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Concurrencies and Areas in a Triangle

It is astonishing but true (see e.g., [I]1)) that many elementary results relating to
the triangle are still being discovered. The following note gives a fresh derivation of
some known results, along with simple extensions, some of these being applicable to
various other plane configurations.

We begin with a proof of the generahzed Dudeney-Steinhaus theorem (see [2]):
In a triangle ABC, transversals2) AX, BY, CZ are drawn from the vertices cutting

the opposite sides at Points X, Y, Z dividing these sides internally in the respective ratios
s: (1 — s), t: (1 — t), u : (1 — u). These transversals meet in pairs at L, M, N (see Fig. 1).
Then

ALMN {(1 - s) (1 - t) (1 - u) -stu}2 l BX „ jSY AZ
CA ~ ' ABBCAABC t) (t u + 1 u) (u sst + 1

Figure 1

u\

We put BC =p, BA q, LM a, LN =_ß. Then, AX sp - q, BY
(l - t) p + t q, CZ (1 - u) q - p. Writing X BY BL s p + pt XA, we have

X(l-t)p + Xtq^=s(l-ii)p + ixq,
*) Numbers in brackets refer to References, page 55.
2) Other writers refer to these lines through the vertices as cedians, cevians, redians, and nedians; see,

e.g., the references to School Science and Mathematics at the end of this paper.
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whence A (1 — t) s (1 — p) and A t ju, so that A sj(s t+1 — t),ja s t/(s t -f- 1 — £).

From these, and similar, results it follows immediately that

BL s XL st
BY st+l-t ' XA st+ 1-
CM t YM tu

st+ 1 -- * XA

t
u

YM
tu-\~ 1 - YB

u ZN
US -f 1 — s ZC

fl SL MY\ b\

CZ tu+l-u ' YB tu+ \-u
AN

(1)

AX u s -f- 1 — s * ZC u s -\- 1 — s

so that

a BY - (BL + M~Y) =~ll - ^±- - *™\ BY <t> 'g+t1-')*a DY \B1*+MX] |1 By by)151 9 {st+ l-t)(tu+l-u)
where <f> (1 — s) (1 — t) (1 — u) — s tu; similarly

ß <f> q- sp
(s t + 1 - t) (u s + 1 - s)

Thus, ass.-f-l — £ > 0, etc.,

ALMN
AABC

axß
PXq

{tq+ (l-t)p}x{q-sp}
(s t + 1 - t)2 (t u + l - u) (u s + 1 - s) \pxq

- {(l-s)(l-t)(l-u)-stu}2 _~ {st + i _ t) (tu + 1 - u) (u s + 1 - s) ~ '(M' ^ ' Say * W

Among the consequences of the result (2) we may mention the following:
I. Taking s t u l/3we obtain the Dudeney-Steinhaus theorem: if X, Y, Z

divide the sides of AABC, in cyclic order, in the ratio 1:2 then ALMN (1/7) AABC.

II. Clearly, ALMN 0 if, and only if, f(s, t, u) 0, i.e.

(1 - s) (1 - t) (1 - u) s * « (3)

(0 < s, £, ü < 1). As (3) holds for s t ^ 1/2, it follows immediately that the
medians of AABC are concurrent.

III. Taking 5 t u 1/2, it follows readily from the relations (1) that the
medians of a triangle divide each other in the ration 2:1. The converse result, that
AX, BY, CZ are the medians of AABC if they are concurrent and divide each other
in the ratio 2:1, is moderately difficult to prove by elementary methods; however,
using the relations (1), a simple calculation shows that, in this case, s t u 1/2.

IV. For 0 < s, t, u < 1,

BX CY AZ stu
XC YA ZB (i-5)(l-*)(l-u) *

As the transversals AX, BY, CZ are concurrent if, and only if, (1 — s) (1 — t) (1 — u)

stu, Ceva's theorem and its converse follow immediately.
V. Some interesting results arise from the case in which the transversals divide

the sides, in cyclic order, in the same ratio. Suppose BX: XC — CY: YA AZ: ZB
A: /a; then, s t u XI(X -f ju), and

ALMN
__ (A-a*)1_

AABC A2-f A^ + /*a
# (4)
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(It will be clear that the transversals now eut, in cyclic order, in the same ratio.) We
consider AXYZ (the Menelaic triangle [3]): with the above notation,

XY={l-s)p + t(q-p), XZ (1 - u) q - s p
whence

AXYZ \XYxXZ\ n wi ,wi \
-AABC \pxq\ =(l~s)(l-t)(l-u) + stu;

Thus, in the case considered,

AXYZ _
A2 - A u + u2

AABC (A + ^)2
and

ALMN _ (A2 - u2)2

AXYZ A4 + A2 u2 + u*

(5)

(6)

The expressions on the right in (4), (5), (6) are Symmetrie in A and /u, so that inter-
change of A, /u leaves the correspondmg ratios invariant; it is easily seen that, in
general, the effect of this interchange is not such as to transform the triangles XYZ,
LMN into identical triangles.

VI. It is easily shown that, when one or more of the points X, Y, Z divide the
correspondmg sides of triangle ABC externally, the ratio of the areas of the triangles
XYZ, ABC is given by

-^gg =\(l-s)(l-t)(l-u) + stu\.

Accordingly, s t uj{(l — s) (1 — t) (1 — u)} — 1 (here, we suppose X, Y, Z do not
coincide with any vertex of AABC), if and only if AXYZ 0; i.e., if, and only if,
X, Y, Z are collinear. Thus we obtain Menelaus' theorem and its converse. (For this
case it follows from Pasch's axiom that at least one of the points X, Y, Z lies outside

AABC.)
Ä

Figure 2

VII. By expressing AN, ZN, MY, CM, etc., in terms of p, q we can similarly
calculate the ratios AANZ: AABC, AANC.AABC, ABXL.ABCY, etc., to-
gether with ratios of areas of quadrilaterals such as LXCM: ANMY, and so on.

If X, Y, Z divide correspondmg sides of triangle ABC in the same ratio, then
AANZ ABLX ACMY, and the quadrilaterals LXCM, MYAN, NZBL are of

equal area.

VIII. If AX, BY, CZ are the inferior bisectors of the corresponding angles of the

triangle ABC, then, with a common notation (BC a, etc.), we have s/(l - s) c\b,
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t/(l — t) a\c, uftl — u) bja, whence (1 — s) (1 — t) (1 — u) s t u, accordingly,
these mtenor bisectors meet at a point / (the mcentre) More generally, if AX, BY,
CZ meet at an mtenor pomt /, then by (1)

AJ u 3L - L__ 9J
JX ~ (1 - u) (1 - s)

> JY-(l-s) (T—f) ' ~JZ 71 - t) (1 -"Sp
and s tu (1 — s) (1 — t) (1 — w), so that

AJ BJ CJ _
1

/_Y /Y /Z stu'
in particular, if / is the mcentre J of triangle ABC, then we obtain

AI BI Cl
__

(a + b) (b + c) (c + a)

IX IY IZ ~ abc

It will be clear that a similar result can be obtamed for the case m which / lies at the
centre of an escnbed circle

IX If AX, BY, CZ are the altitudes of triangle ABC then

5
__

c cos JE? /
__

acosC u
__

b cosA
(hJ.

1 — s
~~

b cosC 1 — t c cos_4 1 — u
~~

a cosB ^ '

so that we again have s tu (1 — s) (1 — t) (1 — u), this estabhshes concurrency
of the altitudes From this result and the result obtamed m V we see that the area of
the pedal triangle XYZ is given by

A^ZC | (1 - s) (1 - t) (1 - u) + 5 tu | 2 | s tu |

hence, by (7), AXYZ 2 | cos_4 cos_5 cosC | Zl_4.eC

X Now let Y, Z divide CA, AB in the respective ratios p q and q p As p\q vanes,
the locus of the mtersection of BY, CZ is the median through _4 This result follows
immediately from Ceva's theorem

XI Let a, b, c denote the lengths of the sides of triangle _4 BC and let mlt m2, m3
denote the lengths of the transversals AX, BY, CZ Put xp — (m\ + m\ + ml)l(a2 +
b2 + c2) It is well known that, if AX, BY, CZ are medians, then

More generally, if X, Y, Z divide BC, CA, AB in the same ratio p/q (0 < p/q < oo),

it is easily shown that

v-- {p + q)>^<i.
For 0 < p\q < oo, mf (yj) 3/4, the mfimum bemg attamed for p q (i e for the
case in which AX, BY, CZ are medians)

Now suppose X, Y, Z divide the sides of triangle ABC in the respective ratios
s/(l — s), tj(l — t), u\(l — u) We can readily show that

m\ + m\ -f- m2s a2 (s2 + 1 + u - s - t) -f- b2 (t2, + 1 + s - * - u)

+ c2 (w2 + 1 + t - u - s)
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and from this it follows that, for — oo < s, t, u < + oo,

inf (V) -| - 4{.2+1fc2 + c2)

62)2 (62_C2)2 (C»
1

TS
1

:____!
2 I

53

(9)

this infimum being attained for

c cosB
t a cosC

u
b cosA

(This last result is immediate when we note that \p attains its least value when AX,
BY, CZ are altitudes of triangle ABC.)

Restricting 0 < s, t, u < 1, i.e. all transversals internal, we have
Theorem /. If %, w2, m3 are the lengths of transversals drawn from the vertices
A, B, C of an acute-angled triangle, to the opposite sides of lengths a, b and c and if

m\ 4- m\ +m2
^= a2 + b2 + c2 '

then 1/2 < Min {tp} < 3/4, the upper bound being attained in an equilateral triangle.
Proof:

Figure 3

If all angles A, B, C < 90° set a > b > c. Therefore 90° > A > B > C and
_4 > _9 > 45°, mx, m2, mB are altitudes.

W2 ___ a2 _ ^2
^ ml b2

therefore
2mt a* + b*-(cl + 4)

butc2>c2 + c2 and 2 m\ > a% + 62 - c2

therefore

thus

m2 c sinA > -7=-, also wx > -^2
k 2 ]/2

2mi + 2ml + 2ml>a2 + b* + c2,

Min {y;} > 2 *

Min fy} may be made to differ from 1/2 by as little as we please as may be seen in an

acute-angled isosceles triangle whose base is arbitrarüy small.

Again, from (9) we see that Min {tp} > 3/4 and if a b c, Min {tp} 3/4.
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Theorem 2. With the previous notation, if ABC is an acute-angled triangle,

1 < Max {xp} < 3/2.
Proof:

Figure 4

Let a > b > c, normalize side a to unity, thus 1 > b > c. Then

mt < b m2 < 1, mz < 1,
and

V < -^ t\ _- f°r fixed b and c.r 1 -f b2 + c2

Assume
2 + 62 3

1 + b2 + c2 ^ 2

then we have 1 > b2 + 3 c2 > b2 -f- c2, but by hypothesis 1 < ö2 + c2, thus the
contradiction yields

Max {xp} < —.

However, the maximum may differ from 3/2 by as little as we please, as may be seen
in an acute-angled isosceles triangle whose base is arbitrarüy small.

Again, keeping b fixed, the denominator of (2 + b2)j(l -f- b2 + c2) is largest when
c b, thus we require to minimize f(b) (2 -f- b2)j(l -f- 2 b2) under the restriction
0 < b < 1.

f(b) being a decreasing function has its minimum value at the maximum value
of b, thus /(&)mm 1 and Max fy} > 1 exhibiting equality in an equilateral triangle.
Theorem 3. With the previous notation, if ABC is an obtuse-angled triangle,

1

T

i
xp< 3y

'3

P

Figure 5

Normalizing a to unity, set 1 > & > c and then

^ < b m2 < 1, w3 < 1,

and \p < (2 + 62)/(l + &2 + c2) for fixed ö and c.
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With centre C and radius b, describe an are of a circle through vertex A cutting
BC at P. Join C and B to A', any point on the are AP inside the triangle ABC.

In AA'BC angle A' > angle A, thus BA' < BA c and

2 + 62 > 2 + b2

1 + &2+ #^'2 1 + 62 + c2 '

Thus we may obtain obtuse-angled triangles A'BC in which the quantity
(2 + b2)/(l + b2 + c2) becomes progressively larger. Sup {(2 -f ö2)/(l + b2 + c2)} occurs
for c 1 - b, and (2 + &2)/(l + b2 + (1 - 6)2) becomes largest for 6 j/3 - 1. Hence

SupjT 2 + fe2 1

_
3 + )/3

+ 62 + c2J

and
3 + 1/3

^ <
3

the difference | xp — (3 + j/3) /3 | being arbitrarüy small in the triangle whose sides

approach 1, |/3 — 1, 2 — j/3 respectively.
Again, in AABC

ra2 > c ra3 > b

and a < ö + c (reverfing to side BC a).
Thus

ra2 + ra2. + ml > b2 + c2 (10)

Further, a2 < 2 62 + 2 c2 as 2 6 c < b2 + c2, therefore

a2 + b2 + c2 < 3 (b2 + c2) (11)

From (10) and (11) therefore (ra2 + ra2 + ra2)/(a2 + b2 + c2) > 1/3, the difference
| xp — 1/3 | being arbitrarüy small in an obtuse-triangle whose sides approach a, a,
2 a respectively.

I wish to thank Professors R. L. Forbes and J. W. Reed for many helpful
suggestions. A. S. B. Holland, University of Alberta, Calgary, Canada
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