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a < ß < b (wenn ß a oder ß b ist, kann man den Beweis ähnlich führen). Aus der
Stetigkeit von / in ß folgt die Existenz einer Zahl r > 0, so dass

0 < r < min (ß - a, b - ß) und | f(x') - f(x") \ < e fur x', x" e (ß - r, ß + r)

Wahlen wir XQ so, dass ß — r < X0 < ß. Nach Voraussetzung hat die Zahl X0 die
Eigenschaft S(e), also existieren positive Zahlen ö d(e, X0), rj rj(s, X0), so dass

\f(x') -f(x") \<s ist für *', #" e (- oo, X0 4- rj) und | *' - x" | < d Setzen wir
<$! min (^ - (/} - t), ä, t) > 0 Es sei *', x" e (- oo, ß 4- dj, \x'-x"\<d1.
Dann ist mit Rücksicht auf die Wahl der Zahl <5X entweder x', x" e (— oo, X0y oder
x', x" e (ß — t, ß 4- r) und in beiden Fallen ist nach dem Vorhergehenden | f(x') —

f(x") | < £. Setzen wir y ß 4- <5X > /?. Aus dem Vorigen folgt, dass jedes X < y die
Eigenschaft S(s) hat (fur ein A mit ß < X < ß + öt genügt es, d(e, X) dlf rj(e, X)

ß 4- <52 — A zu setzen).
Nach dem Prinzip der Induktion hat jede reelle Zahl die Eigenschaft S(e). Speziell

also hat die Zahl b die Eigenschaft S(s) (für jedes s > 0), und daraus folgt schon

unmittelbar die gleichmässige Stetigkeit von /. Tibor Salat, Bratislava
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Kleine Mitteilungen
Zur Hyperbel des Menaichmos

Dem Menaichmos (ca. 350 v.Chr.) werden bekanntlich zwei Losungen des «Dehschen
Problems» der Wurfelverdoppelung zugeschrieben. Bei der einen soll er neben einer
Parabel eine gleichseitige Hyperbel als geometrischen Ort verwendet haben auf Grund
ihrer Asymptoteneigenschaft

xy — ab (1)

Seme Losung, die allerdings nur in einer spaten Fassung von Eutokios (5./6. Jh. n.Chr.)
überliefert ist, wird in deutscher Übersetzung mitgeteilt bei E. Hoppe [4] und im Originaltext

des Eutokios mit etwas havarierter Übersetzung bei C. A. Bretschneider [1].
Menaichmos soll auch gezeigt haben, dass die von ihm benutzten Kurven als ebene
Schnitte an Rotationskegeln auftreten, was allerdings von J. Tropfke [5] ziemlich
kategorisch bezweifelt wird. Fur die Parabel wäre ein solcher Identitätsnachweis zwar sehr
einfach, fur die gleichseitige Hyperbel nur dann, wenn der Schnitt parallel zur Achse emes
rechtwinkligen Kegels gefuhrt wird (siehe K. Fladt [2]). Nach der (nicht unangefochtenen)
Überlieferung hatten aber die Mathematiker vor Archimedes die Schnitte am Drehkegel
stets senkrecht zu einer Mantellmie angenommen und deshalb fur die Hyperbel einen
stumpfwinkligen Kegel gebraucht (siehe Bretschneider [1], S. 156). Zeuthen [7]
berücksichtigt diesen Umstand fur seine Rekonstruktion emes fur Menaichmos möglichen
Beweises in seinem klassischen Buch.
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Figur 1

Der nachfolgende Versuch zeigt eme andere Möglichkeit, die Gleichung (1) fur die
gleichseitige Hyperbel an einem geeigneten stumpfwinkligen Kegel unter den gleichen
Annahmen abzuleiten, wobei der zweite Scheitel der Kurve (von der ursprünglich doch
wohl nur der eme Ast m Betracht gezogen wurde) im Gegensatz zu Zeuthen nicht
benutzt wird Es werden nur elementarste Mittel verwendet, deren Kenntnis fur die
Zeit des Menaichmos vorausgesetzt werden dürfen (Winkel im Halbkreis, Hohen- und
Kathetensatz im rechtwinkligen Dreieck, em Strahlensatz), da sie schon bei der bekannten
stereometrischen Losung des Wurfelverdoppelungsproblems durch Archytas benutzt
smd (siehe z B. Heath [3] oder Van der Waerden[6]). Die Darstellung verwendet die
algebraische Schreibweise (wie übrigens auch die von Zeuthen) In der geometrischen
Sprache der Antike wäre allerdings der letzte Teil nicht gerade einfach darzustellen

Es ist zunächst em Rotationskegel zu bestimmen, fur welchen der ebene Schnitt
normal zu einer Mantellmie zwei zueinander senkrechte Asymptoten besitzt. Es sei ASB
em Achsenschnitt eines solchen Kegels Die Ebene E sei normal zu SB, ihre Schnittlinie e

mit der Ebene A SB ist Symmetrieachse der Schnittkurve. Fur Menaichmos kommt nur
der eme Ast der Kurve in Betracht. Wohl aber wird er erkannt oder einmal angenommen
haben, dass die Richtungen der nachzuweisenden Asymptoten durch die zu E parallelen
Mantellmien SCX, SC2 gegeben smd. Deren Ebene schneide AB in C. Dann ist einerseits

CC2 AC' CB (Thaieskreis und Hohensatz) (2)
anderseits

SC2 CM CB (Kathetensatz) (3)

mit M als Mittelpunkt des Grundkreises ACB. Sollen die beiden Mantellmien zueinander
normal sein, so muss SC — CC r\, also nach (2) und (3) AC CM, d.h. AC u
gleich dem halben Grundkreisradius sein, und es wird

xf AC' CB 3 u2. (4)

Wir setzen nun voraus, dass der zugrunde gelegte Kegel dieser Forderung gemäss
konstruiert sei (also SM2 lu2 0,5 MA2).

Die (vermuteten) rechtwinkligen Asymptoten /, m mögen sich im Punkte O von e im
Abstand a vom Scheitel G der Schnittkurve schneiden. Es sei P em beliebiger Punkt dieser

Kurve, P' seine Projektion auf e und P'G — |. Der bisher als «Grundkreis» bezeichnete
Kreis sei gerade der durch P gelegte. Die Sekante PP' treffe die Geraden /, m m Rx, R2.
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Die Strecken PRX und PR2 sind )/2-mal langer als die Abstände x, y des Punktes P von
/ und m. Es ist zu zeigen, dass das Produkt p PRX PR2 2 x y konstant, d.h.
unabhängig von | ist, wenn a passend gewählt wird. Wir setzen noch CP' w, P'B v, also
v 4- w 3 u.

Nun ist p RXP'2 - PP'2 und RXP' a 4- I, PP'2 AP' WB (u 4- w) v.

Da £/n v/3 w und nach (4) r\ u j/3, so ist £ f/|/3, und es wird

/ v \2 /t/+a/ \ „ (2a Aw \

Lasst man nun den Punkt P auf der Schnittkurve und damit den «Grundkreis» auf der
Kegelflache variieren, so bleiben a und w konstant, der Koeffizient von v kann durch die

Wahl von a 2 w\^3 zum Verschwinden gebracht werden. Damit ist die Konstanz von
p 2 x y a2 erreicht. C. Bindschedler, Kusnacht
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Aufgaben

Aufgabe 525. Die Ecken eines gleichseitigen Dreiecks sind Zentren von drei gleichen
Kreisen Kx, K2, Kz vom Radius r Em beliebiger Punkt P der Ebene des Dreiecks werde
an Kx nach Px gespiegelt, ebenso Px an Kl nach P2 und P2 an Kz nach P3. Welches ist
der geometrische Ort der Fixpunkte der Abbildung P -> P3, wenn r variiert

C. Bindschedler, Kusnacht

/. Losung. Zunächst zwei Vorbetrachtungen, a) Bezeichnet st die Spiegelung am
Kreis K% (i 1, 2, 3), dann gilt s\ s\ s\ e (=- identische Abbildung). Aus der Frage
nach den Punkten P mit s3 s2 sx(P) P ergibt sich daher wegen der Umkehrbarkeit der
Abbildungen st als gleichwertig s2 sx(P) s3(P) mit s2 sx(P) s2(Px) P2. - b) Wird die
Ebene als komplexe Zahlenebene aufgefasst, dann stellt sich die Spiegelung st an dem
Kreis Kt(M\, r) dar in der Form

,,(P) M, + -J^- il^E^A lt 2, 3)

P-Mt P-Mt
Es kann ohne Einschränkung Mx 0, M2 |/3 + i=:M, Mz ]/s - i_= M

angenommen werden; die Seitenlange des Dreiecks ist dann gleich 2 und I 2/)/3 der Mittelpunkt.

Dann ist
r2 ™ (r2 - 4) P 4- M r2

sx(P) Px ^r, s2(Px) s2 sx(P)
K

S3(P) ^i_i_L^^.aV ; P-M
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