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Zur Axiomatik der ebenen euklidischen Geometrie

Einleitung

Die wissenschaftlichen Probleme der Begründung der ebenen absoluten Geometrie
sind heute im wesentlichen gelöst, vor allem durch die zusammenfassende Darstellung
der Spiegelungsgeometrie von F. Bachmann [2] und anschliessende Verallgemeinerungen

verschiedener Autoren (vergleiche Lingenberg [7] und die dort zitierte Literatur).
In didaktischer Hinsicht bleibt jedoch noch viel zu tun. Erstens erscheint der bei

Bachmann vorliegende strenge und lückenlose Aufbau der absoluten Geometrie
immer noch reichlich mühsam, und es wäre meines Erachtens sehr erwünscht, ihn
noch zu vereinfachen - wenn das möglich ist. Zweitens benötigen Schule und
Hochschule dringend einen möglichst einfachen Aufbau der euklidischen Geometrie, das

heisst der durch das Parallelenaxiom eingeschränkten absoluten Geometrie. Vielleicht
kann man dann endlich dahin kommen, dass die Anfängervorlesungen in analytischer
Geometrie von geometrischen statt von algebraischen Axiomen ausgehen können1),
und dass man auch auf der Schule dem Ideal eines strengen Aufbaus der Geometrie
näherkommen kann, ohne irgendetwas an Anschaulichkeit aufzugeben. Einen sehr
beachtenswerten und durchsichtigen Aufbau der euklidischen Geometrie hat kürzlich
J. Diller [3] gegeben. Hier soll ein weiterer Ansatz vorgeschlagen werden, der von
wenigen rein bewegungsgeometrischen Axiomen ausgeht; im Anschluss an ein vor
einigen Jahren vorgeschlagenes Axiomsystem der absoluten Geometrie [6].

§1. Grundbegriffe und Axiome

Die Ebene ist eine Menge von Punkten. Ferner sind gewisse Permutationen der
Ebene gegeben, die Bewegungen heissen. Sie bilden eine Gruppe.

Eine Spiegelung ist eine nichtidentische Bewegung mit mindestens zwei Fixpunkten.

Eine Drehung ist entweder die identische Bewegung oder eine Bewegung mit
genau einem Fixpunkt. Eine Punktspiegelung ist eine involutorische Drehung.

Wir fordern die Gültigkeit der folgenden Axiome, die man sich leicht mit Hilfe
eines bewegten beziehungsweise umgewendeten Transparentpapiers und einer darauf

gezeichneten Geraden veranschaulichen kann.

*) Für die affine Geometrie ist das durch den Aufbau von Artin [1] (Chapter II) geleistet, der allerdings
für Anfangssemester meist noch als reichlich abstrakt angesehen wird.
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Axiom Ia. Das Produkt zweier Spiegelungen ist keine Spiegelung.
Axiom Ib. Das Produkt zweier Drehungen ist keine Spiegelung.
Axiom IIa. Zu je zwei Punkten A, B als Fixpunkten gibt es eine Spiegelung.
Axiom IIb. Es gibt eine Spiegelung mit mindestens drei Fixpunkten.
Axiom III. Hat die Spiegelung y weder mit der Spiegelung a noch mit der Spiegelung

ß 4= a einen gemeinsamen Fixpunkt, so haben a und ß keinen gemeinsamen Fixpunkt.
Wenn man wie in [6] unter einer Geraden die Fixpunktmenge einer Spiegelung

versteht, so sagt Axiom III aus, dass die Parallelität transitiv ist. Das ist im wesentlichen

das Parallelenaxiom.

§2. Folgerungen aus den Axiomen Ia und IIa
Aus den Axiomen Ia und IIa ergeben sich durch elementare Schlüsse einige

einfache Folgerungen2). Eine Spiegelung mit zwei Fixpunkten A, B ist eindeutig
bestimmt und daher involutorisch. Sie sei mit aA B bezeichnet. Ist a eine Bewegung
und Aa A', Ba B', so ist

Durch zwei Punkte A, B geht genau eine Gerade g(AB). Jede Bewegung ist eine
Kollineation, das heisst sie bildet Geraden auf Geraden ab. Sind C, D zwei Punkte der
Geraden g durch A und B, so ist oCD aAB; man kann diese Spiegelung daher
einfach mit ag bezeichnen.

Zwei Geraden g, h heissen senkrecht (oder orthogonal), wenn ag oh involutorisch ist,
das heisst wenn ag und ah verschieden und miteinander vertauschbar sind. Aus jedem
nicht auf einer Geraden g liegender Punkt P lässt sich eindeutig ein Lot fällen.
Bewegungen sind sogenannte orthogonale Kollineationen, das heisst sie bilden
senkrechte Geraden auf senkrechte Geraden ab.

Zwei verschiedene Punkte A, B haben höchstens ein Mittellot, das heisst eine
Gerade a, so dass Aa* B ist. Wäre nämlich b ein zweites Mittellot, so wären oa und
ah zwei Bewegungen, die A, B vertauschen und daher oaab aAB, im Widerspruch zu
Axiom Ia.

Zwei verschiedene Punkte A, B haben auch höchstens einen Mittelpunkt, das
heisst einen Punkt P, so dass eine Punktspiegelung mit dem Fixpunkt P existiert,
die A mit B vertauscht. Wäre nämlich P' ein zweiter Mittelpunkt, und wären n, n'
Punktspiegelungen mit den Fixpunkten P beziehungsweise P', so wäre nn' aAB
involutorisch, also n n' n n'. Nun hat nn' n den einzigen Fixpunkt P'n und n' den
einzigen Fixpunkt P'. Also ist P'n P\ Das ist nur möglich, wenn doch P' =» P
ist. Ferner ist naABn aAB, also oABnaAB^n. Die linke Seite dieser Gleichung

hat den Fixpunkt PaABi die rechte den Fixpunkt P. Also ist Peg(A B).
Daraus folgt: Eine Punktspiegelung hat jede Gerade durch ihren Fixpunkt als
Fixgerade.

Über die Existenz von Mittelloten, Punktspiegelungen und Mittelpunkten lässt
sich auf Grund der bisherigen Axiome noch nichts aussagen.

Hilfssatz 2.1. Hat das Spiegelungsprodukt aaah*¥ 1 einen Fixpunkt F, so ist
dieser der Schnittpunkt der Geraden a und b.

I Vergleiche (6j.
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Beweis Es ist Faa Fab Ware dieser Punkt von F verschieden, so hatten Fa«
und F die verschiedenen Mittellote a und b, was oben widerlegt wurde Also folgt
Faa Fab F, nach der Definition der Geraden also die Behauptung

Wir schreiben nun, wie es in der Spiegelungsgeometne üblich ist, statt ag einfach g
Dann gilt

Hilfssatz 2 2 Ist das Produkt dreier Spiegelungen a, b, c eine Spiegelung, so sind
die Spiegelungsgeraden a,b c entweder paarweise parallel oder sie haben einen Punkt
gemein

Beweis Es seien die Geraden a, b, c nicht paarweise parallel, etwa F — aO b

Das Spiegelungsprodukt a b c ist nach Voraussetzung eine Spiegelung d, also ab d c

Daher hat d c den Fixpunkt F Nach Hilfssatz 2 1 ist d n c F Hilfssatz 2 2 ist
eine Umkehrung des Dreispiegelungssatzes, fur den em Beweis auf Grund der bisherigen

Axiome kaum möglich sein durfte
Hilfssatz 2 3 Es sei a eine Gerade und P em Punkt, ferner n eine Punktspiegelung

mit dem Fixpunkt P Dann hegt jeder Fixpunkt F+ P von an^na auf einem in P
errichteten Lot auf a

Beweis Dass an n a ist, folgt aus der Identität nan a IstF=}= P Fixpunkt,
so ist F $ a Es sei a' das aus F auf a gefällte Lot Wegen Fa F71 muss P e g(F Fa),
also a' — g(F P) sein, was zu beweisen war

§3. Hinzunahme des Axioms Ib

Hilfssatz 3 1 Jede Drehung ist Produkt zweier Spiegelungen
Beweis Es sei d eine Drehung mit dem Fixpunkt F, und G ein weiterer Punkt

Das Produkt 6 aFG ist nach Axiom Ib keine Drehung, also eine Spiegelung, was zu
beweisen war

Bemerkung Das Axiom Ib ist nicht aus den übrigen Axiomen beweisbar, denn

in der gewöhnlichen euklidischen Geometrie mit den Ahnhchkeitsabbildungen als

«Bewegungen» gelten alle unsere Axiome ausser Ib

Satz 3.1 (erster Dreispiegelungssatz) Sind a, b, c drei Geraden mit dem gemeinsamen
Punkt F, so ist das Spiegelungsprodukt abc eine Spiegelung

Beweis a b ist nach Axiom Ia keine Spiegelung, also eine Drehung d, und d c ist
nach Axiom Ib keine Drehung, also eine Spiegelung, was zu beweisen war

Wir werden im folgenden das Axiom Ib nicht mehr direkt verwenden, nur noch
den mit seiner Hilfe abgeleiteten ersten Dreispiegelungssatz Man konnte also diesen,

wie es m der Spiegelungsgeometne üblich ist, an Stelle von Axiom Ib unter die
Axiome aufnehmen In [6] ist der erste Dreispiegelungssatz eme Teilaussage des

Axioms I
§4. Hinzunahme des Parallelenaxioms

Wir benutzen zunächst nur die Axiome Ia, IIa und III
Hilfssatz 41 In einem Punkt P einer Geraden g lasst sich höchstens ein Lot auf g

errichten
Beweis Es seien a und b zwei verschiedene m P errichtete Lote Ferner sei h em

weiteres Lot auf g, das nicht durch P geht Dann sind a und b zu h parallel, aber nicht
untereinander, entgegen Axiom III
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Es wäre noch der Fall denkbar, dass jedes Lot h auf g durch P geht (Fig 1)
Es sei Q 4= P em weiterer Punkt von g und A 4= P em weiterer Punkt von a Die
Spiegelung aAQ bringe P nach P' Die Gerade g(A Q) steht nicht senkrecht auf g
weil das aus A gefällte Lot eindeutig ist Daher ist g(P P') 4= g Das aus P' auf g
gefällte Lot ist nach unserer Annahme g{Pf P) Damit hatten wir zwei aus Q auf g(P P')
gefällte Lote, namhch g und g(Q A) Dieser Widerspruch vervollständigt unseren
Beweis

Hilfssatz 4 2 Es seien g, h senkrechte Geraden, und P sei em weder auf g noch auf h

liegender Punkt Die aus P auf g beziehungsweise h gefällten Lote seien g' beziehungs
weise h' Dann schneiden sich g g' und ebenso h, h', sowie g, h Die Geraden g' und h'
stehen aufeinander senkrecht

Beweis (Fig 2) Die verschiedenen Geraden g und h' (ebenso h und g') können

wegen der Eindeutigkeit des Lotes (auf h) keinen Schnittpunkt haben Nach
Axiom III müssen sich daher g und g' (ebenso h und h') schneiden, etwa im Punkt F
Nochmalige Anwendung des Parallelenaxioms III liefert die Existenz des Schnittpunkts

S gr>h Ware das aus F auf h' gefällte Lot l von g' verschieden so waren l
und g' zu h parallel, aber nicht untereinander Daher muss g' _L h' sein

Figur 1

<?P

Figur 2

Bemerkung Aus Hilfssatz 4 2 folgt noch nicht, dass Rechtecke existieren Als
Gegenbeispiel dient eme Ebene aus genau vier Punkten mit der Gruppe aller ihrer
Permutationen als Bewegungsgruppe Es ist namhch keineswegs sicher, dass ausserhalb

von g und h noch em Punkt P existiert

§5. Hinzunahme des Axioms IIb
Nach Axiom IIb gibt es eme Gerade s mit mindestens drei Punkten
Hilfssatz 5 1 Sind g, h senkrechte Geraden, so gibt es einen Punkt P, der weder

auf g noch auf h hegt
Beweis (Fig 3) Die Behauptung ist klar, wenn die Gerade s von g und von h

verschieden ist Nun sei s g; und A$h,B,C seien drei Punkte von g, sowie D $ g em
Punkt von h Die Gerade g(A D) steht weder auf g noch auf h senkrecht Die Spiegelung

an dieser Geraden bildet B und C auf zwei Punkte B', C ab, die mit A auf einer
von g verschiedenen Geraden hegen Daher kann höchstens einer von ihnen auf h

hegen, was zu beweisen war Beim Beweis wurden nur die Axiome Ia, IIa, IIb
verwendet



H Lenz Zur Axiomatik der ebenen euklidischen Geometrie 125

Mit Hilfe des vorigen Paragraphen folgt nun unmittelbar
Satz 5.1. Senkrechte Geraden schneiden sich fede Gerade enthalt mindestens drei

Punkte fedes Vierseit mit drei rechten Winkeln ist ein Rechteck

Satz 5.2. Das Produkt zweier Spiegelungen an senkrechten Geraden ist eine Punkt-
Spiegelung an ihrem Schnittpunkt

Der Beweis verwendet nur die Axiome Ia und II und die Existenz des Schnittpunkts

senkrechter Geraden

Satz 5.3. In jedem Punkt B einer Geraden g lasst sich eindeutig ein Lot errichten
Beweis (Fig 4) Es sei h irgendein Lot auf g Falls es durch B geht, sind wir fertig

Andernfalls sei P em weder auf g noch auf h liegender Punkt Das aus P auf h
gefällte Lot sei h', und das aus B auf h' gefällte Lot sei g' Nach Hilfssatz 4 2 ist g' das
gesuchte Lot

^

Figur 3

Po

Figur 4

Wir beweisen weiter
Hilfssatz 5 2 Ist a eine Gerade und n eine Punktspiegelung an einem Punkt

P E a, so ist a n n a eme Spiegelung
Das ist klar, wenn Axiom Ib verwendet wird Ohne dieses Axiom schhessen wir

wie folgt (Fig 5) Es sei b das in P auf a errichtete Lot und Q ein Punkt, der weder
auf a noch auf b hegt Nach Hilfssatz 2 3 ist Qkein Fixpunkt von an Es istn an a,
also an n a involutorisch Daher ist g(Q Qan) eine Fixgerade von an Lage P auf
dieser Geraden, so auch auf g(Qa Qn), also wäre Qa 6 g(P Qn) g(P Q) und daher
g(P Q) _L ol, entgegen der Voraussetzung Q $ b Der Fusspunkt F des von P aus auf
g(Q Qan) gefällten Lotes b' ist ein zweiter Fixpunkt von an (ausser P) Daraus folgt
die Behauptung, und weiter b' a n, a b' n, b' J_ a, b' b, also gilt

od

Figur 5
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Satz 5.4. Zu jedem Punkt P als Fixpunkt existiert genau eine Punktspiegelung.
Wie üblich werde diese Punktspiegelung einfach mit P bezeichnet.
Ist P ein Punkt der Geraden g, so ist P g g P die Spiegelung an dem in P auf g

errichteten Lot. Sind a, b senkrechte Geraden, so ist a b die Spiegelung an ihrem
Schnittpunkt.

Satz 5.5. Jedes Paar verschiedener Punkte A, B hat einen Mittelpunkt.
Beweis (Fig. 6). Es sei s g(A B),a s A,b s B. Auf a liegt ein weiterer Punkt

C. Es sei c a C. Nach Satz 5.1 bilden s, a, c, b ein Rechtseit; es sei D b c, C — Cs,

D' Ds, c' cs, also C' a c', D' b c'. Die Geraden s und g(C D) haben nach
Axiom III einen Schnittpunkt M; er liegt auch auf g(C D') g(C' D)s.

a

~i i

F

c y 1)

p n

ß £ '

c \ ^'
{'

b b'

Figur 6

Es sei AM JE, 6' s E, ferner F V O g(C D) und F'^b'n g(C D'). Es folgt
C'M _F, Cm JF", also g(C F)M g(C F'). Daher sind diese beiden Geraden parallel.
Weil sie durch Spiegelung an s auseinander hervorgehen, sind sie auch zu s parallel.
Das ist nur möglich, wenn F D, also E B ist, was zu beweisen war.

Folgerung. Jedes Paar verschiedener Punkte hat ein Mittellot. Satz 5.5 ist in der
nichteuklidischen Geometrie im Sinne von F. Bachmann bekanntlich nicht immer
richtig.

Satz 5.6. Die Ebene ist eine affine Translationsebene.
Die Behauptung sagt aus, dass zu je zwei verschiedenen Punkten A, B eine

Translation (das heisst eine Kollineation mit genau den uneigentlichen Punkten als

Fixpunkten) existiert, die A nach B bringt. Ist nun s die Verbindungsgerade, M der

Mittelpunkt, und m das Mittellot von A und B, so ist s A m die gesuchte Translation.
Jedes Lot auf m ist namhch Fixgerade von s A m, daher ist sAm — AM eine

zentrale Kollineation. A M bildet jede Gerade auf eine Parallele ab, hat also die

uneigentlichen Punkte als Fixpunkte.

Satz 5.7. (zweiter Dreispiegelungssatz). Sind a, b, c Geraden mit dem gemeinsamen
Lot s, so ist ab c eine Geradenspiegelung an einem Lot d auf s.

Beweis (Fig. 7). Es sei A a s und Abc B, ferner d das Mittellot von A und B.
Dann hat die Bewegung bcd den Fixpunkt A, also die Fixgerade a. Weil alle Lote
auf a nach Satz 5.1 Fixgeraden sind, lässt b c d die Gerade a punktweise fest. Nach
Axiom Ia ist b c d 4= 1, also folgt bcd a, abc^d, was zu beweisen war.
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B-A*

Figur 7

Satz 5.8. Jedes Produkt von vier Spiegelungen ist Produkt von zwei Spiegelungen.
Beweis. Gegeben sei das Spiegelungsprodukt ab c d. Die Behauptung ist klar,

wenn a, b, c, d nicht alle verschieden sind; ebenso, wenn sie alle parallel sind. Beides
sei jetzt ausgeschlossen. Mit ab c d sind auch b c d a (ab c d)a, c d ab, d ab c

Produkte von zwei Spiegelungen; wir dürfen daher jetzt annehmen, dass a und b

einen Punkt C gemein haben. Falls c und d einen Punkt D gemein haben, sei b' eine
Gerade durch C und D; andernfalls sei b' die Parallele zu c und d durch C. Es gibt eine
Gerade a' 3 C, so dass a! b' ab ist, nämlich nach dem ersten Dreispiegelungssatz.
Daher ist ab c d a'(b' c d). Weil b' c d eine Spiegelung ist, gilt die Behauptung.

Folgerung. Jedes Spiegelungsprodukt (falls Axiom Ib vorausgesetzt wird, also jede
Bewegung) ist entweder Produkt von zwei Spiegelungen oder Produkt von drei
Spiegelungen, nicht aber beides.

Die Produkte von zwei Spiegelungen heissen gerade Bewegungen, die Produkte
von drei Spiegelungen ungerade Bewegungen.

Satz 5.9. Jede ungerade Bewegung a ist Produkt einer Punktspiegelung und einer

Geradenspiegelung.
Beweis (Fig. 8). Falls a eine Spiegelung g ist, sei P ein Punkt der Spiegelungsachse

g. Dann ist a P g g P. Nun sei a keine Spiegelung, also ein Spiegelungs-
produkt abc, wobei entweder a, b oder b, c sich schneiden. Im zweiten Fall kann man
b c durch ein Produkt b' cf ersetzen, so dass auch a, b' sich schneiden. Wir dürfen also

Figur s
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den ersten Fall annehmen, d sei das aus aOb auf c gefällte Lot mit dem Fusspunkt F;
ferner sei a b e d. Dann ist a b c e d c e F Fe e, was zu beweisen war.

Satz 5.10. (Hjelmslevscher Mittelpunktesatz). Iston eine Bewegung undg eine Gerade,

so liegen die Mittelpunkte aller Paare (P, Pa), wobei P die Gerade g durchläuft, auf einer
Geraden s.

Beweis. Wir dürfen annehmen, dass oc ungerade ist (sonst betrachte man ga
statt oc). Dabei wird entweder Axiom Ib mit vorausgesetzt oder unter Bewegungen
werden nur Spiegelungsprodukte verstanden. Es sei a b A (Satz 5.9). Es sei s das

aus A auf b gefällte Lot und P ein beliebiger Punkt; ferner p das Lot aus P auf s,
und # _4 s =* s _4, q =» p b a, Q q s. Dann ist cc=bas pqs pQ, also Pa
ppQ _ pQ (jas heisst der Mittelpunkt Q von P und Pa liegt auf s, was zu beweisen war.

§6. Hjelmslevsche Halbdrehungen
Es sei d eine Drehung um den Punkt 0, jedoch keine Punktspiegelung. Die

Abbildung ju, die jedem Punkt P den Mittelpunkt von P und Pö zuordnet, heisst eine

Halbdrehung (Fig. 9). Das ist die ursprüngliche Hjelmslevsche Definition. Es sei
d ab und P ein beliebiger Punkt (4= 0), ferner p g(0 P) und ab p q. Dann ist
P^ der Fusspunkt des aus P auf q gefällten Lotes. Mit Hilfe des Parallelenaxioms
erkennt man sofort: Die Halbdrehungen bilden die Ebene umkehrbar auf sich ab. Aus
Satz 5.10 folgt, dass sie Geraden in Geraden abbilden. Mit den soeben eingeführten
Bezeichnungen gilt a^ Qb, p^Q q, q^ Q pq. Das rechtwinklige Dreieck 0 P P<* geht
in das rechtwinklige Dreieck 0 p*1 pw über. Wegen der Geradentreue folgt daraus,
dass senkrechte Geraden, von denen eine durch 0 geht, in senkrechte Geraden
abgebildet werden. Nach Satz 5.1 (also unter wesentlicher Verwendung des Parallelenaxioms)

folgt, dass beliebige senkrechte Geraden in senkrechte Geraden abgebildet
werden, also auch parallele Geraden in parallele Geraden. Ordnet man dem uneigentlichen

Punkt U einer Geraden g als Bildpunkt UIX den uneigentlichen Punkt der
Bildgeraden h^gß zu, so wird /a zu einer umkehrbaren, geradentreuen Abbildung der

projektiven Erweiterungsebene.
Dass eine Halbdrehung jede Gerade sogar auf eine Gerade abbildet, folgt (mit Hilfe

des Parallelenaxioms) aus dem elementaren

q-pV-pab

W

Figur 9
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Hilfssatz 6.1. Jede umkehrbare Abbildung /u einer projektiven Ebene auf sich,
die kollineare Punkte in kollineare Punkte abbildet, bildet jede Gerade auf eine Gerade
ab und ist umkehrbar geradentreu.

Beweis. Wäre A B C ein Dreieck, dessen Bildpunkte Aß, Bß, C" auf einer Geraden

g liegen, so sei P' PM ausserhalb g gewählt. Ferner sei Q g(A P) O g(B C). Dann
wäre Qßeg(B C)ß Qg, Pueg(A QY Q g, Widerspruch. Die Halbdrehungen sind also

Kolhneationen.
Ist pt eine Halbdrehung mit dem Zentrum 0, und sind p, q Geraden durch 0, so ist

rr p ?•

Satz 6.1. (Hjelmslevscher Lotesatz). Es seien a, c verschiedene Geraden durch einen
Punkt 0; ferner seien a', c' die in weiteren Punkten A beziehungsweise C von a

beziehungsweise c errichteten Lote mit dem Schnittpunkt D, b das aus 0 auf g(A C) gefällte
Lot und d g(0 D). Dann ist a b c d.

Beweis (Fig. 10). Es sei b' a d c, also ab' dc. Die Halbdrehung /u mit dem
Zentrum 0, die D nach C bringt, bildet A auf den Fusspunkt B des aus A auf b'
gefällten Lotes ab. Wegen der Erhaltung der Orthogonalität muss Dß C auf g(A B)
liegen. Daher ist B e g(A C), also b' b, was zu beweisen war.

Figur 10 Figur 11

Bemerkungen: Satz 6.1 kann auch direkt durch Rechnen mit Spiegelungen
bewiesen werden (vergleiche Bachmann [2]). Aus dem Lotesatz lässt sich die Halb-
drehungstheorifc gewinnen, ohne Verwendung von Satz 5.10 (vergleiche [2], [3]). Der
Lotesatz, der sich im Rahmen der euklidischen Geometrie schon bei Hilbert [4],
Seite 55 findet, kann bekanntlich im Rahmen des Bachmannschen Axiomensystems
ohne Verwendung des Parallelenaxioms bewiesen werden.

Satz 6.2. (Höhensatz). Die Höhen jedes Dreiecks ABC schneiden sich in einem Punkt.
Beweis (Fig. 11). Der triviale Fall eines rechtwinkligen Dreiecks sei ausgeschlossen.

Die Dreiecksseiten seien wie üblich mit a g(B C), b, c bezeichnet. Die Höhen
seien a!, b', c'; das heisst die Spiegelungsprodukte A' — a a', B' b b', C' c c', A a',
B b', C c' seien involutorisch. H sei der Schnittpunkt von b' und c', ferner sei h

g(A H). Die Halbdrehung ju mit Zentrum A, die B nach B' bringt, bringt Cc nach C\
Also ist

BCfi B', Cc/* C
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Die Hohe a' wird durch c ja auf das Lot d aus A auf g(B C)Cß g(B' C) abgebildet
Nach dem Lotesatz ist b h d c, also

und daher
hc a'c, h a!

was zu beweisen war
Auch der klassische Beweis durch Zuruckfuhrung auf den Satz vom Schnittpunkt

der Mittelsenkrechten ist hier möglich ([3])

Satz 6.3. Je zwei Halbdrehungen mit gleichem Zentrum 0 sind vertauschbar
Das folgt unmittelbar aus dem Lotesatz (Fig 12)

pÄfj pfJÄ

P*

Figur 12

§7. Einführung von Koordinaten

Um Koordinaten einzuführen, gibt es verschiedene Wege Man kann die Hilbertsche

Streckenrechnung ([4]) verwenden, wozu wesentlich geeignete Sonderfalle des
Satzes von Pappos-Pascal benotigt werden, die sich zum Beispiel mit Hilfe der Satze
6 1 oder 6 2 beweisen lassen (vergleiche [4], Seite 55, [5], Seite 201, [2], Seite 205)

Eine andere Möglichkeit wurde, wie bereits erwähnt, von Artin angegeben Sie
fuhrt zur analytischen Geometrie uber einem Korper, wenn der Satz von Desargues
in affiner Form zur Verfugung steht Wir beweisen folgende Form des Desargues-
schen Satzes

Satz 7.1. Es seien 0, A, A' verschiedene Punkte einer Geraden Dann gibt es genau
eine zentrale Kollmeation mit dem Zentrum 0 und der uneigenthchen Geraden als Achse,
die A nach A' bringt.

Aa B, Bß^C, AV C

Figur 13
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Beweis (Fig. 13) (vergleiche [3]). Es sei g 4= g{0 A) eine Gerade durch A', B der

Fusspunkt des Lotes aus 0 auf g und C der Fusspunkt des Lotes aus 0 auf g(A B). Es

gibt Halbdrehungen X, ju, v mit den Eigenschaften
Das Halbdrehungsprodukt v /a"1 A_1 ist die gesuchte zentrale Kollineation. Diese
Kolhneationen heissen auch Dehnungen.

Die Artinsche Schlussweise ([1], [5], Seite 152) liefert nun

Satz 7.2. Die Ebene ist einer affinen Koordinatenebene Über einem Körper K
isomorph.

Aus Satz 6.3 folgt, dass je zwei Dehnungen mit gleichem Zentrum 0 vertauschbar
sind. Das ist gleichbedeutend mit

Satz 7.3. Der Koordinatenkörper K ist kommutativ.
Die Punktspiegelungen sind spezielle Dehnungen, also Homologien im Sinne der

projektiven Geometrie. Weil involutorische Homologien nur existieren, wenn das

Fano-Axiom gilt, folgt
Satz 7.4. Die Charakteristik des Koordinatenkörpers ist nicht 2.

In weniger gelehrter Ausdrucksweise heisst das 1 + 1 4= 0.1)

Aus Satz 7.3 folgt natürlich wieder der Satz von Pappos.
Es fehlt noch die algebraische Beschreibung der Orthogonalität. Auch diese ist

jetzt leicht. Am bequemsten erhält man sie nach einem Ansatz von R. Baer mit Hilfe
des Höhensatzes (vergleiche [3]). Die Koordinatenachsen seien zueinander senkrecht

gewählt (Fig. 14). Die Lote zu den Geraden

sind die Geraden
{(x,y): y ax + b} (a 4= 0)

{(x, y): y =f(a) x + b'} mit f(a) 4= 0

Gesucht ist die Funktion /.

y-fib)(x-c)

y-dx

y-bx

W)(x~c
Figur 14

*) Noch einfacher ergibt sich Satz 7.4 daraus, dass Translationen AM 1 (vgl. den Beweis des Satzes
5.6) nicht involutorisch sind. Aus (AM)2 1 würde ja AM A, also M ~ A folgen.
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Wir fallen aus dem Punkt C mit den Koordinaten (c, 0) die Lote g', h' auf die
Geraden g, h mit den Gleichungen y a x beziehungsweise y b x Die Gleichungen
dieser Lote sind

y f(a) (x — c) beziehungsweise y f(b) (x — c)

Aus dem Hohensatz folgt, dass die Schnittpunkte gOA' und hDg' dieselbe
Abszisse haben Fur diese Abszisse xQ ergibt sich einerseits

ax0= f(b) (x0 - c)

andererseits
b x0 — f(a) (x0 — c) also

bf(b) (*o ~ c) af(a) (xo ~ c)

Fur a, b 4= 0 ist wegen der Eindeutigkeit des Lotefallens sicher x0 4= c, also

b/(b) „/(„)
Fassen wir a als fest und b als variabel auf, so können wir af(a) — k setzen, und
haben

Weil keine Gerade auf sich selbst senkrecht steht, darf — k kein Quadrat (im Korper K)
sein

Zwei Vektoren (xx, yx) und (x2, y2) smd daher senkrecht, wenn (yx x~1) (y2 x2 *)

— k, das heisst wenn
k xx x2 + yx y2 0

ist Das gilt auch noch fur achsenparallele Vektoren Im Fall k 1 ist die linke Seite
dieser Gleichung das gewöhnliche Skalarprodukt Dieser Fall lasst sich jedoch nur
dann durch geeignete Wahl des Koordinatensystems erreichen, wenn zwei senkrechte
und ineinander bewegliche Geraden existieren

Damit ist der Anschluss an die ubhche analytische Geometrie erreicht

Hanfried Lenz, München
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