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Kleine Mitteilungen

Einige elementare kombinatorische Identititen mit alternierenden Summen
1. Einleitung

Im Zentrum unserer Betrachtung steht die Identitit
n
2 - 1)”(?) X+ (m—v) " =0, h"n! [0<m<mn; heR; xeR]Y), (1)
v=0
der man ohne weiteres auch die Gestalten

n

D V() G RR = by (1 ml 0<m <m; heR;xeR], (1)

k=0
4\1:‘ (— 1)k (’;) w— kR =3, "n! [0<m<n; heR; xeR] (1)
geben kanf;)o. Im Hinblick auf den bemerkenswerten Spezialfall
i’ (— 1) (:}) (n— )P =n! [n> 0] (2)
»=0

1) R bezeichne die Menge der reellen Zahlen und §,,, das KroNeEckERsche Symbol. Fiir die ganze
Betrachtung verabreden wir 0% = 1.

?) Fiir Spezialfille vergleiche zum Beispiel [3], Seite 97, Lemma 2.1; [7], (1) und (2); [8], S. 249, (17);
[9], S. 496, zwischen (45) und (46); [10], S. 28, (4.14).
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von (1) erhebt sich die Frage nach Beweisen, die dem besonders einfachen Charakter von
(1) und (2) Rechnung tragen?3). Fiir die in Abschnitt 2 auftretenden an und fiir sich interes-
santen Hilfsidentitdten (6) und (9) stellt sich die Frage abermals. Wir skizzieren nach-
folgend einen Beweis, welcher (6), (9) und (1’) auf vollig elementare Weise aus dem
Binomialsatz hervorgehen lasst; dabei werden wir auf ganz natiirliche Weise zu einer
Verallgemeinerung (10) von (1) gefiihrt.

2. Beweis
Aus dem Binomialsatz folgt direkt
n

0, m): = 3 (= 1)k (’,:) — 3y, [ 0]. (3)

k=0

Mit den Bezeichnungen

*o:=1;, ¥)p=xx—1)-...-(x—1+1)[I>1] [xeR], (4)
sl m): = kZ:O(_ 1)k (z) k), [[>0; n> 0] (5)

ergibt sich s(/, #) = 0[0 < » < ], da in (5) alle Summanden verschwinden. Fiir 0 <! < »n
beginnt die Summation in (5) effektiv bei & =/, und mit <’,:) (B), = (z:ﬁ) (n), [l < k < n]

folgt s(l, n) = (— 1)t (»), » (0, » — [), also insgesamt

s, m) =0, (—1D)*n! [l > 0; n > 0]%. (6)
Durch .
= 2 tm, u) (x), [alle x € R] [m > 0] (7)
u=>0

sind Zahlen ¢(m, ») [m > 0; n > 0] (in eindeutiger Weise) erkldrt, und es gilt offensichtlich
tm, n) = 0, [0 < m < n], (8)

so dass also m als obere Summationsgrenze in (7) auftritt. Nun ergibt sich die Giiltigkeit

von
”

rim, m): = 3 (= D (’,:) B = (— 1" mli(m, m) [m>0; n> 0] (9)
k=0

durch Einsetzen von (7) im mittleren Ausdruck von (9), Anderung der Summationsreihen-
folge und Anwendung von (6). Ausgehend von der linken Seite von (1’) erhdlt man durch
binomische Entwicklung von (¥ + % #)™, Verdnderung der Summationsreihenfolge und
Anwendung von (9)

.

n

D) (=1 (;:) (¥ + k h)m= (— 1)" n! j:" (m) t(u, m) ke xm—e [m > 0; n > 0]. (10)
k=0 p=0 M

Im Falle 0 < m < #» resultiert durch Anwendung von (8) unsere Behauptung (1’), welche
ihrerseits mit (1) und (1”) aequivalent ist.

3. Schlussbemerkung

" Die ¢(m, n) sind die StirLiINGschen Zahlen zweiter Art®). Bedenkt man, dass die mit
(— 1)* multiplizierte linke Seite von (10) das #-te der Funktion f(¥) = xm zugeordnete

3) Bekannt sind unter anderem eine Herleitung von (1) auf Grund des Differenzenkalkiils ([2], Seite 8),
eine solche von (2) durch kombinatorische Interpretation ([10], S. 28) und eine solche von (1”) durch einen
geeigneten Differentiationsprozess ([8], S. 249).

4) Fiir den Fall 1 << 7 < # vergleiche [4], Seite 44, (9d).

5) (9) hat in der Sequenz der Identititen (3), (6), (9), (1) die Schliisselstellung inne. — Theorem I in [6]
kann mit (9) miihelos bestitigt werden.

8) Fiir eine ausfiihrliche Darstellung der Theorie dieser Zahlen vergleiche etwa [2], Seite 1681f.
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Differenzpolynom ist, so ist mit (10) ein wichtiges Vorkommen der ¢(m, #) aufgewiesen.
Schliesslich zeigt die aus (9) folgende Darstellung

(= 1)~ - k(") pm 1y (o m
ton, ) = < 0 () k= 3 = 0 () tn = o (1)
= ve
dass im Falle m > 1, » > 1 die Anzahl der Zerlegungen einer m-elementigen Menge in »
disjunkte nichtleere Teilmengen durch #(m, #) gegeben ist?). JURG RATZ, Bern
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Ein Kreistangentensatz

In der Lehre von den Transversalen und Dreieckskoordinaten sollte folgender Sach-
verhalt beachtet werden:
Tangentensatz: An irgendeinen Kveis mit Radius v in dev Ebene eines Dreiecks mit Seiten
abc seien die seitenparallelen Tangentenstvecken a’b’c’ und A’B’C’ zwischen den Seiten odey
thven Verlingevungen gezeichnet. Dann gilt, mit 9 = Inkveisvadius,

a’la +b'lb+c'fc=2—7[p (1)
A'la+ B’[b+ C'fc = 2+ r]g. (2)
Die Formel (1) mit » = ¢ wurde, allerdings nur in einer speziellen Lage, in [1]!) behandelt,

wahrend (2) dort vergessen wurde, da es in der speziellen Lage trivialist: 1 + 1+ 1= 241,
Fir » = 0 wird (1) = (2), vgl. [2]. Der leichte Beweis des obigen Tangentensatzes beruht

?) Vergleiche [1], Seite 121, (27) und Fussnote S. 114, an welcher Stelle auf weitere Vorkommen der
t(m, n) hingewiesen wird; ferner [8], S. 283 und S. 170, (4a) und schliesslich [5].
1) Die Zahlen in eckigen Klammern verweisen auf die Literatur, S. 112.
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auf dem verallgemeinerten Transversalensatz von Euler-Gergonne und aufa + b+ ¢ = 25,
namlich auf Hu’1 + Hy 14 H- 1 = ¢~ (Hohen H,). Wie beim verallgemeinerten Satz von

Euler-Gergonne darf der Kreismittelpunkt iiberall in der Ebene liegen, also auch auf dem
Rande und ausserhalb des Dreiecks. Dem und der beliebigen Grosse von # wird durch
a’, v, ¢, A’, B’, C’= 0 Rechnung getragen. I. PaascHE, Miinchen

LITERATUR
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Aufgaben
Aufgabe 508. Es bedeute {a,, a,, ..., a,} das kleinste gemeinsame Vielfache der
natiirlichen Zahlen a,, a,,...,a,. p; < p < ... sei eine unendliche Teilfolge P’ der

Folge P aller Primzahlen. a, < a, < ... sei die Folge aller natiirlichen Zahlen, in deren
Primzahlzerlegung nur Primzahlen aus P’ vorkommen. Man beweise, dass

3 e
fow {4y, a3, ..., a,}

immer irrational ist. Fiir P’ = P ist das die Aufgabe 308 [El. Math. 74, 39 (1959)].

P. ErDOs -
Liosung des Aufgabenstellers: Es sei p, = arx) und A, = {a,, a,, ..., a;}. Die Unmog-
lichkeit von }'1/4 , = u/v folgt sofort aus
oo}
li;r:gf A1 D) 1/4;=0. (1)

j=1k)
Um (1) zu zeigen, setzen wir

) 00
A1 2, l/Aj= 2, %y (2)
=1

1= HR)

o, = Are-1 D, 1A, (3)

In }', lduft 4; iiber diejenigen Elemente unserer Folge, fiir welche p;'< a; < p; +1 gilt,
Zunichst zeigen wir, dass fiir jedes ¢ > 0 und & > &,(¢)

g+ oy + - < & (4)
Da der Beitrag jeder Primzahl p, (¢ < &) zu Ay) -, kleiner als p, ist, hat man
A1 <pp . (3)

Nun ist die Anzahl der Summanden 4 7-“1 in a, offenbar kleiner als p,:‘“, und man erhilt
mit (5) also
-1
w, < prt*{a,, ay, ..., pE} . (6)
Ist a; = p;/, dann gilt
A;z{ay, ay, ..., pp} > P8 VE, (7)

da jedes p; einen Beitrag liefert, der grosser als p,;“l ist. Aus (6) und (7) ergibt sich
w, < pFt 4" #" VR ynd damit (4) fiir & > kele).
Wegen (4) geniigt fiir den Beweis von (1) der Nachweis von

lim inf (o; + &) = 0. (8)

k=00
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