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On Some Ternary Quartic Diophantine Equations

There are not known many instances of Diophantine equations

representing a non-degenerate quartic surface for which an infinity of integer solutions
exist. It may therefore be of interest to give a few.

Theorem 1
The equation

22 = Uf + U, Uy, (2)
where
U=ax+hxy+by2+fy+gx (r=1,273),

and the coefficients are integers, has an infinity of integer solutions if for either r = 2 or
3, B2 —4a,b >0, and is not a perfect square and U, or U, is absolutely irreducible.
From (2), we have

Z+U1:€‘Uz, Z-U1=-35—U3,

where p, g are integers and (p, ¢) = 1. Then

2U1:—giU2-%U3. (3)
For integer solutions of (3), U, = 0 (mod ¢), Uz = 0 (mod p), and then z is also
an integer.

Write (3) as
Px,y)=ax®+hxy+by’+fy+gx=0, 4)
where
a=ptay—2pqa,—q*ag, h=p2hy—2pqh, —q*hy,

b=1p2by—2pqbi— @by, f=P2fo—209f1— s,
§=1"8—2p96— 98-
The equation (4) has a solution x =0, y = 0. GAuss has shown from a Pellian

equation that (4) will have an infinity of integer solutions if P(x, y) is algebraically
irreducible and 42 — 4 a b > 0 and is not a perfect square. The condition for re-

ducibility is

2a, h, g,
A= |h 20, f |=0.
g, f 2¢

This is a binary sextic in p, ¢ and is not identically zero since the coefficient of $¢ is
obtained by replacing a, b, etc., in 4 by a,, by, etc. Hence there will be only a finite
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number of values of p and g, if either U, or U, is irreducible, for which P(x, y) is
reducible.
Next

B—4ab=(p2hy—2pqh —q*hy)®? — 4 (p2a, —2pqa, — g% ay) (szz—qul“qzba)

If k% — 4 a, b, > 0 and is not a perfect square, this holds for 42 — 4 a b if p is large
compared with ¢, and for an infinity of . This proves Theorem (1).

There are many special cases not included in the theorem. We need only mention

Theorem 2
The equation

2=k +x2ax2+09%),abk +0,

has an infinity of integer solutions if k, a, b ave integers and either b > 0, or b << 0,
4 a k2 > b2
We have

2+ k= g (a 22 + b y?), z——kz—qexz,

where p, g are integers and (p, ¢) = 1. Then
@@ —p) 2+ by =2kpyg.

This will have the solution x = 0, y = ¢, where ¢is an arbitrary integer,if b g > = 2 k& p,

and so if 8 = (b, 2 k), we can take
b 2k (2 2k

Ap=—5 13 Aqg=—, l—(t,T)

Hence there will be an infinity of integer solutions for x, y it b (% — a ¢%) > 0 and

is not a perfect square, i.e. b (b? #* — 4 a k%) > 0 and is not a perfect square. This is

possible if & > 0 for an infinity of values of ¢, and also if 6 << 0,4 a k2 > b% for ¢ = 1.

The case 4 a k% < b2 seems difficult. Of course if a << 0, b < 0, there are only a

finite number of solutions. '
“ L. J. MorDELL, St. Johns College, Cambridge, England

Ungeloste Probleme

Bemerkung zu Nr. 14 (El. Math. 77, 134-135 (1956)). A. a. O. wurde gezeigt, dass die
Gleichung #, + %3 + -+ + x, = ;3 %, ... x, fiir jedes natiirliche s mindestens eine
Losung in natiirlichen Zahlen besitzt. Nach einer Mitteilung von Herrn A. SCHINZEL
(Warschau) hat M. Misiurewicz vor kurzem bewiesen, dass s = 2, 3, 4, 6, 24, 144,
174, 444 die einzigen s < 1000 sind, fiir die genau eine Losung existiert.
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