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Ein mechanisches Modell zur Losung gewisser Extremalaufgaben
Herrn Prof. Dr. O. BaIER zum 60. Geburtstag gewidmet

1. Mechanische Interpretationen leisten zur Behandlung geometrischer Probleme
oft wertvolle Dienste. Man denke etwa an die bereits von Archimedes angewandte
Hebelmethode zur Bestimmung des Flacheninhalts eines Parabelsegments und des
Volumens einer Kugel [9, S. 5f.], an die Ermittlung der Differentialgleichung der
geoddtischen Linien einer Fliche mit Hilfe der Vorstellung eines zwischen zwei
Flichenpunkten gespannten Fadens [2, S. 102; 3] oder an die Aufgabe, in einem Drei-
eck A BC einen Punkt P so zu finden, dass die Summe seiner Abstinde von A, Bund C
minimal ist [4, S. 222; 5, S. 101]. In jedem der angefiihrten Falle wird die gestellte
geometrische Bedingung durch eineleichter zu handhabende Gleichgewichtsbedingung
ersetzt. Ein solches, bisher wohl unbekanntes Gleichgewichtsverfahren wird auch im
folgenden vorgestellt und angewendet. Wenn auch dabei keine Verfahren mit mathe-
matischem Beweischarakter vorliegen, so pflegen derartige Betrachtungen doch die
Verbindung zur Mechanik und bilden einen wiinschenswerten Beitrag zur Pflege der
Anschauung in der Mathematik [6, 8].

Wir legen in eine Ebene ¢ zwei beschrinkte, einfach zusammenhidngende und
stiickweise glatt berandete Bereiche B und B’, die sich in ¢ nicht derart verschieben
lassen, dass einer den andern vollstdndig bedeckt, und fragen nach jenen gegenseitigen
Lagen dieser Bereiche in ¢, in denen ihr Durchschnitt © maximal, also ihre Vereini-
gungsmenge minimal ist. Im Hinblick auf die in 4. folgende Anwendung beschreiben
wir das Verfahren an zwei nicht axialsymmetrischen konvexen Bereichen B und B’,
wober B' aus B durch Spiegelung an einer Geraden entsteht (Figurl). Im allgemeinen
Fall l4sst sich das Verfahren in analoger Weise anwenden. Die gegenseitige Lage von
B und B’ in ¢ hdngt von drei Parametern ab, die man zur Auffindung der maximalen
Durchschnitte D in einem dreidimensionalen abgeschlossenen Gebiet variieren lassen
kann, dessen zweidimensionale Randpunktmenge zu leeren Durchschnitten D fiihrt;
es gibt also keine Randmaxima. Die Durchschnitte D bilden eine beschrankte Funk-
tion dieser drei Parameter und besitzen, wenn diese Funktion stetig ist, nach einem
bekannten Satz iiber stetige Funktionen ein Maximum [1, S. 60], das nicht notwendig
in nur einer gegenseitigen Lage von B und B’ angenommen wird. Den Durchschnitt D
als Funktion dieser gegenseitigen Lagen anzugeben und die Maxima dieser Funktion
zu bestimmen, diirfte selbst bei einfachen Bereichen B, B’ sehr schwierig sein. Die
folgende mechanische Uberlegung umgeht einen Teil dieser Schwierigkeiten, indem sie
gewisse Durchschnitte aussondert, unter denen das absolute Maximum zu suchen ist.

2. Zur Auffindung der Lagen von B und B’ mit maximalem Durchschnitt D
denken wir uns die Randkurven dieser Bereiche als diinne Drahtringe realisiert, die
reibungsfrei iibereinander hinweggleiten kénnen. In ihren nicht leeren Durchschnitt
D sei ein zu € normaler Zylinder mit dem Querschnitt D hineingestellt, dessen Mantel
und Boden ohne Energieaufwand dehnbar sind und der in sich steife Erzeugenden
besitzt. Wird dieser Zylinder mit einer idealen Fliissigkeit gefiillt, so wird nach dem
Dirichletschen Prinzip [3, S. 70] die potentielle Energie der Fliissigkeit dadurch einem
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Minimum zustreben, dass sie den Zylinderquerschnitt ® einem Maximum zutreibt,
wenn B’ gegen B frei beweglich ist. Denkt man sich dabei B fest, so bewegt sich B’
unter dem Einfluss der Krifte K;, ..., &,, die auf jene #» Randteile von B’ wirken,
die den Durchschnitt D mitberanden (Figur 1). Moglicherweise treten nicht nur

[

endlich viele solche Randteile auf, jedoch ist deren Gesamtlinge stets endlich. Jede
Einzelkraft &; ( = 1, ..., ») ist nach der Berechnung der Kraft, die eine Fliissigkeit
auf eine Gefdasswand ausiibt [7, S. 349], der Lédnge jener Sehne proportional, welche
die Endpunkte des zu K; gehérenden Randteils verbindet, und wirkt im Mittellot der
Sehne. Wir verwenden diese Sehnenldngen als Mass fiir die Betrige der Krifte K;.
Das Kriftesystem aus den K; ldsst sich, etwa mit dem Schwerpunkt von B’ als
Reduktionspunkt, auf eine resultierende Kraft & und ein resultierendes Moment It
reduzieren. Ist & = p und M = o, so ist B’ im Gleichgewicht; eine Vergrosserung des
Durchschnitts D ist unméglich, und es liegt daher fiir D ein relatives Maximum oder
ein instabiles Minimum?) vor. Die Bedingung & = o ist genau dann erfiillt, wenn sich
die linienfliichtigen Kraftvektoren &; zum Nullvektor addieren. Dies wiederum ist
genau dann der Fall, wenn sich die den &; entsprechenden, gleichsinnig orientierten
Sehnen durch Parallelverschiebung zu einem geschlossenen Polygon zusammenfiigen
lassen. Die Bedingung 9t = o, die verlangt, dass die Summe der um einen beliebigen
Ebenenpunkt linksdrehenden Momente gleich der Summe der rechtsdrehenden
Momente ist, ldsst sich zwar im allgemeinen geometrisch nicht einfacher umformulie-
ren, jedoch ist sie bei den in 4. behandelten Dreiecksbereichen geometrisch einfach
zu fassen.

Der Bereich B’ ist gegeniiber 8 nur dann nicht frei beweglich, wenn es Randteile
von D gibt, die nicht nur B bzw. B’ angehoéren, sondern sowohl B als auch B’
Dies ist nur moglich, wenn B und B’ kongruente Randteile besitzen und B’ jene
Lagen zu B einnimmt, in denen solche Randteile zusammenfallen. In diesen Fillen
wirken auf B’ nicht allein die Fliissigkeitskrifte, sondern lings den 8 und B’ ange-
horenden Randteilen von D auch noch Reaktionskrifte, die von dem festen Bereich
B herriithren. Das in 4. diskutierte Beispiel zeigt solche Sonderlagen und deren Be-

1) Ein instabiles Minimum liegt zum Beispiel vor, wenn B ein Parallelogramm und der Durchschnitt D
von B und B’ ein Quadrat ist.
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handlung. Zur Bestimmung des absoluten Maximums D,,,, und der zugehoérigen Lagen
von B und B’ sind die relativen Maxima (und instabilen Minima) untereinander und
mit jenen eventuell vorhandenen Durchschnitten D zu vergleichen, bei denen B’ gegen B
nicht frei beweglich ist.

3. Das Verfahren lidsst sich einfach variieren, etwa indem man bei den Bereichen
B und B’ der Figur 1 verlangt, dass die Vereinigungsmenge der vier schraffierten
halbmondf6érmigen Teilbereiche maximal wird. Das dann zu betrachtende Krifte-
system resultiert aus der (vereinfachten) Modellvorstellung, dass die vier halbmond-
formigen Teilbereiche kommunizierend verbunden und mit Fliissigkeit gefiillt sind.

Anschliessend wenden wir das beschriebene Verfahren auf einen nicht gleichschenk-
ligen Drerecksbereich B und den aus B durch Spiegelung an einer Geraden entstehen-
den Dreiecksbereich B’ an. Ist B gleichschenklig, so ist D,,,, = B, und das Verfahren
eritbrigt sich. Ist B nicht gleichschenklig, so ist ein nicht leerer Durchschnitt D von
B und B’ ein konvexes Polygon, dessen Randstrecken den Seiten der beiden Dreiecke
angehéren. Da insgesamt sechs Dreieckseiten vorliegen, kann ein Durchschnitt D
héchstens ein Sechseck sein, aber auch ein Fiinfeck, Viereck oder Dreieck, wenn nur
fiinf, vier oder drei der vorhandenen sechs Dreieckseiten zur Berandung von D bei-
tragen oder auch die Seitenzahl von D dadurch reduziert wird, dass zwei Dreieck-
seiten ganz oder teilweise zusammenfallen. Letzteres kann hochstens zweimal ein-
treten, da B nicht gleichschenklig ist; Figur 2a,-d, zeigt die moéglichen Fille, auf die
wir kiinftig mit (a,), (by), ... verweisen.

4. a) Ist ein Durchschnitt © ein Sechseck Sq (2,), so betrachten wir zunichst den
Fall, dass die Sechseckseiten abwechselnd zum Rand von 8B und B’ gehoren ; dabei ist
B’ gegen B stets frer beweglich. Die zu B gehorenden Sechseckseiten seien a, b, ¢ und
die zu B’ gehorenden a’, &', ¢’ (Figur 3). Die Bedingung & = o hat zur Folge, dass die
durch Parallelverschiebung (bei Erhaltung eines zuvor festgelegten Umlaufsinns
von Gg) aneinandergefiigten Seiten 4, b, ¢ ein zu B dhnliches Dreiseit bilden. Fiir die
Seiten a’, &', ¢’ gilt notwendig Entsprechendes. Ohne Beschrankung der Allgemeinheit
kann man annehmen, dass @', b, ¢/, ¢, b’, a die Aufeinanderfolge der Sechseckseiten ist,
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da bei dem sechszackigen Stern B U B’, der zu jedem Sechseck S, dieses Falles
gehort, zweimal bei aufeinanderfolgenden Zacken gleiche Winkel auftreten. Bedeuten
d, d’, e, ¢’ die in Figur 3 bezeichneten Reststrecken und «, 8, ¢ die eingetragenen
Winkel, so gilt:

e+c+d=¢e+c+d, (1)

mit
cie=c":¢e =sina:sin(p — ) (2a)

und
b:d=10":d =sinf:sin(p—a+f). (2b)

Verwendet man (2a, b) in (1) und beachtet, dass @' =4a, b’ =10, ¢'=4¢c (A=
konst. > 0) gilt, da a, b, ¢ und a’, b’, ¢’ dhnliche Dreiseite sind, so folgt bei Heran-
ziehung des Sinussatzes im Dreiseit abc:

[sin (x + B) sin(p — &) + sina sin(p + f — a) — sinasin(x + )] (A —1) =0. (3)

Alle Durchschnitte &4, deren Seiten abwechselnd zu B und B’ gehoren und fiir die
K = p gilt, miissen (nachdem sie wie in Figur 3 bezeichnet sind) notwendig der
Bedingung (3) geniigen. Fiir diese Durchschnitte muss in (3) die runde oder die eckige
Klammer verschwinden. Fiir jene Durchschnitte Sg, die (3) erfiillen, indem die runde
Klammer verschwindet (A = 1), sind die Dreiseite abc und a’b’c’ kongruent, die Durch-
schnitte &, also axialsymmetrisch; B’ entsteht somit aus 8B durch Spiegelung an
einer Symmetrieachse von &,;. Maximal sind unter diesen Durchschnitten Sg jene,
die neben der schon erfiillten Bedingung & = p auch der Bedingung It = o geniigen,
die verlangt, dass die Mittellote m,, m,, m, der Seiten a, b, ¢ von G4 durch einen
Punkt gehen. Die Mittellote der Seiten a’, &', ¢’ von &g besitzen dann notwendig
dieselbe Schnitteigenschaft. Zur Gewinnung dieser maximalen Durchschnitte Sg von
B und B’ verwendet man in einem konkreten Fall zweckmadssig die Tatsache, dass die
Bedingungen & = o und M = p gegeniiber Ahnlichkeiten invariant sind. Man be-
stimmt daher zunichst, ausgehend von irgendeinem vorgegebenen, zu B dhnlichen,
festen Dreiseit a*b*c* durch Variieren von g alle Sechsecke Sg*, die dhnlich vergrossert
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oder verkleinert jene Durchschnitte G4 von B und B’ ergeben, die (3) fir A=1
geniigen; Figur 3 zeigt einen solchen Durchschnitt &g, dessen Dreiseit abc aus dem
vorgegebenen Dreiseit a*b*c* durch Anwendung einer geeigneten Ahnlichkeit ent-
steht. Die Entscheidung, ob auch noch die Bedingung It = o zu erfiillen ist, trifft
man vorteilhaft an den zum Dreiseit a*b*c* bestimmten Sechsecken Sg*, die von ¢
abhdngen. Variiert ¢, so beschreibt der Schnittpunkt der Mittellote m,.« und m.., wie
man leicht nachrechnet, eine Ellipse, deren reelle Schnittpunkte mit m;. zu bestimmen
sind. Gehort ein solcher Schnittpunkt der drei Mittellote me,«, My, M4 zu einem
Durchschnitt Sg*, der zu einem Durchschnitt Sz dhnlichist, dessen Seiten abwechselnd
B und B’ mitberanden und der K = o erfiillt2), so liegt in S, ein maximaler Durch-
schnitt vor. Fiir die in Figur 2,a,—d, verwendeten Dreiecke B,, B,  gibt es drei solche
Durchschnitte mit den Maximaleigenschaften ! = o, It = 0?%). Zu untersuchen bleibt
noch, ob das Verschwinden der eckigen Klammer in (3) zu weiteren maximalen Durch-
schnitten fiihrt. Solche Durchschnitte kommen nur fiir jene Winkel ¢ in Betracht, die
sich aus der quadratischen Gleichung fiir sin (p — «) ergeben, welche die verschwinden-
de eckige Klammer bestimmt; davon brauchbar sind jene Winkel ¢, die (3) wirklich
erfiillen. Zu priifen ist nun, ob sich bei passender Wahl von A maximale Durchschnitte
Sg ergeben. Dies entscheidet man mit Hilfe des zu einem festen Dreiseit a*b*c* fiir
den betreffenden Winkel ¢ bestimmten Sechsecks &,*. Variiert dort 4, so beschreibt
der Schnittpunkt der Mittellote m,+ und m, . eine Gerade g, deren Schnitt mit m,. zur
Erfillung der Bedingung 9 = p zu bestimmen ist. Fiir A = 0 erhélt man sicher einen
Schnittpunkt der drei Mittellote 7., 7., M. Soll auch fiir A > 0 ein gemeinsamer
Punkt der Geraden g und m. existieren, so muss g mit m,. zusammenfallen. Dann
erhilt man aber fiir alle A gemeinsame Punkte, also auch fiir A = 1, wofiir in (3) die
runde Klammer verschwindet; dies ist zugleich der einzige A-Wert, der zu zwei
Dreiecken B, B’ fiihrt, die bis auf Spiegelung kongruent sind. Das Verschwinden der
eckigen Klammer in (3) liefert somit keine weiteren maximalen Durchschnitte.

Zu betrachten ist noch der Unterfall, dass die Seiten eines Durchschnitts Sg nicht
abwechselnd zum Rand von B und B’ gehéren. Auch in diesen Lagen ist B’ gegen B
frei beweglich. Es kénnen dann héchstens zwei aufeinanderfolgende Sechseckseiten
demselben Dreieck, etwa B, angehoren, da sonst & = o nicht gilt. Ist dies der Fall,
so gehoren notwendig zwei aufeinanderfolgende und daran anschliessende Sechseck-
seiten zum Rand von ®B’. Gilt dann & = p, so muss dem Sechseck ein Rechteck ein-
beschrieben sein, dessen Ecken jene Ecken des Sechsecks sind, von denen Seiten aus-
laufen, die zu verschiedenen Dreiecken gehéren (Figur 4). Die Bedingung It = o ist
dann bereits erfiillt. Eine einfache Uberlegung zeigt, dass B und B’ nur so zueinander
liegen kénneh wie es die Bezeichnung der Winkel in Figur 4 angibt. Das einbeschrie-
bene Rechteck ist dann notwendig ein Quadrat; wire es kein Quadrat, so wéren zwei
verschiedene kongruente Rechtecke sowohl B als auch B’ einbeschrieben derart, dass
beide auf derselben Dreieckseite aufsitzen und zugleich dem maximalen Sechseck in
der angegebenen Weise einbeschrieben sind, das ist jedoch unméglich. Ob derartige

%) Diese Eigenschaften bleiben nicht fiir alle 0 £ ¢ < 27, wofiir sich die Ellipsenpunkte ergeben,
erhalten.

8) Wir verzichten auf die Wiedergabe der zur Untersuchung von B, und B erforderlichen elementaren
numerischen Rechnungen, stellen jedoch in Figur 5 die maximalen Durchschnitte zusammen, die sich dabei
ergeben und unter denen das absolute Durchschnittsmaximum zu suchen ist,
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maximale Durchschnitte existieren, ist bei jedem Dreieck anhand der ihm einbe-
schriebenen Quadrate (die alle oder teilweise kongruent sein konnen!) sofort entscheid-
bar. Die Dreiecke B,, B, besitzen einen einzigen derartigen maximalen Durchschnitt
(Figur 5a,,).

b) Ist ein Durchschnitt D ein Fiinfeck §;, zu dessen Berandung nur fiinf der sechs
Dreieckseiten beitragen (b,), so ist B’ gegen B frei beweglich. Fiir das mit zwei Seiten
beteiligte Dreieck kann & = p nur dann gelten, wenn die beteiligten Seiten parallel
sind, was unmoglich ist; dieser Fall liefert somit keinen maximalen Durchschnitt.
Bei den fiinfeckigen Durchschnitten §,, an deren Berandung alle sechs Dreieckseiten
beteiligt sind, iiberlappen sich deren zwei (b,); diese Durchschnitte besitzen eine
Symmetrieachse normal zu den iiberlappten Seiten. Die resultierende Kraft & der
Fliissigkeitskrifte K; (z = 1, 2, 3) wird bestimmt durch jene Seiten von g, an denen
B’ beteiligt ist. Die normal zu den iiberlappten Seiten wirkende Komponente Ry
von & wird jedoch durch eine von dem festen Bereich 8B herrithrende Reaktionskraft
kompensiert ; daher gleitet B’ lings den tiberlappten Seiten und ist somit nicht fres
beweglich. Der zu jeder Uberlappungsméglichkeit — es gibt deren drei — gehorende
relative maximale Durchschnitt liegt also vor, wenn die parallel zu den iiberlappten
Seiten wirkende Komponente R von { verschwindet. Die auf B’ wirkenden Mo-
mente heben sich auf, da jedes von den drei Fliissigkeitskriaften &; erzeugte resultie-
rende Moment ein entgegengesetzt gleiches Reaktionsmoment bewirkt. &p =0
bedeutet geometrisch, dass die durch Parallelverschiebung aneinandergefiigten Seiten
von e, an denen B’ beteiligt ist (bei Erhaltung eines zuvor festgelegten Umlaufsinns
von §,), einen Streckenzug bilden, dessen Schlusslinie zu den tiiberlappten Seiten
parallelist. Figur 5, by;—b,, zeigt die zu B, gehorenden maximalen fiinfeckigen Durch-
schnitte.

c) Ist ein Durchschnitt D ein Viereck B,, an dessen Berandung nur vier der sechs
Dreteckseiten teilhaben (c,), so ist B’ gegen B frei beweglich. } = p kann hochstens

Figur 5
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gelten, wenn zwei Viereckseiten zu B und zwei zu B’ gehoren und ausserdem die B
bzw. B’ zugehorigen Seiten parallel sind. Dies ist jedoch unmdéglich; dieser Fall
liefert daher keinen maximalen Durchschnitt. Der weitere Fall viereckiger Durch-
schnitte B;, zu deren Berandung fiinf der sechs Dreieckseiten beitragen, von denen
sich notwendig zwei tiberlappen (c,), lings denen B’ gleitet, fiihrt ebenfalls zu keinem
maximalen Durchschnitt, da wie zuvor & = p nicht erfiillbar ist. Sind schliesslich
alle sechs Dretecksesten an der Berandung eines viereckigen Durchschnitts beteiligt, so
tiberlappen sich notwendig zweimal zwei Dreieckseiten (c,). Fiir einen solchen Durch-
schnitt B, entsteht B’ aus B durch Spiegelung an einer Winkelhalbierenden, die
Symmetrieachse des Durchschnitts ist. Es gibt somit genau drei Durchschnitte By, fiir
die B’ gegen B unbeweglich ist und im Gleichgewicht steht. Jene Seiten eines Durch-
schnitts B, an denen B’ beteiligt ist, bestimmen ndmlich die resultierende Kraft &
der Flussigkeitskrifte &; (¢ =1, 2, 3), deren Normalkomponenten zu den beiden
Paaren iiberlappter Seiten durch Reaktionskrifte, herrithrend von dem festen Be-
reich B, kompensiert werden; B’ steht somit im Kriftegleichgewicht. Entsprechend
wird jedes auf B’ als Folge der drei Krifte &; wirkende Gesamtmoment I durch ein
von B herriihrendes Reaktionsmoment aufgehoben. Jeder Durchschnitt B4 ist mit
den in a) und b) festgestellten relativen Durchschnittsmaxima zu vergleichen und ist
eine Grenzlage von Durchschnitten B, sowie ein relatives Maximum unter den ent-
sprechenden Durchschnitten (c,, ¢z, d,).

d) Liegt schliesslich als Durchschnitt © ein Dreteck vor, so konnen nur drei (d,)
oder vier (dy) der sechs Dreieckseiten zu seiner Berandung beitragen, und man erkennt
leicht, dass diese Durchschnitte Dy, D, keine maximalen enthalten.

Das absolute Durchschnittsmaximum kann somit nur ein axialsymmetrisches Sechs-
eck Sg, Fiinfeck &g oder Viereck By sein, also ein Durchschnitt, an dessen Berandung
alle sechs Dreieckseiten teilhaben. Bei den Dreiecken B,, B, wird es von (cg) ange-
nommen, dicht gefolgt von (cgs), (bys) und (a,,). Abschliessend sei erwédhnt, dass die
entwickelte Methode unabhingig davon, ob das absolute Maximum etwa stets in
(cgi—Cg3) liegt, ihre Bedeutung auch in der Bestimmung aller maximalen fiinf- und
sechseckigen Dreiecksdurchschnitte besitzt. O. GIERING, Stuttgart
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