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Zur Axiomatik der ebenen euklidischen Geometrie
Einleitung

Die wissenschaftlichen Probleme der Begriindung der ebenen absoluten Geometrie
sind heute im wesentlichen geldst, vor allem durch die zusammenfassende Darstellung
der Spiegelungsgeometrie von F. BACHMANN [2] und anschliessende Verallgemeinerun-
gen verschiedener Autoren (vergleiche LINGENBERG [7] und die dort zitierte Literatur).

In didaktischer Hinsicht bleibt jedoch noch viel zu tun. Erstens erscheint der bei
BacaMANN vorliegende strenge und liickenlose Aufbau der absoluten Geometrie
immer noch reichlich miithsam, und es wire meines Erachtens sehr erwiinscht, ihn
noch zu vereinfachen — wenn das moglich ist. Zweitens benstigen Schule und Hoch-
schule dringend einen moglichst einfachen Aufbau der euklidischen Geometrie, das
heisst der durch das Parallelenaxiom eingeschrinkten absoluten Geometrie. Vielleicht
kann man dann endlich dahin kommen, dass die Anfingervorlesungen in analytischer
Geometrie von geometrischen statt von algebraischen Axiomen ausgehen kénnen?),
und dass man auch auf der Schule dem Ideal eines strengen Aufbaus der Geometrie
niherkommen kann, ohne irgendetwas an Anschaulichkeit aufzugeben. Einen sehr
beachtenswerten und durchsichtigen Aufbau der euklidischen Geometrie hat kiirzlich
J. DiLLER [3] gegeben. Hier soll ein weiterer Ansatz vorgeschlagen werden, der von
wenigen rein bewegungsgeometrischen Axiomen ausgeht; im Anschluss an ein vor
einigen Jahren vorgeschlagenes Axiomsystem der absoluten Geometrie [6].

§1. Grundbegriffe und Axiome

Die Ebene ist eine Menge von Punkten. Ferner sind gewisse Permutationen der
Ebene gegeben, die Bewegungen heissen. Sie bilden eine Gruppe.

Eine Spiegelung ist eine nichtidentische Bewegung mit mindestens zwei Fixpunk-
ten. Eine Drehung ist entweder die identische Bewegung oder eine Bewegung mit
genau einem Fixpunkt. Eine Punkispiegelung ist eine involutorische Drehung.

Wir fordern die Giiltigkeit der folgenden Axiome, die man sich leicht mit Hilfe
eines bewegten beziehungsweise umgewendeten Transparentpapiers und einer darauf
gezeichneten Geraden veranschaulichen kann.

1) Fiir die affine Geometrie ist das durch den Aufbau von ArTIN [1] (Chapter II) geleistet, der allerdings
fiir Anfangssemester meist noch als reichlich abstrakt angesehen wird.
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Axiom Ia. Das Produkt zwever Spiegelungen ist keine Spiegelung.

Axiom Ib. Das Produkt zweier Dyehungen ist keine Spiegelung.

Axiom Ila. Zu je zwei Punkten A, B als Fixpunkten gibt es eine Spregelung.

Axiom IIb. Es gibt eine Spiegelung mit mindestens drer Fixpunkien.

Axiom II1. Hat die Spiegelung y weder mit der Spiegelung o noch mit der Spiegelung
B + a einen gemeinsamen Fixpunkt, so haben o und f keinen gemeinsamen Fixpunkt.

Wenn man wie in [6] unter einer Geraden die Fixpunktmenge einer Spiegelung
versteht, so sagt Axiom III aus, dass die Parallelitit transitiv ist. Das ist im wesent-
lichen das Parallelenaxiom.

§2. Folgerungen aus den Axiomen Ia und Ila

Aus den Axiomen Ia und IIa ergeben sich durch elementare Schliisse einige
einfache Folgerungen?). Eine Spiegelung mit zwei Fixpunkten A4, B ist eindeutig
bestimmt und daher involutorisch. Sie sei mit o, bezeichnet. Ist « eine Bewegung
und A* = A’, B* = B’, so ist

aloypo=0,p.

Durch zwei Punkte 4, B geht genau eine Gerade g(4B). Jede Bewegung ist eine
Kollineation, das heisst sie bildet Geraden auf Geraden ab. Sind C, D zwei Punkte der
Geraden g durch 4 und B, so ist o¢p = 04 5; man kann diese Spiegelung daher ein-
fach mit o, bezeichnen.

Zwei Geraden g, & heissen senkrecht (oder orthogonal), wenn g, o, involutorisch ist,
das heisst wenn ¢, und o, verschieden und miteinander vertauschbar sind. Aus jedem
nicht auf einer Geraden g liegender Punkt P lisst sich- eindeutig ein Lot fillen.
Bewegungen sind sogenannte orthogonale Kollineationen, das heisst sie bilden senk-
rechte Geraden auf senkrechte Geraden ab.

Zwei verschiedene Punkte A, B haben hochstens ein Mittellot, das heisst eine
Gerade a, so dass A% = B ist. Wire ndamlich b ein zweites Mittellot, so wiren ¢, und
o, zwel Bewegungen, die 4, B vertauschen und daher g, g, = 04 5, im Widerspruch zu
Axiom Ia.

Zwei verschiedene Punkte 4, B haben auch hochstens einen Mittelpunkt, das
heisst einen Punkt P, sa dass eine Punktsplegelung mit dem Fixpunkt P existiert,
die 4 mit B vertauscht. Wire ndmlich P’ ein zweiter Mittelpunkt, und wéren 7, 7’
Punktspiegelungen mit den Fixpunkten P beziehungsweise P’, so wire n @’ = 04
involutorisch, also # &’ # = #’. Nun hat = 7’ & den einzigen Fixpunkt P’ und ' den
einzigen Fixpunkt P’. Also ist P’ = P’. Das ist nur moglich, wenn doch P’ = P
ist. Ferner ist mo g =045, also 645 Mo, = n. Die linke Seite dieser Gleich-
ung hat den Fixpunkt P°4B, die rechte den Fixpunkt P. Also ist P € g(4 B). Da-
raus folgt: Eine Punktspiegelung hat jede Gerade durch ihren Fixpunkt als Fix-
gerade.

Uber die Existenz von Mittelloten, Punktspiegelungen und Mittelpunkten ldsst
sich auf Grund der bisherigen Axiome noch nichts aussagen.

Hilfssatz 2.71. Hat das Spiegelungsprodukt o, 0, + 1 einen Fixpunkt F, so ist
dieser der Schnittpunkt der Geraden a und b.

%) Vergleiche [6].
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Beweis. Es ist F% = F°%. Wire dieser Punkt von F verschieden, so hitten F%
und F die verschiedenen Mittellote @ und b, was oben widerlegt wurde. Also folgt
F’ = F’ = F, nach der Definition der Geraden also die Behauptung.

Wir schreiben nun, wie es in der Spiegelungsgeometrie iiblich ist, statt o, einfach g.
Dann gilt

Hulfssatz 2.2. Tst das Produkt dreier Spiegelungen 4, b, ¢ eine Spiegelung, so sind
die Spiegelungsgeraden a, b, ¢ entweder paarweise parallel oder sie haben einen Punkt
gemein.

Beweis. Es seien die Geraden a, b, ¢ nicht paarweise parallel, etwa F = a0 b.
Das Spiegelungsprodukt a b ¢ ist nach Voraussetzung eine Spiegelung d, alsoa b = d c.
Daher hat d ¢ den Fixpunkt F. Nach Hilfssatz 2.1 ist d 0 ¢ = F. Hilfssatz 2.2 ist
eine Umkehrung des Dreispiegelungssatzes, fiir den ein Beweis auf Grund der bisheri-
gen Axiome kaum moglich sein diirfte.

Hilfssatz 2.3. Es sei a eine Gerade und P ein Punkt, ferner 7 eine Punktspiegelung
mit dem Fixpunkt P. Dann liegt jeder Fixpunkt F + P von a 7w = 7 a auf einem in P
errichteten Lot auf a.

Beweis. Dass a @ = 7 a ist, folgt aus der Identitdt # a # = a. Ist F & P Fixpunkt,
soist F ¢ a. Es sei a’ das aus F auf a gefillte Lot. Wegen F* = F™ muss P € g(F F?),
also a’ = g(F P) sein, was zu beweisen war.

§3. Hinzunahme des Axioms Ib

Hilfssatz 3.7. Jede Drehung ist Produkt zweier Spiegelungen.

Beweis. Es sei d eine Drehung mit dem Fixpunkt F, und G ein weiterer Punkt.
Das Produkt 8 o7 ist nach Axiom Ib keine Drehung, also eine Spiegelung, was zu
beweisen war.

Bemerkung. Das Axiom Ib ist nicht aus den iibrigen Axiomen beweisbar; denn
in der gewdhnlichen euklidischen Geometrie mit den Ahnlichkeitsabbildungen als
«Bewegungen» gelten alle unsere Axiome ausser Ib.

Satz 3.1 (erster Dreispiegelungssatz). Sind a, b, c drei Geraden mit dem gemeinsamen
Punkt F, so ist das Spregelungsprodukt a b ¢ eine Spiegelung.

Beweis. a b ist nach Axiom Ia keine Spiegelung, also eine Drehung §, und § ¢ ist
nach Axiom Ib keine Drehung, also eine Spiegelung, was zu beweisen war.

Wir werden im folgenden das Axiom Ib nicht mehr direkt verwenden, nur noch
den mit seiner Hilfe abgeleiteten ersten Dreispiegelungssatz. Man kénnte also diesen,
wie es in der Spiegelungsgeometrie iiblich ist, an Stelle von Axiom Ib unter die
Axiome aufnehmen. In [6] ist der erste Dreispiegelungssatz eine Teilaussage des
Axioms I.

§4. Hinzunahme des Parallelenaxioms

Wir beniitzen zunichst nur die Axiome Ia, ITa und III.
Hilfssatz 4.7. In einem Punkt P einer Geraden g ldsst sich héchstens ein Lot auf g
errichten.
Beweis. Es seien @ und b zwei verschiedene in P errichtete Lote. Ferner sei 4 ein
weiteres Lot auf g, das nicht durch P geht. Dann sind a und b zu % parallel, aber nicht
untereinander, entgegen Axiom III.
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Es wire noch der Fall denkbar, dass jedes Lot % auf g durch P geht (Fig. 1).
Es sei Q + P ein weiterer Punkt von g und A + P ein weiterer Punkt von a. Die
Spiegelung 0,4, bringe P nach P’. Die Gerade g(4 Q) steht nicht senkrecht auf g,
weil das aus 4 gefdllte Lot eindeutig ist. Daher ist g(P P’) + g. Das aus P’ auf g ge-
fallte Lot ist nach unserer Annahme g(P’ P). Damit hitten wir zwei aus Q auf g(P P’)
gefillte Lote, namlich g und g(Q 4). Dieser Widerspruch vervollstindigt unseren
Beweis.

Hilfssatz 4.2. Es seien g, h senkrechte Geraden, und P sei ein weder auf g noch auf 4
liegender Punkt. Die aus P auf g beziehungsweise % gefillten Lote seien g’ beziehungs-
weise 4'. Dann schneiden sich g, g’ und ebenso %, #’, sowie g, 4. Die Geraden g’ und 4’
stehen aufeinander senkrecht.

Beweis (Fig. 2). Die verschiedenen Geraden g und %’ (ebenso % und g’) kénnen
wegen der Eindeutigkeit des Lotes (auf #) keinen Schnittpunkt haben. Nach
Axiom III miissen sich daher g und g’ (ebenso % und 4’) schneiden, etwa im Punkt F.
Nochmalige Anwendung des Parallelenaxioms III liefert die Existenz des Schnitt-
punkts S = g N 4. Wire das aus F auf 4’ gefillte Lot / von g’ verschieden, so wiren /
und g’ zu % parallel, aber nicht untereinander. Daher muss g’ | A’ sein.

h
a
I7 h —w'?P
A "
3 i
P q g
gl
Figur 1 Figur 2

Bemerkung: Aus Hilfssatz 4.2 folgt noch nicht, dass Rechtecke existieren. Als
Gegenbeispiel dient eine Ebene aus genau vier Punkten mit der Gruppe aller ihrer
Permutationen als Bewegungsgruppe. Es'ist ndamlich keineswegs sicher, dass ausser-
halb von g und % noch ein Punkt P existiert.

§5. Hinzunahme des Axioms IIb

Nach Axiom IIb gibt es eine Gerade s mit mindestens drei Punkten.

Hilfssatz 5.1. Sind g, h senkrechte Geraden, so gibt es einen Punkt P, der weder
auf g noch auf 4 liegt.

Beweis (Fig. 3). Die Behauptung ist klar, wenn die Gerade s von g und von % ver-
schieden ist. Nun sei s = g; und 4 ¢ &, B, C seien drei Punkte von g, sowie D ¢ g ein
Punkt von A. Die Gerade g(4 D) steht weder auf g noch auf 4 senkrecht. Die Spiege-
lung an dieser Geraden bildet B und C auf zwei Punkte B’, C' ab, die mit 4 auf einer
von g verschiedenen Geraden liegen. Daher kann hochstens einer von ihnen auf 4
liegen, was zu beweisen war. Beim Beweis wurden nur die Axiome Ia, IIa, IIb ver-

wendet.
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Mit Hilfe des vorigen Paragraphen folgt nun unmittelbar

Satz 5.1. Senkrechte Geraden schneiden sich. Jede Gerade enthilt mindestens dres
Punkte. Jedes Vierseit mit drei vechten Winkeln ist esn Rechteck.

Satz 5.2. Das Produkt zweier Spiegelungen an senkrechten Geraden ist eine Punkt-
spregelung an threm Schnittpunkt.

Der Beweis verwendet nur die Axiome Ia und II und die Existenz des Schnitt-
punkts senkrechter Geraden.

Satz 5.3. In jedem Punkt B einer Geraden g lisst sich eindeutig ein Lot errichten.

Beweis (Fig. 4). Es sei 4 irgendein Lot auf g. Falls es durch B geht, sind wir fertig.
Andernfalls sei P ein weder auf g noch auf % liegender Punkt. Das aus P auf 4 ge-
fallte Lot sei /', und das aus B auf 4’ gefillte Lot sei g’. Nach Hilfssatz 4.2 ist g’ das
gesuchte Lot.

h )
PO -1 h fa
D y ¢’
\ '
\ J
. B'
/ | ;A Y
; 8 A 5 h
Figur 3 Figur 4

Wir beweisen weiter

Hilfssatz 5.2. Ist a eine Gerade und m eine Punktspiegelung an einem Punkt
P e a, so ist am = n a eine Spiegelung.

Das ist klar, wenn Axiom Ib verwendet wird. Ohne dieses Axiom schliessen wir
wie folgt (Fig. 5): Es sei b das in P auf a errichtete Lot und Q ein Punkt, der weder
auf a noch auf b liegt. Nach Hilfssatz 2.3 ist Q kein Fixpunkt von a . Esist w a & = a,
also a @ = m a involutorisch. Daher ist g(Q Q*”) eine Fixgerade von a . Lige P auf
dieser Geraden, so auch auf g(Q* Q%); also wire Q%€ g(P Q™) = g(P Q) und daher
g(P Q) L a, entgegen der Voraussetzung Q ¢ b. Der Fusspunkt F des von P aus auf
g(Q Q*™) gefillten Lotes &' ist ein zweiter Fixpunkt von a 7 (ausser P). Daraus folgt
die Behauptung, und weiter o’ =an,a b’ =z, b’ 1 a, b’ = b, also gilt

b

an
4 i od

Figur 5
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Satz 5.4. Zu jedem Punkt P als Fixpunkt existiert genau esne Punkispiegelung.

Wie iiblich werde diese Punktspiegelung einfach mit P bezeichnet.

Ist P ein Punkt der Geraden g, so ist P g = g P die Spiegelung an dem in P auf g
errichteten Lot. Sind a, b senkrechte Geraden, so ist @ b die Spiegelung an ihrem
Schnittpunkt.

Satz 5.5. Jedes Paar verschiedener Punkte A, B hat einen Mittelpunkt.

Beweis (Fig. 6). Es seis = g(4 B),a = s A,b = s B. Auf aliegt ein weiterer Punkt
C. Esseic = a C. Nach Satz 5.1 bilden s, a, ¢, b ein Rechtseit; esseiD = b¢, C' = C9,
D'=Ds, ¢’ =c also C'=ac’, D'=b¢c" Die Geraden s und g(C’ D) haben nach
Axiom III einen Schnittpunkt M ; er liegt auch auf g(C D’) = g(C’ D)-.

<T/
Af/<Tf S
¢ ﬂ\i

b |

4

07/'

Figur 6

Es sei AM = E, b’ = s E, ferner F = b 0 g(C’ D) und F’' = b' 0 g(C D’). Es folgt
C'M = F,CM = F', also g(C F)¥ = g(C’ F’). Daher sind diese beiden Geraden parallel.
Weil sie durch Spiegelung an s auseinander hervorgehen, sind sie auch zu s parallel.
Das ist nur moglich, wenn F = D, also E = B ist, was zu beweisen war.

Folgerung. Jedes Paar verschiedener Punkte hat ein Mittellot. Satz 5.5 ist in der
nichteuklidischen Geometrie im Sinne von F. BACHMANN bekanntlich nicht immer
richtig. \ '

Satz 5.6. Die Ebene ist eine affine Translationsebene.

Die Behauptung sagt aus, dass zu je zwei verschiedenen Punkten A, B eine
Translation (das heisst eine Kollineation mit genau den uneigentlichen Punkten als
Fixpunkten) existiert, die A nach B bringt. Ist nun s die Verbindungsgerade, M der
Mittelpunkt, und s das Mittellot von 4 und B, so ist s A m die gesuchte Translation.
Jedes Lot auf m ist nimlich Fixgerade von s 4 m, daher ist s Am = A4 M eine
zentrale Kollineation. A M bildet jede Gerade auf eine Parallele ab, hat also die un-
eigentlichen Punkte als Fixpunkte.

Satz 5.7. (zweiter Dreispiegelungssatz). Sind a, b, ¢ Geraden mit dem gemeinsamen
Lot s, so ist a b ¢ eine Geradenspiegelung an einem Lot d auf s.

Beweis (Fig. 7). Es sei 4 = a s und 4%¢ = B, ferner d das Mittellot von 4 und B.
Dann hat die Bewegung & ¢ 4 den Fixpunkt 4, also die Fixgerade a. Weil alle Lote
auf a nach Satz 5.1 Fixgeraden sind, lisst b ¢ 4 die Gerade 4 punktweise fest. Nach
Axiom Ia ist bcd + 1, also folgt bcd = a, a b ¢ = d, was zu beweisen war.
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a d b c
K . a s
Figur 7

Satz 5.8. Jedes Produkt von vier Spiegelungen ist Produkt von zwei Spiegelungen.

Beweis. Gegeben sei das Spiegelungsprodukt a & ¢ d. Die Behauptung ist klar,
wenn 4, b, ¢, d nicht alle verschieden sind; ebenso, wenn sie alle parallel sind. Beides
sei jetzt ausgeschlossen. Mit abcd sind auch bcda=(abcd)? cdab, dabc
Produkte von zwei Spiegelungen; wir diirfen daher jetzt annehmen, dass @ und &
einen Punkt C gemein haben. Falls ¢ und d einen Punkt D gemein haben, sei b’ eine
Gerade durch C und D; andernfalls sei 4’ die Parallele zu ¢ und 4 durch C. Es gibt eine
Gerade a’ 3 C, so dass a’ &' = a b ist, ndmlich nach dem ersten Dreispiegelungssatz.
Daher ist abcd =a'(b' cd). Weil b’ c d eine Spiegelung ist, gilt die Behauptung.

Folgerung. Jedes Spiegelungsprodukt (falls Axiom Ib vorausgesetzt wird, also jede
Bewegung) ist entweder Produkt von zwei Spiegelungen oder Produkt von drei
Spiegelungen, nicht aber beides.

Die Produkte von zwei Spiegelungen heissen gerade Bewegungen, die Produkte
von drei Spiegelungen ungerade Bewegungen.

Satz 5.9. Jede ungerade Bewegung o ist Produkt einer Punkispiegelung und einer
Geradenspiegelung.

Beweis (Fig. 8). Falls « eine Spiegelung g ist, sei P ein Punkt der Spiegelungs-
achse g. Dann ist « = P g = g P. Nun sei a keine Spiegelung, also ein Spiegelungs-
produkt a b ¢, wobei entweder a, b oder b, ¢ sich schneiden. Im zweiten Fall kann man
b ¢ durch ein Produkt b’ ¢’ ersetzen, so dass auch a, b sich schneiden. Wir diirfen also

a

Figur 8
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den ersten Fall annehmen. 4 sei das aus a N b auf ¢ gefillte Lot mit dem Fusspunkt F;
fernerseia b =ed. Dannistabc=edc = ¢ F = F°¢ ¢, was zu beweisen war.

Satz 5.10. (Hjelmslevscher Mittelpunkiesatz). Ist o eine Bewegung und g eine Gerade,
so liegen die Mittelpunkte aller Paare (P, P*), wobei P die Gerade g durchliuft, auf einer
Geraden s.

Beweis. Wir diirfen annehmen, dass o« ungerade ist (sonst betrachte man g«
statt «). Dabei wird entweder Axiom Ib mit vorausgesetzt oder unter Bewegungen
werden nur Spiegelungsprodukte verstanden. Es sei « = b A (Satz 5.9). Es sei s das
aus A auf b gefillte Lot und P ein beliebiger Punkt; ferner  das Lot aus P auf s,
unda=As=sA,g=pba, Q=gqgs. Dannista =bas=pgs=5(Q, also P* =
P?? — PO dasheisst der Mittelpunkt Q von P und P* liegt auf s, was zu beweisen war.

§6. Hjelmslevsche Halbdrehungen

Es sei § eine Drehung um den Punkt O, jedoch keine Punktspiegelung. Die Ab-
bildung u, die jedem Punkt P den Mittelpunkt von P und P° zuordnet, heisst eine
Halbdrehung (Fig. 9). Das ist die urspriingliche Hjelmslevsche Definition. Es sei
d = a b und P ein beliebiger Punkt (+ O), ferner p = g(O P) und a b = $ ¢. Dann ist
P¢ der Fusspunkt-des aus P auf g gefillten Lotes. Mit Hilfe des Parallelenaxioms er-
kennt man sofort: Die Halbdrehungen bilden die Ebene umkehrbar auf sich ab. Aus
Satz 5.10 folgt, dass sie Geraden in Geraden abbilden. Mit den soeben eingefiihrten
Bezeichnungen gilt a# C b, p* C ¢, ¢* C % Das rechtwinklige Dreieck O P P* geht
in das rechtwinklige Dreieck O P* P** iiber. Wegen der Geradentreue folgt daraus,
dass senkrechte Geraden, von denen eine durch O geht, in senkrechte Geraden abge-
bildet werden. Nach Satz 5.1 (also unter wesentlicher Verwendung des Parallelen-
axioms) folgt, dass beliebige senkrechte Geraden in senkrechte Geraden abgebildet
werden, also auch parallele Geraden in parallele Geraden. Ordnet man dem uneigent-
lichen Punkt U einer Geraden g als Bildpunkt U# den uneigentlichen Punkt der Bild-
geraden 4 D g¢ zu, so wird u zu einer umkehrbaren, geradentreuen Abbildung der
projektiven Erweiterungsebene.

Dass eine Halbdrehung jede Gerade sogar auf eine Gerade abbildet, folgt (mit Hilfe
des Parallelenaxioms) aus dem elementaren

g-p"-pab

pHE

Figur 9 , pY
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Hilfssatz 6.7. Jede umkehrbare Abbildung u einer projektiven Ebene auf sich,
die kollineare Punkte in kollineare Punkte abbildet, bildet jede Gerade auf eine Gerade
ab und ist umkehrbar geradentreu.

Beweis. Wire A B C ein Dreieck, dessen Bildpunkte 4#, B#, C* auf einer Geraden
g liegen, so sei P’ = P* ausserhalb g gewdhlt. Ferner sei Q = g(4 P) N g(B C). Dann
wire Q*eg(B C)* C g, P*eg(4 Q)* C g, Widerspruch. Die Halbdrehungen sind also
Kollineationen.

Ist u eine Halbdrehung mit dem Zentrum O, und sind p, ¢ Geraden durch O, so ist
P gt =pq.

Satz 6.1. (Hjelmslevscher Lotesatz). Es seien a, ¢ verschiedene Geraden durch einen
Punkt O, ferner seien a', ¢’ die in weiteren Punkten A beziehungsweise C von a be-
ziehungsweise c ervichteten Lote mit dem Schwittpunkt D, b das aus O auf g(4 C) gefillte
Lot und d = g(O D). Dann ist a bc = d.

Beweis (Fig. 10). Es sei b’ =adc, also a b’ = d ¢. Die Halbdrehung g mit dem
Zentrum O, die D nach C bringt, bildet 4 auf den Fusspunkt B des aus 4 auf &’ ge-
fdllten Lotes ab. Wegen der Erhaltung der Orthogonalitit muss D* = C auf g(4 B)
liegen. Daher ist B € g(4 C), also b’ = b, was zu beweisen war.
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Bemerkungen: Satz 6.1 kann auch direkt durch Rechnen mit Spiegelungen be-
wiesen werden (vergleiche BACHMANN [2]). Aus dem Lotesatz lisst sich die Halb-
drehungstheori¢ gewinnen, ohne Verwendung von Satz 5.10 (vergleiche [2], [3]). Der
Lotesatz, der sich im Rahmen der euklidischen Geometrie schon bei HILBERT [4],
Seite 55 findet, kann bekanntlich im Rahmen des Bachmannschen Axiomensystems
ohne Verwendung des Parallelenaxioms bewiesen werden.

Satz 6.2. (Hohensatz). Die Hohen jedes Dreiecks A B C schneiden sichin einem Punki.

Beweis (Fig. 11). Der triviale Fall eines rechtwinkligen Dreiecks sei ausgeschlos-
sen. Die Dreiecksseiten seien wie iiblich mit @ = g(B C), b, ¢ bezeichnet. Die Hohen
seien a’, b’, ¢’; das heisst die Spiegelungsprodukte A’ =aa’,B'=bb0',C"'=cc', A a,
B ¥, C ¢’ seien involutorisch. H sei der Schnittpunkt von 4’ und ¢, ferner sei 4 =
g(4 H). Die Halbdrehung y mit Zentrum A, die B nach B’ bringt, bringt C¢ nach C’.
Also ist

B* =B, C*=C(",
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Die Hohe a’ wird durch ¢ u auf das Lot d aus 4 auf g(B C)°# = g(B’ C’) abgebildet.
Nach dem Lotesatz ist b 5 = d ¢, also

he b =bh=a"“tb"=a"bd
und daher
he=a'c, h=a',
was zu beweisen war.
Auch der klassische Beweis durch Zuriickfithrung auf den Satz vom Schnittpunkt

der Mittelsenkrechten ist hier moglich ([3]).

Satz 6.3. Je zwes Halbdrehungen mat gleichem Zentrum O sind vertauschbar.
Das folgt unmittelbar aus dem Lotesatz (Fig. 12).
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§7. Einfiihrung von Koordinaten

Um Koordinaten einzufiihren, gibt es verschiedene Wege. Man kann die Hilbert-
sche Streckenrechnung ([4]) verwenden, wozu wesentlich geeignete Sonderfille des
Satzes von PApros-PAscAL benétigt werden, die sich zum Beispiel mit Hilfe der Sitze
6.1 oder 6.2 beweisen lassen (vergleiche [4], Seite 55; [5], Seite 201; [2], Seite 205).

Eine andere Moglichkeit wurde, wie bereits erwdhnt, von ARTIN angegeben. Sie
fihrt zur analytischen Geometrie tiber einem Korper, wenn der Satz von DESARGUES
in affiner Form zur Verfiigung steht. Wir beweisen folgende Form des Desargues-
schen Satzes.

Satz 7.1. Es seten O, A, A’ verschiedene Punkte einer Geraden. Dann gibl es genau
eine zentrale Kollineation mat dem Zentrum O und der uneigentlichen Geraden als Achse,
die A nach A’ bringt.

A*=B, B*=C, A”=C.
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Beweis (Fig. 13) (vergleiche [3]). Es sei g + g(O 4) eine Gerade durch A’, B der
Fusspunkt des Lotes aus O auf g und C der Fusspunkt des Lotes aus O auf g(4 B). Es
gibt Halbdrehungen 4, u, » mit den Eigenschaften
Das Halbdrehungsprodukt » u~1 A-! ist die gesuchte zentrale Kollineation. Diese
Kollineationen heissen auch Dehnungen.

Die Artinsche Schlussweise ([1], [5], Seite 152) liefert nun

Satz 7.2. Die Ebene ist einer affinen Koordinatenebene iiber einem Korper K 1so-

morph.
Aus Satz 6.3 folgt, dass je zwei Dehnungen mit gleichem Zentrum O vertauschbar

sind. Das ist gleichbedeutend mit

Satz 7.3. Der Koordinatenkorper K ist kommutativ.

Die Punktspiegelungen sind spezielle Dehnungen, also Homologien im Sinne der
projektiven Geometrie. Weil involutorische Homologien nur existieren, wenn das
Fano-Axiom gilt, folgt

Satz 7.4. Die Charakteristik des Koordinatenkorpers ist nicht 2.

In weniger gelehrter Ausdrucksweise heisst das 1 + 1 = 0.1)

Aus Satz 7.3 folgt natiirlich wieder der Satz von PaPppos.

Es fehlt noch die algebraische Beschreibung der Orthogonalitit. Auch diese ist
jetzt leicht. Am bequemsten erhilt man sie nach einem Ansatz von R. BAER mit Hilfe
des Hohensatzes (vergleiche [3]). Die Koordinatenachsen seien zueinander senkrecht
gewihlt (Fig. 14). Die Lote zu den Geraden

{(x,y): y=ax+ b} (a*0)
sind die Geraden
{(9): y=fl@)x+ b} mit f(@) +0.

Gesucht ist die Funktion f.

y=flbjix-c)

y~fla)lx-c)

1) Noch einfacher ergibt sich Satz 7.4 daraus, dass Translationen AM = 1 (vgl. den Beweis des Satzes
5.6) nicht involutorisch sind. Aus (AM)? = 1 wiirde ja AM = A4, also M = A folgen.



132 H. LeExNz: Zur Axiomatik der ebenen euklidischen Geometrie

Wir fillen aus dem Punkt C mit den Koordinaten (c, 0) die Lote g’, 4’ auf die
Geraden g, £ mit den Gleichungen y = a x beziehungsweise ¥y = b x. Die Gleichungen
dieser Lote sind

y = f(a) (x — ¢) beziehungsweise vy = f(b) (x —c) .

Aus dem Hohensatz folgt, dass die Schnittpunkte gN A’ und 20 g’ dieselbe
Abszisse haben. Fiir diese Abszisse %, ergibt sich einerseits

a xy = f(b) (xg — ¢),
andererseits

bxy=f(a) (xg—c), also

bf(b) (%o —¢) = afla) (x—¢) .

Fiir a, b + 0 ist wegen der Eindeutigkeit des Lotefillens sicher x, + ¢, also

bf(b) = afla).

Fassen wir a als fest und b als variabel aut, so kénnen wir a f(a) = — k setzen, und
haben

Weil keine Gerade auf sich selbst senkrecht steht, darf — % kein Quadrat (im Kérper K)
sein.

Zwei Vektoren (x,, ;) und (x,, ¥,) sind daher senkrecht, wenn (y, ;%) (y, x5 1) =
— k&, das heisst wenn

k% x5+ y,9,=0

ist. Das gilt auch noch fiir achsenparallele Vektoren. Im Fall £ = 1 ist die linke Seite
dieser Gleichung das gewohnliche Skalarprodukt. Dieser Fall ldsst sich jedoch nur
dann durch geeignete Wahl des Koordinatensystems erreichen, wenn zwei senkrechte
und ineinander bewegliche Geraden existieren.

Damit ist der Anschluss an die iibliche analytische Geometrie erreicht.

HANFRIED LENZ, Miinchen
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