach P,. Welches ist
der geometrische Ort der Fixpunkte der Abbildung P -> P;, wenn v variiert?

C. BiNDsScHEDLER, Kiisnacht

1. Losung. Zundchst zwei Vorbetrachtungen a) Bezeichnet s; die Spiegelung am
Kreis K, (¢ = 1, 2, 3), dann gilt s} = s} = s} = ¢ (= identische Abblldung) Aus der Frage
nach den Punkten P mit s, s, 5,(P) = P ergibt sich daher wegen der Umkehrbarkeit der
Abbildungen s, als gleichwertig s, 5;(P) = s3(P) mit s, 5;(P) = s(Py) = P,. —b) Wird die
Ebene als komplexe Zahlenebene aufgefasst, dann stellt sich die Splegelung s; an dem
Kreis K;(M ;; 7) dar in der Form

2 M, M;+ M; P .
si(P) =M, + —" . it (=12 3).

P - M, P M,

Es kann ohne Einschrinkung M, = 0, M, = V3+i=:M, My= /3 — i = M ange-
nommen werden; die Seitenlinge des Dreiecks ist dann gleich 2 und I = 2/)/3 der Mittel-
punkt. Dann ist

72 (r* —4) P+ M »>
$y(P) = Py = ,  Sa(Py) = sy 81(P) = M P s
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