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On Pseudoprime Numbers of the Form M^ M,

In this paper Mk denotes the number 2k — 1, A(s) denotes the exponent, to which
2 belongs modulo s.

K. Szymiczek ([5], Theorem 4) proved that if p is a prime number _= 7 (mod 8)
and t 2? ttP-VI2) then the number Mp Mt is a pseudoprime number (n is pseudoprime
iff n is composite and 2" _= 2 (mod w)). This result can be generahzed as follows:

Theorem. Let p be an odd prime or pseudoprime number such that A(p) is odd,

ka positive integer <p/A(A(p)) (e.g. k 1 or 2), t 2kA{m). Then Mp Mt is a pseudoprime

number.
We must prove that Mp Mt \ 2MPMt - 2 which is equivalent to Mp Mt | 2MPMt - 1.

Because (p,t) 1 we have (Mp, Mt) 1 and it is sufficient to prove that

p\MpMt-l, (1)

t\MpMt~l. (2)

We have A(p) \ 2A^^ - 1 | 2*J<J<»> - 1, hence p \ 2*kA{Mp))-i - 11 Z*kA{Am - 2

2< - 2 2t+1 - 2* - 2. Because

2M - V - 2 2<+* - 2< - 2* (mod p)

we get

^ | 2*+p - 2l - 2* Mt Mp - 1

and (1) is proved.
We have k A(A(p)) < p, hence t 2hA^^ < 2* and tf | 2*. Because * and 2' are

both powers of 2 and l < 2l we have t \ 2* and * | 2'+*. Hence * | 2t+*> - 2< - 2*

M^ Mt — 1, which completes the proof of the theorem.
We deduce the mentioned above theorem of Szymiczek from this theorem. For

a prime number p 7 (mod 8) A (p) is odd. Because for such p A (p) \ (p — l)/2 we have

A{m\A(*^)\9(^±.).
Therefore, for some integer k,

kA(A{fi)) <p(£^-)
and evidently

f (^T1) < *> hence * < jf_W '

It is known [4] that for p 2q — 1, where q is an odd prime or pseudoprime
number, the number 2^—1 is prime or pseudoprime (because q \ 2q — 2 implies
2q — 1 | 22?~2 — 1 | 22?~1 — 2). Because A(p) q is odd, we may apply the theorem
and we obtain
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Corollary 1. The number Mp Mt ior p 2q — 1 (q an odd prime or pseudoprime
number) and t 2k A where

2? - l / 2* - l \

is pseudoprime.
Because there exist infinitely many pseudoprime numbers px,p2, (e.g. those

defined by px Mn, £t- MPtl for i > 2) we obtain

Corollary 2. There exist infinitely many pseudoprime numbers of the form Mp Mt,
where both p and t are composite numbers.

These are, e.g., the numbers Mp Mt with t 2AW and the numbers Mp Mt for
p 2q — 1, t 2q~1, where q is an odd pseudoprime number (we put in corollary 1

k (q - l)jA(q) which is evidently < (2q - DIA(q)).
Corollary 2 is a Supplement to the results of Rotkiewicz [3] and Szymiczek ([5],

Theorem 4) according to which there exist infinitely many pseudoprime numbers
Mp Mt with p and t prime as well as with p prime and t composite.

Corollary 2 can be deduced also from the proof of Theorem 2 in paper [2]. There
was proved that there exist infinitely many positive integers n such that n and 2n — 1

are both pseudoprime (hence composite) and 2n — 1 \2n~1 — 1. We shall prove that
for such n the number Mn M2n_x is pseudoprime. Similarly as in the case of the above
theorem it is sufficient to prove that

» (2 »-1) |_f-__,„_!-1. (3)

Let k denote arbitrary of the numbers n and 2 n — 1. We have

Mn M2n-i - 1 23"-1 - 2n - 22"-1 22-2-2 0 (mod k)

Because (n, 2 n — 1) 1, we get (3). We may observe that the Theorem 2 of [2]
implies the existence of an infinity of pseudoprime numbers which are triangulär
(cf. [1]). These are the numbers t2n_x n (2 n — 1) for n defined above: we have

k I 2"-1 — 1 I 2(n~1) (2n+1) — 1 I 2(w~1) (2»+1)+1 — 2 2n(2"-1) — 2
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