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H Zeitler Satze uber das Sehnenviereck in der sphärischen und hyperbolischen Geometrie 55

4. Zusammenfassung der Formeln

Wir weisen noch auf die Übergange zwischen den einzelnen Formeln hin Aus
den sphärischen Formeln werden sofort die euklidischen, wenn der Kugelradius R
unbegrenzt wachst Nimmt man dagegen eme Kugel mit rem imaginärem Radius,
ersetzt man also R durch i R, so gehen die sphärischen in die hyperbolischen Formeln
uber

Meist wird die Längeneinheit so festgelegt, dass die Konstante R den Wert 1 hat
Fur diesen Fall fassen wir die beiden Formeln fur die drei Geometrien zu je einer
einzigen zusammen

Wir definieren ([5], S 64)

S(a) —p=r sm]/K aw ]/K '
Damit lauten die Satze

I Ptolemäus x x

II Brahmagupta

s(_) *(*M*M*M-.)
Für k 1 sind dies die Formeln (Is), (IIS), für k — 1 (IH), (IIH) und fur k -> 0

schliesslich (IE), (IIE) H Zeitler, Weiden, Deutschi
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Kleine Mitteilungen
Explizite Darstellungen der natürlichem Logarithmusfunktion

1. Problemstellung. Die natürliche Logarithmusfunktion ist gekennzeichnet als die
einzige Losung der Funktionalgleichung

/(*i *.) /(*i) + /(*i) [/ P -> Ä]l) (H)

mit der zusatzlichen Bedingung
f(x) <> x - 1 [alle # e P] 2). (1)

*) R bedeute durchwegs die Menge der reellen Zahlen, P diejenige der positiven reellen Zahlen
2) Vergleiche [1], p 114 Fur andere zur Charakterisierung geeignete Eigenschaften vergleiche [8],

Satze 6 und 7
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Insbesondere erweist sich die Normierung

f(e) 1 (2)

als eme Folgerung von (H) und (1) Neben der bekannten fur beliebige Basen a (a > 0,
a 4= 1) gültigen expliziten Darstellung

alogx supp mf or [x e P, q, a rational]*) (3)
a°< x x<aa

gibt es nun solche, die fur die naturliche Logarithmusfunktion l in ihrer Art spezifisch smd

lx(x) hm n (x1'" - 1) [x > 0]4) (4)
n~>oo

l2(x) hm 2" (1 - x-1'2") [x > 0]5) (5)
fl—>00

X

'.(*)=/* [*><_•). (6)

1

Damit erwachst natürlich die Aufgabe, zu zeigen, dass durch (4), (5), (6) wirklich dieselbe
Funktion / dargestellt wird. Es ist nun bemerkenswert, dass sich bei geeignetem Vorgehen
diese ganze Erörterung insofern auf einem Vorposten zur eigentlichen Infinitesimalrechnung

abspielt, als selbst bei (6) die blosse Definition des bestimmten Riemannschen
Integrals völlig ausreicht.

Es ist em Ziel dieser Note, der Liste (4), (5), (6) die Darstellung

l^(x) hm h (n, [x k(x) n\) - hm h (n, k(x) n) [x > 0]7) (7)

an die Seite zu stellen, worin k(x) —[—1/x] und h(n, q) 1/n -f- ••• -f 1/q [0 < n ___ q;
n, q ganz] bedeuten sollen. (7) ist eme Verallgemeinerung der bekannten Beziehung

'M =2%,(i + - + int) [*>o.^D. (?')

Ferner begründen wir die Gleichwertigkeit der Darstellungen (4) bis (7) durch den folgenden

Satz: Für alle x > 0 gilt lx(x) l2(x) lz(x) l±(x)9).

2. Beweis. Im Hinblick auf die anfangs eingeräumte Bemerkung2) genügt es, zu zeigen,
dass die Funktionen lx bis /4 die Eigenschaften (H) und (1) besitzen - Fur Existenz und
Eigenschaften von l2 verweisen wir auf [1], p. 117 ff. — lx Berücksichtigt man, dass fur
cn n (xxln — 1) gilt cn _> cn+1, 1 — 1/x < cn < x — 1 [x > 0, n 1, 2, ..], so ergibt sich

8) Vergleiche etwa [3], p. 81.
4) Vergleiche etwa [6], p. 252.
5) Vergleiche etwa [1], p. 118.
6) Diese Art der Einführung der natürlichen Logarithmusfunktion geht unseres Wissens auf Felix

Klein [4], p. 323 ff, zurück. Vergleiche auch [2], p. 136, [6], p. 242 und fur die Verwendung an der Mittelschule

besonders [5], p. 23 ff; [9], p. 104 ff; [10], p. 33 ff; [11].
7) [PI bedeute das Gauss'sche Klammersymbol. Fur natürliche x wird k(x) — 1, und (7) geht uber in (7').

Die Anregung zu dieser Verallgemeinerung verdanken wir Herrn F. Steiger, Bern.
8) Die Richtigkeit dieser Darstellung kann auch durch die Berufung auf einen bekannten Zusammenhang

mit der Euler'schen Konstanten erschlossen werden. Andersartig wird (7') in [7], p. 89, Aufgabe 35, und
p. 104, Aufgabe 31, gewonnen. Vergleiche auch [9], p. 107, Aufgabe 2.

9) Die Überemstimmung mit der Darstellung (3) fur a e ergibt sich etwa durch Satz 7 in [81.
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die Existenz von lt und die Gültigkeit von lx(x) ___ x — 1 [x > 0], wahrend (H) analog wie
fur l2 nachgewiesen werden kann. — lz: Fur jedes a > 0 gilt

«-1
1 w-i 1

£' ~z~ (Wi ~ y Jl-^r (**i»+i - fl/J *

v 0 v v-0

woraus bei 1 t0 < • • • < tn x unmittelbar

ax
C dt C ds

',(*) / t T (8)
1 a

resultiert, die Erweiterung auf den Fall 0 < x <> 1 geschieht durch die bekannten
Konventionen10), so dass also (8) fur alle x > 0 gilt. Dann ist

*1#2

h(xxx2) =j — =j—+j t lz(Xl) + h(x2)
1 1 Xy

Fur x > 1 ist 1 • (x — 1) eme zu lz(x) gehörige Riemannsche Obersumme und fur 0 < x
< 1 ebenso 1 • (1 — x) eine zu — lz(x) gehörige Untersumme. Dadurch ist auch die Gültigkeit

der im Falle x — 1 trivialen Bedingung (1) sichergestellt.
Fur /4 bemerken wir, dass fur p > 1 der Abschnitt h (n, [p n\) der harmonischen Reihe

im wesentlichen mit der zu lz(p) und der Zerlegung tv 1 + v/n (v 0, 1, [p n] — n)
gehörigen Riemannschen Obersumme sn übereinstimmt, genauer, h (n, [p n\) sn +
([p n] + 1 — p n)/[p n]. Daraus resultiert h (n, [p n\) ->- l3(p) [n -> oo]. Im Falle p 1

reduziert sich h (n, [p n]) auf 1/n, und die soeben fur p > 1 gemachte Konvergenzaussage
gilt auch hier. Fur alle x > 0 ist nun k(x) eme natürliche Zahl und überdies x k(x) _> 1.

Somit gilt nach (7): l^(x) lz (x k(x)) — l3 (k(x)), also, da /3 die Eigenschaft (H) besitzt,
l^(x) — lz(x) fur alle x > 0, womit alles bewiesen ist. Jurg Ratz, Bern
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Gruppenähnliche Strukturen

Im folgenden sollen Strukturen 5° angegeben werden, die zwar Halbgruppen smd und
Lmkseinselemente sowie Rechtsinverse besitzen, aber keine Gruppen smd Solche Strukturen

definieren wir in Mengen S, deren Elemente singulare Matrizen smd Als Verknüpfung
wird dabei die Matrizenmultiphkation im üblichen Sinn verwendet Es zeigt sich,

dass es in diesen Strukturen unendlich viele Lmkseinselemente und zu jedem Element
und zu jeder Lmksemheit genau em Rechtsinverses gibt. Es sei

S°

Eine Linkseinheit ist

axa2... an

axa2... an

^axa2.. an

at reell, JJaj **= °

eS°, mit beliebigen xt und JT* x3 1. (1)
7 1

Es sei eL em Linkseinselement und

eS°

em Element aus S°. Em rechtsmverses Element <x£1 von a bezuglich der Linkseinheit eL
ist von der Form

**l
w

bt bn

&,=¦

Dann ist

2>j-i
£L

i 1, 2,

Aus (1) folgt, dass es in S° unendlich viele Lmkseinselemente gibt Daraus ergibt sich,
dass S° keine Gruppe sein kann. Dass S° keine Rechtsemselemente besitzt, folgt unmittelbar

aus dem bekannten Satz, dass eme Halbgruppe mit Emselement kein weiteres Links-
emselement hat und dass in einer Halbgruppe ohne Emselement von der Menge der
Links- bzw. Rechtsemselemente mindestens eine die leere Menge ist. (Vergleiche zum
Beispiel L. R£dei, Algebra, Teil 1, 1959, S 45).

Betrachtet man die Menge ST, deren Elemente die transponierten Elemente von S
smd, so erhalt man bei Einfuhrung der Matrizenmultiphkation als Verknüpfung eme
ähnliche Struktur STo. In dieser gibt es dann unendlich viele Rechtsemselemente und zu

jedem Element und zu jeder Rechtseinheit gibt es genau em Linksinverses. STo ist aus
analogen Gründen wiederum keine Gruppe.

Übrigens haben die Matrizen <x der Menge S die Eigenwerte

Xx A2 — K-i=0, Kn=2Jaf
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Die charakteristische Determinante lasst sich namhch durch elementare Umformungen
m die Gestalt M \

D det(a- XI) (- l)"-1 AW"M JTä, - A J

bringen, a hat also genau einen von Null verschiedenen Eigenwert Xn, und die Rechtsinverse

bezuglich einer bestimmten Linkseinheit mit den Elementen xx, xn hat die
Elemente b, xt X~\ i 1, n. R# z Domiaty und H. Florian, Graz

Note on Fermat Numbers

It is known that if Fn= 22*1 + 1, then the numbers

Mx FnFn+1, n>l,
M2=FnFn+1Fn+2, n>2,and

are pseudopnmes, l.e they are composite (clearly) and Mt | 2Mi — 2, (i 1, 2). The
fact, that the number M2 is pseudopnme was also recently stated m these Elemente [2].
These results follow immediately from the following theorem, proved by M. Cipolla [1]:

If M FmFn Fs,m > n > > 5, then Misa pseudopnme if and only if m < 2S.

A composite number N which has the property, that for every divisor d of N,
d | 2d - 2 (1)

holds, is called a super-pseudopnme number.
In this note we shall prove the following
Theorem The number Mx is a super-pseudopnme.

We denote by A(m) the smallest natural number A such that m \ 2A — 1. To prove our
Theorem we require the following known lemmas ([3], p 343 and [1]).
Lemma 1. If d \ Fn, then A(d) 2n+1.
Lemma 2. If p is a prime and p \ Fn, then p 2n+2 A+l.
Lemma 3. lim and n are relatively prime, then

A(mn) [A(m), A(n)],
where [a, b] denotes the least common multiple of a and b.

Proof of the Theorem. It is enough to show that for every divisor d of Mx, we have

A(d)\d-1. (2)

Let d | Mx, thus d dxd2, where dx | Fn, d2 \ Fn+1 and it is well known that (dx, d2) — 1.

From Lemma 2 we get dx 2n+2 kx + 1, d2 2W+8 k2 -f 1, and thus

d dxd2= 2n+2k+ 1. (3)

On the other hand, by Lemma 1, A(dx) 2n + 1, A(d2) 2W+2, and by Lemma 3,

A(d) [A(dx),A(d2)] 2»+K (4)

From (4) and (3) we get (2), which implies (1), and the Theorem is proved.
Remark. The question, whether there exist infinitely many super-pseudopnme numbers

M2 seems to be difficult. Namely, it may be observed, that the number M2 is a
super-pseudopnme if and only if every divisor of the number Fn is of the form 2M+3 k + 1.
We are unable to decide if there exist mfmitely many of such Fermat numbers.

K. Szymiczek, Katowice, Poland
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A Variation on a Problem in Number Theory of H. Steinhaus

Throughout this paper JV will denote the natural numbers. Let ne N and suppose
that the digits in the decimal expansion for n are ax, a3. Defme a function 5 by

s(n)=Za*.
It is known [3] that for each n e N there is a k such that sk (n) s(sk~1(n)) 1 (in which
case sk+t(n) 1 for all 1) or there isaÄ such that sk(n) 4 (m which case sk + 8t(n) — 4
for all 1). We shall say that a natural number n is of type A in the flrst case and of type B
m the second case. In this paper the following theorem is proved
Theorem 1. There exist arbitrarüy long gaps between consecutive numbers of type A (type B).

The proof of this result is in two parts. First it is shown that if there exists a number
n such that n + k is of type B (type A) for k 1, 4, 16, 20, 37, 42, 58, 89, 145, then there
are arbitrarüy long gaps between consecutive numbers of type A (type B) Then it is
shown that, for each type, such a n exists

The three facts contamed in the following lemma are easily estabhshed and will be
helpful in the sequel.

Lemma 1. (a) // ; < 10* and n m • 10* then s(n 4- ;) s(m) 4- ^(7), (b) n and s(n)
are of the same type; (c) If ne N then there is a number m such that s(m) — n.
The proofs of the following three lemmas are quite similar and only the first and last
will be proved.

Lemma 2. If there exists n e N such that n + k is of type A (type B) for 1 < k < 243
then there exists p eN such that p + k is of type A (type B) for 1 < k < 103.

To see this let p q • 103 where s(q) n. If k < 1000, s(k) < 81 + 81 + 81 < 243.
Thus n 4- 1 < s(p -h k) s(q) + s(k) <w+ 243 and hence p + k is of type A (type B).

Lemma 3. Let me N where m > 3. // there exists ne N such that n 4- k is of type A
(type B) for 1 < k < 10w then there exists p e N such that p + k is of type A (type B) for
1 < k < 10loW_2.

Lemma 4. If there exists a n0 such that n0 + k is of type A (type B) for k e {1, 4, 16, 20,
37, 42, 58, 89, 145} then there exists a p such that p 4- k is of type A (type B) for 1 < k < 243.

Suppose n0 satisfies the hypothesis of the lemma, that qx is such that s(qx) n0 and
for 1 > 1, qt and nt are defmed mductively as nt qt- 103, where qt is such that s(qt)
nt_x. Let p nxo then for 1 < k < 243, s10(p + k) s9(s(n10) 4- s(k)) s»(s(q10) 4- s(k))

s9 (n9 4- s(k)) n0 + s10 (k). But it can be shown that if 1 < k < 243 then s10 (k) e

{1, 4, 16, 20, 37, 42, 58, 89, 145} thus the lemma is true and we have the following theorem
Theorem 2. If there exists ne N such that n 4- k is of the type A (type B) for ke {1, 4,

16, 20, 37, 42, 58, 89, 145} then for all m e N there exists pe N such that p 4- k is of type
A (type B) for k < m.

To prove theorem 1 we observe that m theorem 2, n 1 works for numbers of type B.
In fmdmg a number n that works for numbers of type A an IBM 1620 at the Statistical
laboratory and Computing center, University of Oregon, was employed m part. Calcula-
tions showed that the following numbers were of type A. 3293, 3296, 3301, 3308, 3436.
Let L0 3291, Lx be such that s(Lx) 3291, kx Lx • 103 4- 3, L2 be such that s(L2)
kx, k2 — L2 • 103 4- 76, L3 be such that s(LB) k2, k3 Lz • 103 4- 62, L4 be such that
s(LA) £3 and £4 Z,4 • 108 4- 122. Then if se{l, 4, 16, 20, 37, 42, 58, 89, 145} then
*4 (£4 4- 1) e {3293, 3296, 3301, 3308, 3436}. Hence kA 4- 1 is of type A and n £4 works
for the n m theorem 2 and theorem 1 is proved.

Richard B. Crittenden and J. Kenneth Harris,
Oregon State University, Corvalhs, USA

and Portland State College, Portland, USA
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sin-tan-Transformation, Polarisation und Pseudopolarisation
Uber die Äquivalenz von je 12 Formeln m der Theorie vierter Dreiecksstucke

Seien ab cd die Seiten, ha hb hc h die Hohen, qa Qb qc q die Beruhrradien und sa sb sc s (oft
s-a, s-b, s-c, s genannt) die Beruhrstrecken eines ebenen Dreiecks mit Innenwinkeln ABC
und Flächeninhalt F Bekanntlich ist die 4 Hohe h der Umkreisdurchmesser, und die
4 Seite d — 2 F/h eine Taylorkreissehne 6-Punktekreissehne

_<L_

Wegen

d als Taylorkreissehne

a d hb
sm_4 — —2-

d hohenparallel

tan——

nebst zyklischer Vertauschung

s lb i__
Qc Qb

abca

2 F a hn

F Qa Sa

dh

QS

(1)

(!')

ABCA
> gilt folgender

Äquivalenzsatz: Jede richtige bzw falsche multiplikatwe Identität in Stucken aus irgendeiner
der folgenden 12 Zeilen der Tabelle bleibt richtig bzw falsch, wenn die Stucke durch die
entsprechenden irgendeiner anderen Zeile ersetzt werden

a b c d ha h hr. h sm A sm B sinC 2
smA smB sinC 2F ha h hc h-1 a b c d

1/smA 1/smB 1/sinC 2F a b c d-1 ha h hc h
a~x b~x c~l d sm_4 sinB smC (2F) K hb K h
ha hb hc hr1 sm_4 smß sinC 2F a-1 b-1 c~l d
ha hb hc h a b c d 1/smA 1/smB 1/sinC 2

Qa Qb Qc Q sa sb sc s tan.4/21) tan B/2 tan C/2 F
tan A/2 tan B/2 tanC/2 F sa sb Sc s-1 Qa Qb Qc Q

l/tan_4/2 1/tan B/2 l/tanC/2 F Qa Qb Qc Q-1 Sa Sb sc s
Qä1 Qb1 Qc1 Q tan A/2 tan B/2 tan C/2 F-1 Sa Sb sc s~

Sa Sb Sc S~X tSLTlA/2 tan B/2 tan C/2 F Qä1 Qb1 Q71 Q

sa sb sc s Qa Qb Qc Q 1 /tan A/2 1 /tan B/2 1/tan C/2 F

Beispiel Es gilt

1 abcd sinA smß sinC • 2F
(2F)2 d2

(smA sinß sm c)-1- 2F ar1b-1crid
h2 h~2

K hb hc h'1 ha hbhch qaQbQcQ tan (A/2) tan (B/2) tan(C/2) - F
d2 (2F)2 F2 Q2

[tan (A/2) tan (B/2) tan (C/2)]-l. p Q^Ql 1Q71Q
__

SaShScS-1 _ sasbscs
F2

Beweis Zeile 1 lasst sich mittels (1) multiphkativ durch höchstens 4 Stucke darstellen,
zum Beispiel durch a, b, c, sinA

*) tan A/2 tan (A/2) etc.
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a, b, c, a~x bc sin2_4, ar1 bc smA, c smA, b sm_4, a/smA,
smA, a~x b smA, a~x c smA, b c smA

Analog lasst sich Zeile 1' mittels (V) multiphkativ durch Qa,Qb,Qc, tan A/2 darstellen.
Jede multiphkative Identität 1 0 mit Stucken nur aus Zeile 1 lasst sich also in die
Gestalt 1 ax by cz (smAY mit x + y + z 0 (2)

setzen, woraus mittels (1) durch Ausübung der inversen Substitutionen wiederum 1 0
folgt. Da (2) fur alle Dreiecke gelten soll, ist b mit c vertauschbar, also y — z. Und weil
in (2) fur x 4= 0 bei konstantem Produkt b c und konstantem Winkel A auch a konstant
wurde, was aus bekannten geometrischen Gründen nicht zutrifft, so folgt x 0, also
auch y — z 0. Dann ist aber auch t — 0, und (2) reduziert sich auf die formale Identität
1 1. Jede multiphkative Identität 1 0 mit Stucken nur aus Zeile 1 lasst sich also
allein mittels (1) beweisen. Dann lasst sich aber die zu 1 0 isomorphe Identität 1 - &'
mit Stucken nur aus Zeile V allem mittels (1') beweisen, was ja zu (1) isomorph ist. Daher
ist der Übergang von einer der Zeilen 1 bis 6 zu der entsprechenden Zeile aus 1' bis 6'
legitim, desgleichen der umgekehrte Übergang. Diese Übergange werden sm-tan-Trans-
formation und tan-sm-Transformation genannt. Den vorstehenden Teilbeweis des
Äquivalenzsatzes verdankt man E. Trost.

Wegen der Isomorphie von (1) und (1') bleibt nur noch zweierlei zu beweisen
I. Der Übergang zwischen Zeile 1 und Zeile 2 - kurz 1)2) -, genannt Polarisation. Er ist
namhch äquivalent mit dem Übergang 3)4) bzw. 5)6) und folgt aus der zu (1) isomorphen
Formelgruppe

2-F hb K smA „,-,,, ,„xa ~K =-iTnC 'TÜB =-»-- rf sm_l.Äa=2F*-i. (3)

Der zu 1)2) isomorphe Übergang l/)2/) werde Pseudopolansation genannt
II. Der Übergang 2)3) nebst den äquivalenten Zeilenubergangen 4)5) und 6)1). Er kann
Seiten-Hohen-Vertauschung genannt werden (den isomorphen Übergang 2')3') kann man
als Beruhrradien-Beruhrstrecken-Vertauschung bezeichnen). Er folgt aus der zu (3)
isomorphen Formelgruppe

2F b c 1/smA _, _h -fj—pr -zn o- —.T-i— h (l/sm_4) > a= 2Fd~1. 4
a a 1/smC 1/smB d~x \ i i \ >

Weil hiermit sämtliche Zeilenubergange als legitim erkannt sind, ist der Äquivalenzsatz
bewiesen.

Mit (1) (3) (4) und den isomorphen Formeln (1') (3') (4'), die man leicht vollständig
hinschreibt, ist bereits gezeigt, dass durch Anwendung der 12-Zeilen-Tabelle nicht immer
12 verschiedene Beziehungen entstehen, sondern mitunter nur 6 (oder noch weniger). Das
ist auch der Fall bei

2F= (abc d)1'2
(a b c Ä"1)1'1 =(h-xb c d)1'1
(a b h^h-1)110 (h-^h^c d)lf0 1°°

- (a hbx A« i h-y-i (Ä-i ÄFi Äji d)i/-i
(h^h^h^h-^'-2.

Dieser Formelgruppe gesellen sich durch Anwendung des Äquivalenzsatzes genau 5

isomorphe Formelgruppen hinzu. d h F q s —
Zur Erklärung der Bezeichnungen Polarisation und Pseudopolansation sei auf

Folgendes hingewiesen. 2F und d sind beim ebenen Dreieck analog dem Eckensinus und
Polareckensmus des sphärischen Dreiecks definierbar. h ist das ebene Analogon des
Moduls, beim ebenen Polarisieren geht h 2 F/d m h~x d/2 F uber. Auf der Kugel smd
die Hohen (zum Beispiel ha und ha) von Dreieck und zugehörigem Polardreieck
supplementär, weil sie gemäss ha 4- 90° + ha 4- 90° 360° auf einem Grosskreis verteilt liegen.
Analog smha smha geht m der Ebene beim Polarisieren ha in ha (also m sich selbst)
uber. Schliesslich tauschen m der Ebene a und sm_4 beim Polarisieren die Rollen, wie auf
der Kugel sma und smA. Der zum Polarisieren im sm-Bereich isomorphe Vorgang im tan-
Bereich wird durch die Vorsilbe Pseudo kenntlich gemacht. - Durch Einführung einer
ehemals uneigenthchen Zahl i wird em isomorpher Zerfall m Linearfaktoren zum Beispiel
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bei den Polynomen x2 - 1 - (x - 1) (x 4 1) und x2 + 1 - (x - i) (x + i) erzielt, durch
Einfuhrung einer uneigenthchen Seite d und Hohe h ein isomorpher Zerfall von sm- und tan-
Bereich in Stucke und Formeln

Der Beweis des Aquivalenzsatzes vereinfacht sich erheblich, wenn man Zeile 1) oder 1')
m der allgemeinen Gestalt ex ey ez el eX ey e% e? e% e*i e^ e* etwa mit unbestimmten xy zt
schreibt Unter Zuhilfenahme der beiden orthogonalen Matrizen

M M-1
1 - 1 N N~1

1 - 1

-1-1
stosst man namhch auf die beiden Sechserzyklen

XYZI v C

(— x —y — z

x y z t M
X Y Z -T)M
£ tj f -fr)M

¦x —y —z — t)MX-Y-Z T)M
¦f -n -f fr)M
x y z t N -¦

-I -r/ -C fr) N ¦-

X-Y-Z T) N-¦

- x —y — z — t N
£ rf £ -fr) N
X Y Z -T) N

¦X- Y-Z

xyz
X 1
x y

C

Z

T)
&)
t

-T)
-fr)
-*

T)
t

¦ e -r, -c -fr)-X-Y-Z - T)
¦ x —y — z t

und hierin stellen bereits die ersten 3 Zeilen den Beweis des Aquivalenzsatzes dar -
Offenbar gibt es beliebig viele additive und multiphkative Beispiele xy zt XY Z T
£ r] C fr allem in der Dreieckslehre Wir wählten 2 naheliegende multiphkative den
sm-Bereich und den tan-Bereich I Paasche München

Aufgaben

Aufgabe 501. Man bestimme den geometrischen Ort fur das Zentrum einer raumlichen
Inversion, welche drei gegebene Punkte in die Ecken eines gleichseitigen Dreiecks
abbildet C Bindschedler, Kusnacht

Losung Es seien Px, P2, P3 die gegebenen Punkte, Px*, P2*, P3* deren Bilder bei einer
Inversion mit Zentrum M und Inversionsradius r, ferner MP o., MP* — o* Dann ist

Q* r*Q-1 1=1,2,3
Aus der Ähnlichkeit der Dreiecke PXMP2 und P2* MPX* folgt

VP? Px~P* Qt Qi r2 QlQ2

(1)

(2)

QiQs

(3)

Wegen der Forderung PX*P2* P2*PZ* P3*Pi* ergibt sich aus (2) PXP2 qxq2 PXP3
oder

q2 q3 PXP2 PXPZ und entsprechend g3 qx P2PZ P2PX, qx q2 P3Px PzP2

Die Verhaltnisse der Entfernungen des Inversionszentrums M von den Ecken des
Dreiecks PXP2P3 smd also gegeben, M hegt auf drei «Apollonischen Kugeln». Da aus
zwei der Bedingungen (3) die dritte folgt, haben diese drei Kugeln einen gemeinsamen
Schnittkreis und damit auch eme gemeinsame Zentrale Dieser Kreis, dessen Mittelpunkt
auf jener Zentralen hegt und dessen Ebene zu ihr senkrecht steht, ist der gesuchte
geometrische Ort W Janichen, Berhn-Zehlendorf

Weitere Losungen sandten G Geise (Dresden), K Schuler (Rottweil) und
K Zacharias, (Berlin)
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