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On Pseudoprime Numbers of the Form M, M,

In this paper M, denotes the number 2 — 1, A(s) denotes the exponent, to which
2 belongs modulo s.

K. Szymiczex ([5], Theorem 4) proved that if 4 is a prime number = 7 (mod 8)
and ¢ = 2?(?~1/2 then the number M, M, is a pseudoprime number (» is pseudoprime
iff » is composite and 2* = 2 (mod #)). This result can be generalized as follows:

Theorem. Let p be an odd prime or pseudoprime number such that A(p) s odd,
k a positive integer < p|A(A(p)) (e.g. k=1 or 2), ¢ = 284D Then M, M, is a pseudo-
prime number.

We must prove that M, M, | 2MpM: — 2 which is equivalent to M, M, | 2Mp™: — 1.
Because (p, t) = 1 we have (M,, M,) = 1 and it is sufficient to prove that

ithth“"l’ (])
t|M,M,—1. (2)

We have A(p) | 24(4®) _ 1 | 2¢4(4®) _ 1 hence p |22°“ P11 7 A L
2t — 2 = 2041 2t — 2. Because

2041 — 2t — 2 = 2tp — 2t — 2¢ (mod p)
we get
p|2tth -2t —20=M,M,— 1
and (1) is proved.

We have & A(A(p)) < p, hence ¢ = 2¥414#) L 20 and ¢ | 2¢. Because ¢ and 2¢ are
both powers of 2 and ¢ << 2¢ we have ¢ | 2¢ and ¢ | 2¢+#. Hence ¢ | 2!*0 — 2! — 2¢ =
M, M, — 1, which completes the proof of the theorem.

We deduce the mentioned above theorem of SzyMiczek from this theorem. For
a prime number p = 7 (mod 8) A(p) is odd. Because for such p 4(p) | (p — 1)/2 we have

A4@) |4 (254 o (B55)-

Therefore, for some integer &,

and evidently

p—1 p
<p( 5 )<p, hence k<2f(2(;5ﬁ'

It is known [4] that for p = 29 — 1, where ¢ is an odd prime or pseudoprime
number, the number 2¢ — 1 is prime or pseudoprime (because ¢ |2? — 2 implies
20 — 1| 2#-2 — 1| 22°-1 _ 2). Because 4(p) = ¢ is odd, we may apply the theorem
and we obtain
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Corollary 1. The number M, M, for p = 22 — 1 (¢ an odd prime or pseudoprime
number) and ¢ = 284(@ | where

is pseudoprime.

Because there exist infinitely many pseudoprime numbers p,, p,, ... (e.g. those
defined by p, = My, p; = M, for « > 2) we obtain

Corollary 2. There exist infinitely many pseudoprime numbers of the form M, M,,
where both $ and ¢ are composite numbers.

These are, e.g., the numbers M, M, with ¢ = 24%) and the numbers M, M, for
p=27—1,¢=21"1 where ¢ is an odd pseudoprime number (we put in corollary 1
k = (¢ — 1)/4(g) which is evidently < (27 — 1)/4(q)).

Corollary 2 is a supplement to the results of RoTkiEwIcz [3] and SzyMmiczEK ([5],
Theorem 4) according to which there exist infinitely many pseudoprime numbers
M, M, with p and ¢ prime as well as with $ prime and ¢ composite.

Corollary 2 can be deduced also from the proof of Theorem 2 in paper [2]. There
was proved that there exist infinitely many positive integers # such that w and 2 » — 1
are both pseudoprime (hence composite) and 2# — 1| 2#—1 — 1. We shall prove that
for such » the number M, M,,_, is pseudoprime. Similarly as in the case of the above
theorem it is sufficient to prove that

n(2n—1) | M,M,, ,—1. 3)
Let % denote arbitrary of the numbers #» and 2 # — 1. We have
M M,, ,—1=23%"1_2n_22n-1=722_2_2=0 (mod&).

Because (n,2n — 1) = 1, we get (3). We may observe that the Theorem 2 of [2]
implies the existence of an infinity of pseudoprime numbers which are triangular
(cf. [1]). These are the numbers £,,_; = # (27 — 1) for n defined above: we have

) | on—1 __ 1 l 2@-1) 2n+1) _ 1 l 20—1) @n4+1)+1 _ 2 — Qn@n-1) _ 2

A. MakowskI and A. RoTtkiewicz, Warszawa

REFERENCES .

[1] A. Rotkiewicz, Sur les nombres pseudopremiers triangulaives, El. Math. 79, 82-83
(1964).

[2] A. ROTKIEWICZ, Sur les progressions arithmétiques et géométviques formées de trois
nombres pseudopremiers distincts, Acta Arith. 70, 325-328 (1964).

[3] A. RoTrIEWICZ, Sur les nombres pseudopremiers de la forme M, M ,, E1. Math, 20, 108~
109 (1965).

[4] W. SIERPINSKI, Remarque sur ume hypothése des Chinois concernant les nombres
(2# — 2)/n, Collog. Math. 7, 9 (1947).

[5] K. SzyMICZEK, On prime numbers p, q and v such that pq, pr, and qr ave pseudoprimes,
Colloq. Math. 73, 259-263 (1965).



	On pseudoprime numbers of the form MpMt

