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Kleine Mitteilungen

Einige elementare kombinatorische Identitäten mit alternierenden Summen

1. Einleitung

Im Zentrum unserer Betrachtung steht die Identität

JT (- i)r/*)[>+ (n- v)h]m= ömnhnni [0 < m < n; heR, x e R]1) (1)

der man ohne weiteres auch die Gestalten

JT (- l)k rÄ (x + kh)m ömn (- l)nhnni [0<m<n, h e R; x e R] (V)
k o

^ '

JJ (- l)k m (x-kh)m ömnhnn\ [0 < m < n; heR,xeR] (1")

geben kann2). Im Hinblick auf den bemerkenswerten Spezialfall

£(-iy(fy(n-v)»==n\ [n>0] (2)

x) R bezeichne die Menge der reellen Zahlen und dmn das KRONECKERsche Symbol. Fur die ganze
Betrachtung verabreden wir 0° 1.

2) Fur Spezialfälle vergleiche zum Beispiel [3], Seite 97, Lemma 2.1; [7], (1) und (2); [8], S. 249, (17);
[9], S. 496, zwischen (45) und (46), [10], S. 28, (4.14).
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von (1) erhebt sich die Frage nach Beweisen, die dem besonders einfachen Charakter von
(1) und (2) Rechnung tragen3) Fur die in Abschnitt 2 auftretenden an und fur sich interessanten

Hilfsidentitaten (6) und (9) stellt sich die Frage abermals Wir skizzieren
nachfolgend einen Beweis, welcher (6), (9) und (1') auf völlig elementare Weise aus dem
Bmomialsatz hervorgehen lasst, dabei werden wir auf ganz naturliche Weise zu einer
Verallgemeinerung (10) von (1') gefuhrt

2. Beweis
Aus dem Bmomialsatz folgt direkt

n

r(0, n) 27 (- l)k ß) - < [» > °] (3)

Mit den Bezeichnungen

Wo i, M. =*(*-!)• • (* - / + i) [/ > i] [* e jq (4)

*(l> n) 27 (- 1)* ß) (kh [l > 0, n > 0] (5)
ft-o x

ergibt sich s(l, n) 0 [0 < n < l], da in (5) alle Summanden verschwinden Fur 0 < l < n

beginnt die Summation m (5) effektiv bei k l und mit \V\ (k)t =- (?~ (n)t [l < k < n]

folgt s(l, n) (— l)1 (n)tr (0, n — l), also insgesamt

s(l, n) dln (- l)n n^ [/ > 0, n > 0]4) (6)
Durch

xm 27 *(m> A*) Wf* [a//^ # e Ä] [w > 0] (7)

smd Zahlen t(m, n) [m > 0, n > 0] (m eindeutiger Weise) erklart, und es gilt offensichtlich

t(m, n) ömn [0 < m < n] (8)

so dass also m als obere Summationsgrenze m (7) auftritt Nun ergibt sich die Gültigkeit
von

r(m, n) JJ (- 1)* Q km (- l)n n» <(w, «) [m > 0, n > 0]5) (9)

durch Einsetzen von (7) im mittleren Ausdruck von (9), Änderung der Summationsreihen-
folge und Anwendung von (6) Ausgehend von der linken Seite von (1') erhalt man durch
binomische Entwicklung von (x -f k h)m, Veränderung der Summationsreihenfolge und
Anwendung von (9)

27 (-1)* u) (* + k h)m= (- i)n»»27 i *(**>w)hßxtn~ß im> °> n > °i (io)

Im Falle 0 < m < n resultiert durch Anwendung von (8) unsere Behauptung (1'), welche
ihrerseits mit (1) und (1") aequivalent ist

3. Schlussbemerkung

Die t(m, n) smd die SriRLiNGschen Zahlen zweiter Art6) Bedenkt man, dass die mit
(— l)w multiplizierte lmke Seite von (10) das n-te der Funktion f(x) xm zugeordnete

8) Bekannt sind unter anderem eine Herleitung von (1) auf Grund des Differenzenkalkuls ([2], Seite 8),
eine solche von (2) durch kombinatorische Interpretation ([10], S 28) und eine solche von (1") durch einen
geeigneten Differentiationsprozess ([8], S 249)

*) Fur den Fall 1 < / < n vergleiche [4], Seite 44, (9d)
°) (9) hat in der Sequenz der Identitäten (3), (6), (9), (1) die Schlüsselstellung mne - Theorem I m [6]

kann mit (9) muhelos bestätigt werden
6) Fur eine ausführliche Darstellung der Theorie dieser Zahlen vergleiche etwa [2], Seite 168 ff
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Differenzpolynom ist, so ist mit (10) em wichtiges Vorkommen der t(m, n) aufgewiesen.
Schliesslich zeigt die aus (9) folgende Darstellung

'(«.«) -^r- jt <-J>* (*)km -Ji i1 <- *>' (v) (* - *>M- (")
ß -0 v-0

dass im Falle m > 1, w > 1 die Anzahl der Zerlegungen einer w-elementigen Menge in n
disjunkte nichtleere Teilmengen durch t(m, n) gegeben ist7). Jurg Ratz, Bern
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Ein Kreistangentensatz
In der Lehre von den Transversalen und Dreieckskoordinaten sollte folgender

Sachverhalt beachtet werden.
Tangentensatz An irgendeinen Kreis mit Radius r in der Ebene eines Dreiecks mit Seiten
abc seien die seltenparallelen Tangentenstrecken a'b'c' und A'B'C zwischen den Seiten oder
ihren Verlangerungen gezeichnet. Dann gilt, mit q Inkreisradius,

a'fa + b'fb + c'/c 2 - rfq (1)

A'fa + B'/b + C'/c =2 + rfQ. (2)

Die Formel (1) mit r q wurde, allerdings nur m einer speziellen Lage, in [l]1) behandelt,
wahrend (2) dort vergessen wurde, da es in der speziellen Lage trivial ist: 1 + 1 + 1= 2+1.
Für r — 0 wird (1) (2), vgl. [2]. Der leichte Beweis des obigen Tangentensatzes beruht

7) Vergleiche [1], Seite 121, (27) und Fussnote S. 114, an welcher Stelle auf weitere Vorkommen der
Hm, n) hingewiesen wird, ferner [8], S. 283 und S. 170, (4a) und schliesslich [5].

x) Die Zahlen m eckigen Klammern verweisen auf die Literatur, S. 112.
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auf dem verallgemeinerten Transversalensatz von Euler-Gergonne und auf a + b + c 2 s,

namhch auf H~ * + H^1 + Hc'1 — q
~ x (Hohen Hv) Wie beim verallgemeinerten Satz von

Euler-Gergonne darf der Kreismittelpunkt überall in der Ebene liegen, also auch auf dem
Rande und ausserhalb des Dreiecks Dem und der beliebigen Grosse von r wird durch
a'', b', c', A', B', C'mO Rechnung getragen I Paasche, München
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Aufgaben
Aufgabe 508. Es bedeute {alt a2, an] das kleinste gemeinsame Vielfache der

natürlichen Zahlen ax, a2, an px < p2 < sei eme unendliche Teilfolge P' der
Folge P aller Primzahlen ax < a2 < sei die Folge aller natürlichen Zahlen, in deren
Primzahlzerlegung nur Primzahlen aus P' vorkommen Man beweise, dass

oo

y *

fi {«i.*_. «„>

immer irrational ist Fur Pf P ist das die Aufgabe 308 [El Math 14, 39 (1959)]
P Erdos

Losung des Aufgabenstellers Es sei pk a/w und Ak {alt a2, ak) Die Unmöglichkeit

von £1/An u/v folgt sofort aus
cx»

hmwiAm t VlfA =0 (1)
k °° j f(k)

Um (1) zu zeigen, setzen wir
oo oo

AfW-iZVA, Z*.. (2)
7 l(k) u 1

WO

*u A/W-l£u1lAj (3)

In Zu lauft a3 uber diejenigen Elemente unserer Folge, fur welche />^___ a < p%+1 gilt
Zunächst zeigen wir, dass fur jedes e > 0 und k > k0(e)

<x3 + a4 + < s (4)

Da der Beitrag jeder Primzahl pt (i < k) zu A/(k)-i kleiner als pk ist, hat man

Af(k)-i<Pk " (5)

Nun ist die Anzahl der Summanden A~l in au offenbar kleiner als p£+1, und man erhalt
mit (5) also

*«<ft? + "{«i.«.. .Pi}'1 (6)

Ist a^p*, dann gilt

^ _:{«,._,. .Pt}>P(r1)k. (7)

da jedes pt einen Beitrag liefert, der grosser als pjf'1 ist Aus (6) und (7) ergibt sich

a« < p%+u~{u-l)h und damit (4) fur k > k0(e)

Wegen (4) genügt fur den Beweis von (1) der Nachweis von
hm mf (ax + a2) 0 (8)

Ä=O0
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