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Ein mechanisches Modell zur Losung gewisser Extremalaufgaben
Herrn Prof Dr O Baier zum 60 Geburtstag gewidmet

1. Mechanische Interpretationen leisten zur Behandlung geometrischer Probleme
oft wertvolle Dienste Man denke etwa an die bereits von Archimedes angewandte
Hebelmethode zur Bestimmung des Flächeninhalts eines Parabelsegments und des

Volumens einer Kugel [9, S 5 ff ], an die Ermittlung der Differentialgleichung der
geodätischen Linien einer Flache mit Hilfe der Vorstellung eines zwischen zwei
Flachenpunkten gespannten Fadens [2, S 102, 3] oder an die Aufgabe, m einem Dreieck

A BC einen Punkt P so zu finden, dass die Summe seiner Abstände von A, B und C

minimal ist [4, S 222, 5, S 101] In jedem der angeführten Falle wird die gestellte
geometrische Bedingung durch eme leichter zu handhabende Gleichgewichtsbedmgung
ersetzt Em solches, bisher wohl unbekanntes Gleichgewichtsverfahren wird auch im
folgenden vorgestellt und angewendet Wenn auch dabei keine Verfahren mit
mathematischem Beweischarakter vorliegen, so pflegen derartige Betrachtungen doch die
Verbindung zur Mechanik und bilden einen wünschenswerten Beitrag zur Pflege der
Anschauung m der Mathematik [6, 8]

Wir legen in eme Ebene e zwei beschrankte, einfach zusammenhangende und
stuckweise glatt berandete Bereiche 93 und 23'', die sich in e nicht derart verschieben
lassen, dass einer den andern vollständig bedeckt, und fragen nach jenen gegenseitigen
Lagen dieser Bereiche m e, m denen ihr Durchschnitt D maximal, also ihre
Vereinigungsmenge minimal ist Im Hinblick auf die in 4 folgende Anwendung beschreiben

wir das Verfahren an zwei nicht axialsymmetrischen konvexen Bereichen 23 und 33',
wobei 23' aus 93 durch Spiegelung an einer Geraden entsteht (Figur 1) Im allgemeinen
Fall lasst sich das Verfahren m analoger Weise anwenden Die gegenseitige Lage von
93 und 9'ine hangt von drei Parametern ab, die man zur Auffindung der maximalen
Durchschnitte D in einem dreidimensionalen abgeschlossenen Gebiet variieren lassen

kann, dessen zweidimensionale Randpunktmenge zu leeren Durchschnitten X) fuhrt,
es gibt also keine Randmaxima Die Durchschnitte X) bilden eine beschrankte Funktion

dieser drei Parameter und besitzen, wenn diese Funktion stetig ist, nach einem
bekannten Satz uber stetige Funktionen em Maximum [1, S 60], das nicht notwendig
in nur einer gegenseitigen Lage von 23 und 23' angenommen wird Den Durchschnitt X>

als Funktion dieser gegenseitigen Lagen anzugeben und die Maxima dieser Funktion
zu bestimmen, durfte selbst bei einfachen Bereichen 23, 23' sehr schwierig sein Die
folgende mechanische Überlegung umgeht einen Teil dieser Schwierigkeiten, indem sie

gewisse Durchschnitte aussondert, unter denen das absolute Maximum zu suchen ist

2. Zur Auffindung der Lagen von 23 und 93' mit maximalem Durchschnitt D
denken wir uns die Randkurven dieser Bereiche als dünne Drahtrmge realisiert, die

reibungsfrei übereinander hmweggleiten können In ihren nicht leeren Durchschnitt
D sei em zu e normaler Zylinder mit dem Querschnitt D hineingestellt, dessen Mantel
und Boden ohne Energieaufwand dehnbar sind und der m sich steife Erzeugenden
besitzt Wird dieser Zylinder mit einer idealen Flüssigkeit gefüllt, so wird nach dem
Dinchletschen Prinzip [3, S 70] die potentielle Energie der Flüssigkeit dadurch einem
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Minimum zustreben, dass sie den Zylinderquerschnitt X) einem Maximum zutreibt,
wenn 23' gegen 23 frei beweglich ist Denkt man sich dabei 23 fest, so bewegt sich 23'

unter dem Emfluss der Kräfte Rx, 5t„, die auf jene n Randteile von 23' wirken,
die den Durchschnitt X) mitberanden (Figur 1) Möglicherweise treten nicht nur

Figur 1

endhch viele solche Randteile auf, jedoch ist deren Gesamtlange stets endlich Jede
Einzelkraft $tt (i 1, n) ist nach der Berechnung der Kraft, die eme Flüssigkeit
auf eine Gefasswand ausübt [7, S 349], der Lange jener Sehne proportional, welche
die Endpunkte des zu &t gehörenden Randteils verbindet, und wirkt im Mittellot der
Sehne Wir verwenden diese Sehnenlangen als Mass fur die Betrage der Kräfte itz
Das Kraftesystem aus den Rt lasst sich, etwa mit dem Schwerpunkt von 23' als

Reduktionspunkt, auf eine resultierende Kraft il und em resultierendes Moment 9ER

reduzieren Ist il o und 9JJ o, so ist 23' im Gleichgewicht, eme Vergrösserung des

Durchschnitts X) ist unmöglich, und es hegt daher fur X) em relatives Maximum oder
em instabiles Minimum1) vor Die Bedingung il o ist genau dann erfüllt, wenn sich
die linienfluchtigen Kraftvektoren il, zum Nullvektor addieren Dies wiederum ist
genau dann der Fall, wenn sich die den ilt entsprechenden, gleichsinnig orientierten
Sehnen durch Parallelverschiebung zu einem geschlossenen Polygon zusammenfugen
lassen Die Bedingung 501 o, die verlangt, dass die Summe der um einen beliebigen
Ebenenpunkt hnksdrehenden Momente gleich der Summe der rechtsdrehenden
Momente ist, lasst sich zwar im allgemeinen geometrisch nicht einfacher umformulieren,

jedoch ist sie bei den in 4 behandelten Dreiecksbereichen geometrisch einfach
zu fassen

Der Bereich 23' ist gegenüber 23 nur dann nicht frei beweglich, wenn es Randteile
von X) gibt, die nicht nur S bzw 23' angehören, sondern sowohl 23 als auch 23'

Dies ist nur möglich, wenn 23 und 23' kongruente Randteile besitzen und 23' jene
Lagen zu 23 einnimmt, m denen solche Randteile zusammenfallen In diesen Fallen
wirken auf 23' nicht allein die Flussigkeitskrafte, sondern längs den 23 und SB'

angehörenden Randteüen von X) auch noch Reaktionskrafte, die von dem festen Bereich
23 herrühren Das in 4 diskutierte Beispiel zeigt solche Sonderlagen und deren Be-

*) Ein instabiles Mmimum hegt zum Beispiel vor, wenn S em Parallelogramm und der Durchschnitt X)

von S und W em Quadrat ist
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handlung. Zur Bestimmung des absoluten Maximums X)max und der zugehörigen Lagen
von 23 und 23' sind die relativen Maxima (und instabilen Minima) untereinander und
mit jenen eventuell vorhandenen Durchschnitten X) zu vergleichen, bei denen $8' gegen 23

nicht frei beweglich ist.

3. Das Verfahren lässt sich einfach variieren, etwa indem man bei den Bereichen
SB und 93' der Figur 1 verlangt, dass die Vereinigungsmenge der vier schraffierten
halbmondförmigen Teilbereiche maximal wird. Das dann zu betrachtende Kräftesystem

resultiert aus der (vereinfachten) Modellvorstellung, dass die vier halbmondförmigen

Teilbereiche kommunizierend verbunden und mit Flüssigkeit gefüllt sind.

Anschliessend wenden wir das beschriebene Verfahren auf einen nicht gleichschenkligen

Dreiecksbereich SB und den aus SB durch Spiegelung an einer Geraden entstehenden

Dreiecksbereich SB' an. Ist SB gleichschenklig, so ist X)max SB, und das Verfahren
erübrigt sich. Ist SB nicht gleichschenklig, so ist ein nicht leerer Durchschnitt X) von
SB und SB' ein konvexes Polygon, dessen Randstrecken den Seiten der beiden Dreiecke
angehören. Da insgesamt sechs Dreieckseiten vorliegen, kann ein Durchschnitt X)

höchstens ein Sechseck sein, aber auch ein Fünfeck, Viereck oder Dreieck, wenn nur
fünf, vier oder drei der vorhandenen sechs Dreieckseiten zur Berandung von X)

beitragen oder auch die Seitenzahl von X) dadurch reduziert wird, dass zwei Dreieckseiten

ganz oder teilweise zusammenfallen. Letzteres kann höchstens zweimal
eintreten, da SB nicht gleichschenklig ist; Figur 2 &x-d2 zeigt die möglichen Fälle, auf die
wir künftig mit (a^, (bx), verweisen.

/~h> ^

Figur 2

4. a) Ist ein Durchschnitt X) ein Sechseck S6 (ax), so betrachten wir zunächst den
Fall, dass die Sechseckseiten abwechselnd zum Rand von SB und SB' gehören; dabei ist
SB' gegen SB stets frei beweglich. Die zu 23 gehörenden Sechseckseiten seien a, b, c und
die zu SB' gehörenden a', b', c' (Figur 3). Die Bedingung il o hat zur Folge, dass die
durch Parallelverschiebung (bei Erhaltung eines zuvor festgelegten Umlaufsinns
von ®6) aneinandergefügten Seiten a, b, c ein zu SB ähnliches Dreiseit bilden. Für die
Seiten a', b', c' gilt notwendig Entsprechendes. Ohne Beschränkung der Allgemeinheit
kann man annehmen, dass a', b, c', c, V, a die Aufeinanderfolge der Sechseckseiten ist,
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^

^ L

Figur 3 Figur 4

da bei dem sechszackigen Stern 23U23', der zu jedem Sechseck S6 dieses Falles
gehört, zweimal bei aufeinanderfolgenden Zacken gleiche Winkel auftreten Bedeuten
d, d', e, e' die in Figur 3 bezeichneten Reststrecken und oc, ß, <p die eingetragenen
Winkel, so gilt

e + c' -f d e' + c + d', (1)

mit
c e c' e' sma sm(<p — a) (2a)

und
b d b' d' smß sm(cp~oL + ß) (2b)

Verwendet man (2a, b) in (1) und beachtet, dass af X a, b' Xb, c' Xc (X

konst > 0) gilt, da a, b, c und a!, b', c' ahnhche Dreiseite smd, so folgt bei
Heranziehung des Smussatzes im Dreiseit abc

[sm (a + ß) sm (cp — a) + sma sm (tp + ß — a) — sma sm (a -f ß)] (X — 1) 0 (3)

Alle Durchschnitte S6, deren Seiten abwechselnd zu SB und SB' gehören und fur die

il o gilt, müssen (nachdem sie wie m Figur 3 bezeichnet smd) notwendig der
Bedingung (3) genügen Fur diese Durchschnitte muss in (3) die runde oder die eckige
Klammer verschwinden Fur jene Durchschnitte S6, die (3) erfüllen, indem die runde
Klammer verschwindet (X 1), sind die Dreiseite abc und a'b'c' kongruent, die
Durchschnitte ®6 also axialsymmetrisch, 23' entsteht somit aus 93 durch Spiegelung an
einer Symmetrieachse von S6 Maximal smd unter diesen Durchschnitten S6 jene,
die neben der schon erfüllten Bedingung il o auch der Bedingung SK o genügen,
die verlangt, dass die Mittellote ma, mb, mc der Seiten a, b, c von S6 durch einen
Punkt gehen Die Mittellote der Seiten a', b', c' von S6 besitzen dann notwendig
dieselbe Schnitteigenschaft Zur Gewinnung dieser maximalen Durchschnitte S6 von
23 und SB' verwendet man in einem konkreten Fall zweckmassig die Tatsache, dass die

Bedingungen il o und SR o gegenüber Ahnhchkeiten invariant sind Man
bestimmt daher zunächst, ausgehend von irgendeinem vorgegebenen, zu SB ahnhchen,
festen Dreiseit a*b*c* durch Vameren von tp alle Sechsecke S6*, die ähnlich vergrössert
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oder verkleinert jene Durchschnitte S6 von SB und SB' ergeben, die (3) für X 1

genügen; Figur 3 zeigt einen solchen Durchschnitt S6, dessen Dreiseit abc aus dem

vorgegebenen Dreiseit a*b*c* durch Anwendung einer geeigneten Ähnlichkeit
entsteht. Die Entscheidung, ob auch noch die Bedingung SR o zu erfüllen ist, trifft
man vorteilhaft an den zum Dreiseit a*b*c* bestimmten Sechsecken S6*, die von cp

abhängen. Variiert cp, so beschreibt der Schnittpunkt der Mittellote ma* und mc*, wie
man leicht nachrechnet, eine Ellipse, deren reelle Schnittpunkte mit mh* zu bestimmen
sind. Gehört ein solcher Schnittpunkt der drei Mittellote ma*, mb*, mc* zu einem
Durchschnitt S6*, der zu einem Durchschnitt S6 ähnlich ist, dessen Seiten abwechselnd
93 und SB' mitberanden und der il o erfüllt2), so liegt in S6 ein maximaler Durchschnitt

vor. Für die in Figur 2, aj-dg verwendeten Dreiecke SB0, SB0' gibt es drei solche
Durchschnitte mit den Maximaleigenschaften il o, SR o3). Zu untersuchen bleibt
noch, ob das Verschwinden der eckigen Klammer in (3) zu weiteren maximalen
Durchschnitten führt. Solche Durchschnitte kommen nur für jene Winkel^ in Betracht, die
sich aus der quadratischen Gleichung für sin ((p — oc) ergeben, welche die verschwindende

eckige Klammer bestimmt; davon brauchbar sind jene Winkel cp, die (3) wirklich
erfüllen. Zu prüfen ist nun, ob sich bei passender Wahl von X maximale Durchschnitte
S6 ergeben. Dies entscheidet man mit Hilfe des zu einem festen Dreiseit a*b*c* für
den betreffenden Winkel cp bestimmten Sechsecks S6*. Variiert dort X, so beschreibt
der Schnittpunkt der Mittellote ma* und mc* eine Gerade g, deren Schnitt mit mb* zur
Erfüllung der Bedingung 501 o zu bestimmen ist. Für X 0 erhält man sicher einen

Schnittpunkt der drei Mittellote ma*, mb*, mc*. Soll auch für X > 0 ein gemeinsamer
Punkt der Geraden g und mh* existieren, so muss g mit mb+ zusammenfallen. Dann
erhält man aber für alle X gemeinsame Punkte, also auch für X 1, wofür in (3) die
runde Klammer verschwindet; dies ist zugleich der einzige A-Wert, der zu zwei
Dreiecken 23, SB' führt, die bis auf Spiegelung kongruent sind. Das Verschwinden der
eckigen Klammer in (3) liefert somit keine weiteren maximalen Durchschnitte.

Zu betrachten ist noch der Unterfall, dass die Seiten eines Durchschnitts S6 nicht
abwechselnd zum Rand von SB und SB' gehören. Auch in diesen Lagen ist SB' gegen 23

frei beweglich. Es können dann höchstens zwei aufeinanderfolgende Sechseckseiten
demselben Dreieck, etwa SB, angehören, da sonst il o nicht gilt. Ist dies der Fall,
so gehören notwendig zwei aufeinanderfolgende und daran anschliessende Sechseckseiten

zum Rand von SB'. Gilt dann il o, so muss dem Sechseck ein Rechteck
einbeschrieben sein, dessen Ecken jene Ecken des Sechsecks sind, von denen Seiten
auslaufen, die zu verschiedenen Dreiecken gehören (Figur 4). Die Bedingung SR o ist
dann bereits erfüllt. Eine einfache Überlegung zeigt, dass SB und 23' nur so zueinander
liegen könnet wie es die Bezeichnung der Winkel in Figur 4 angibt. Das einbeschriebene

Rechteck ist dann notwendig ein Quadrat; wäre es kein Quadrat, so wären zwei
verschiedene kongruente Rechtecke sowohl SB als auch SB' einbeschrieben derart, dass

beide auf derselben Dreieckseite aufsitzen und zugleich dem maximalen Sechseck in
der angegebenen Weise einbeschrieben sind, das ist jedoch unmöglich. Ob derartige

2) Diese Eigenschaften bleiben nicht für alle 0 ^ <p < 2 Tt, wofür sich die Ellipsenpunkte ergeben,
erhalten.

3) Wir verzichten auf die Wiedergabe der zur Untersuchung von SB0 und SBJ erforderlichen elementaren
numerischen Rechnungen, stellen jedoch in Figur 5 die maximalen Durchschnitte zusammen, die sich dabei
ergeben und unter den§n das absolute Durchschnittsmaximum zu suchen ist,
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maximale Durchschnitte existieren, ist bei jedem Dreieck anhand der ihm
einbeschriebenen Quadrate (die alle oder teilweise kongruent sein können!) sofort entscheidbar.

Die Dreiecke 230, 230' besitzen einen einzigen derartigen maximalen Durchschnitt
(Figur 5a14).

b) Ist ein Durchschnitt X) ein Fünfeck g5, zu dessen Berandung nur fünf der sechs

Dreieckseiten beitragen (bx), so ist 23' gegen SB frei beweglich. Für das mit zwei Seiten

beteiligte Dreieck kann il o nur dann gelten, wenn die beteiligten Seiten parallel
sind, was unmöglich ist; dieser Fall liefert somit keinen maximalen Durchschnitt.
Bei den fünfeckigen Durchschnitten g6, an deren Berandung alle sechs Dreieckseiten

beteiligt sind, überlappen sich deren zwei (b2); diese Durchschnitte besitzen eine

Symmetrieachse normal zu den überlappten Seiten. Die resultierende Kraft il der
Flüssigkeitskräfte ilt (i 1, 2, 3) wird bestimmt durch jene Seiten von gf6, an denen
SB' beteiligt ist. Die normal zu den überlappten Seiten wirkende Komponente $tN

von il wird jedoch durch eine von dem festen Bereich SB herrührende Reaktionskraft
kompensiert; daher gleitet 23' längs den überlappten Seiten und ist somit nicht frei
beweglich. Der zu jeder Uberlappungsmöglichkeit - es gibt deren drei - gehörende
relative maximale Durchschnitt hegt also vor, wenn die parallel zu den überlappten
Seiten wirkende Komponente ilP von il verschwindet. Die auf $' wirkenden
Momente heben sich auf, da jedes von den drei Flüssigkeitskräften il, erzeugte resultierende

Moment ein entgegengesetzt gleiches Reaktionsmoment bewirkt. ilP o

bedeutet geometrisch, dass die durch Parallelverschiebung aneinandergefügten Seiten

von g6, an denen 23' beteiligt ist (bei Erhaltung eines zuvor festgelegten Umlaufsinns
von 3fe)> einen Streckenzug bilden, dessen Schlusslinie zu den überlappten Seiten

parallel ist. Figur 5, b21-b23 zeigt die zu SB0 gehörenden maximalen fünfeckigen
Durchschnitte.

c) Ist ein Durchschnitt X) ein Viereck 954, an dessen Berandung nur vier der sechs

Dreieckseiten teilhaben (cx), so ist SB' gegen SB frei beweglich, il o kann höchstens

** a43

y: kT^.*

Figur?
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gelten, wenn zwei Viereckseiten zu SB und zwei zu SB' gehören und ausserdem die SB

bzw. SB' zugehörigen Seiten parallel sind. Dies ist jedoch unmöglich; dieser Fall
liefert daher keinen maximalen Durchschnitt. Der weitere Fall viereckiger
Durchschnitte 935, zu deren Berandung fünf der sechs Dreieckseiten beitragen, von denen
sich notwendig zwei überlappen (c2), längs denen SB' gleitet, führt ebenfalls zu keinem
maximalen Durchschnitt, da wie zuvor il o nicht erfüllbar ist. Sind schliesslich
alle sechs Dreieckseiten an der Berandung eines viereckigen Durchschnitts beteiligt, so

überlappen sich notwendig zweimal zwei Dreieckseiten (c3). Für einen solchen Durchschnitt

936 entsteht SB' aus SB durch Spiegelung an einer Winkelhalbierenden, die
Symmetrieachse des Durchschnitts ist. Es gibt somit genau drei Durchschnitte SB6, für
die SB' gegen SB unbeweglich ist und im Gleichgewicht steht. Jene Seiten eines
Durchschnitts 936, an denen SB' beteiligt ist, bestimmen nämlich die resultierende Kraft il
der Flüssigkeitskräfte il, (i 1, 2, 3), deren Normalkomponenten zu den beiden
Paaren überlappter Seiten durch Reaktionskräfte, herrührend von dem festen
Bereich SB, kompensiert werden; SB' steht somit im Kräftegleichgewicht. Entsprechend
wird jedes auf SB' als Folge der drei Kräfte R{ wirkende Gesamtmoment SR durch ein
von 93 herrührendes Reaktionsmoment aufgehoben. Jeder Durchschnitt 936 ist mit
den in a) und b) festgestellten relativen Durchschnittsmaxima zu vergleichen und ist
eine Grenzlage von Durchschnitten 93 5 sowie ein relatives Maximum unter den
entsprechenden Durchschnitten (c2, c3, d2).

d) Liegt schliesslich als Durchschnitt X) ein Dreieck vor, so können nur drei (dx)
oder vier (d2) der sechs Dreieckseiten zu seiner Berandung beitragen, und man erkennt
leicht, dass diese Durchschnitte X)3, X>4 keine maximalen enthalten.

Das absolute Durchschnittsmaximum kann somit nur ein axialsymmetrisches Sechseck

S6, Fünfeck 5e °der Viereck 936 sein, also ein Durchschnitt, an dessen Berandung
alle sechs Dreieckseiten teilhaben. Bei den Dreiecken 930> SB0' wird es von (c32)

angenommen, dicht gefolgt von (c33), (b22) und (a14). Abschliessend sei erwähnt, dass die
entwickelte Methode unabhängig davon, ob das absolute Maximum etwa stets in
(c31-c33) liegt, ihre Bedeutung auch in der Bestimmung aller maximalen fünf- und
sechseckigen Dreiecksdurchschnitte besitzt. O. Giering, Stuttgart
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