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H. ZerTLER: Sitze iiber das Sehnenviereck in der sphirischen und hyperbolischen Geometrie 55

4. Zusammenfassung der Formeln

Wir weisen noch auf die Uberginge zwischen den einzelnen Formeln hin. Aus
den sphirischen Formeln werden sofort die euklidischen, wenn der Kugelradius R
unbegrenzt wichst. Nimmt man dagegen eine Kugel mit rein imagindrem Radius,
ersetzt man also R durch ¢ R, so gehen die sphirischen in die hyperbolischen Formeln
iiber.

Meist wird die Liangeneinheit so festgelegt, dass die Konstante R den Wert 1 hat.
Fiir diesen Fall fassen wir die beiden Formeln fiir die drei Geometrien zu je einer
einzigen zusammen.

Wir definieren ([5], S. 64):

S(a) =

= sm]/K a.

Damit lauten die Sitze:

s(3) st2) - s(2) s(%) + s(2) (%),
| st _ ot ) 2(3) (2

() _s() 2
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Fiir 2 = 1 sind dies die Formeln (L), (IIg), fiir £ = —1 (I), (II) und fiir 2 >0
schliesslich (Ij,), (II). H. ZeiTLER, Weiden, Deutschl.
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Kleine Mitteilungen
Explizite Darstellungen der natiirlichen Logarithmusfunktion

1. Problemstellung. Die natiirliche Logarithmusfunktion ist gekennzeichnet als die
einzige Losung der Funktionalgleichung

Hws %g) = [(%1) + f(x2) [f: P> R]Y (H)
mit der zusitzlichen Bedingung
fr) =x -1 [alle x € P]¥). (1)

1) R bedeute durchwegs die Menge der reellen Zahlen, P diejenige der positiven reellen Zahlen.
2) Vergleiche [1], p. 114. Fiir andere zur Charakterisierung geeignete Eigenschaften vergleiche 8],
Sitze 6 und 7.
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Insbesondere erweist sich die Normierung

fle) =1 (2)

als eine Folgerung von (H) und (1). Neben der bekannten fiir beliebige Basen a (a > 0,
a * 1) giiltigen expliziten Darstellung

2logx = supg = info [¥ € P; g, o vational]?) (3)
al<x  x<a®

gibt es nun solche, die fiir die natiirliche Logarithmusfunktion / in ihrer Art spezifisch sind :

W) =Jlimn (i — 1) x> 0], (4
B = lim2e (1 — 537 x> ]9), (5
L = [ v > 0]9). (©)

1

Damit erwichst natiirlich die Aufgabe, zu zeigen, dass durch (4), (5), (6) wirklich dieselbe
Funktion / dargestellt wird. Es ist nun bemerkenswert, dass sich bei geeignetem Vorgehen
diese ganze Erodrterung insofern auf einem Vorposten zur eigentlichen Infinitesimal-
rechnung abspielt, als selbst bei (6) die blosse Definition des bestimmten Riemannschen.
Integrals vollig ausreicht.

Es ist ein Ziel dieser Note, der Liste (4), (5), (6) die Darstellung

L(x) = limh (v, [x k() %)) — Limh (n, k(@) n)  [x > 0]7) (7)

an die Seite zu stellen, worin k() = —[—1/¥] und A(n,q) =1/n+ -+ + 1/g[0 < n < q;
n, ¢ ganz] bedeuten sollen. (7) ist eine Verallgemeinerung der bekannten Beziehung

ly(») = lim (—}— L 7%-1?) [¥ > 0, ganz]8) . (7')

n—>00\ N

Ferner begriinden wir die Gleichwertigkeit der Darstellungen (4) bis (7) durch den folgen-
den

Satz: Fiir alle x > 0 gilt I,(x) = l,(x) = l3(x) = 1,(¥)?9).

2. Beweis. Im Hinblick auf die anfangs eingeriumte Bemerkung?) geniigt es, zu zeigen,
dass die Funktionen /, bis /, die Eigenschaften (H) und (1) besitzen. — Fiir Existenz und
Eigenschaften von /, verweisen wir auf [1], p. 117 ff. — /,: Beriicksichtigt man, dass fiir
Cp=n@r—Ngilte, 2 cppqy, 1 = 1x<c¢,<x—1[x > 0;n=1,2,...], so ergibt sich

3) Vergleiche etwa [3], p. 81.

4) Vergleiche etwa [6], p. 252.

5) Vergleiche etwa [1], p. 118.

) Diese Art der Einfiihrung der natiirlichen Logarithmusfunktion geht unseres Wissens auf FELIx
KrEIN [4], p. 323 {f, zuriick. Vergleiche auch [2], p. 136; [6], p. 242 und fiir die Verwendung an der Mittel-
schule besonders [5], p. 23 ff; [9], p. 104 ff; [10], p. 33 ff; [11].

) [#] bedeute das Gauss’sche Klammersymbol. Fiir natiirliche x wird k(x) = 1, und (7) geht iiber in (7°).
Die Anregung zu dieser Verallgemeinerung verdanken wir Herrn F. STEIGER, Bern.

8) Die Richtigkeit dieser Darstellung kann auch durch die Berufung auf einen bekannten Zusammenhang
mit der Euler’schen Konstanten erschlossen werden. Andersartig wird (7°) in [7], p. 89, Aufgabe 35, und
p. 104, Aufgabe 31, gewonnen. Vergleiche auch [9], p. 107, Aufgabe 2.

%) Die Ubereinstimmung mit der Darstellung (3) fiir a = ¢ ergibt sich etwa durch Satz 7 in [8)].
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die Existenz von /, und die Giiltigkeit von /,(¥) < x — 1 [ > 0], wihrend (H) analog wie
fiir I, nachgewiesen werden kann. — /;: Fiir jedes a > 0 gilt

n—1 n-1

1 1
2“; (trr— B) =2"g;{; (@typy—at),

p=0 "7 y=0

woraus bei 1 = ¢, < --- < #, = » unmittelbar

at ds
W) = [ = [ 2 (®)
/"

resultiert; die Erweiterung auf den Fall 0 < ¥ < 1 geschieht durch die bekannten Kon-
ventionen!?), so dass also (8) fiir alle ¥ > 0 gilt. Dann ist

xlxzd E2) xnxzd

¢ dt ¢

I3(%1 %,) =f7 :/“‘t‘ +/“t““ = Ig(%) + I3(%,)
1 1 %

Fir x > 1ist 1. (¥ — 1) eine zu /;(¥) gehorige Riemannsche Obersumme und fiir 0 < »
< 1 ebenso 1. (1 — x) eine zu —/,(¥) gehorige Untersumme. Dadurch ist auch die Giiltig-
keit der im Falle ¥ = 1 trivialen Bedingung (1) sichergestellt.

Fiir /, bemerken wir, dass fiir p > 1 der Abschnitt % (#n, [p #]) der harmonischen Reihe
im wesentlichen mit der zu /;(p) und der Zerlegung ¢, =1+ v/n (v = 0, 1, ..., [p n] — n)
gehorigen Riemannschen Obersumme s, iibereinstimmt; genauer: % (n, [p #]) = s, +
([pn] + 1 — pn)/[pn]. Daraus resultiert & (n, [p n]) > I3(p) [# > o). Im Falle p =1
reduziert sich % (%, [p n]) auf 1/», und die soeben fiir p > 1 gemachte Konvergenzaussage
gilt auch hier. Fiir alle ¥ > 0 ist nun £(x) eine natiirliche Zahl und iiberdies » £(x) = 1.
Somit gilt nach (7): l,(¥) = I (v k(%)) — I3 (k(x)), also, da I, die Eigenschaft (H) besitzt,
ly(x) = l4(x) fiir alle ¥ > 0, womit alles bewiesen ist. JUrG RATz, Bern
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Gruppenéhnliche Strukturen

Im folgenden sollen Strukturen S° angegeben werden, die zwar Halbgruppen sind und
Linkseinselemente sowie Rechtsinverse besitzen, aber keine Gruppen sind. Solche Struk-
turen definieren wir in Mengen S, deren Elemente singuldre Matrizen sind. Als Verkniip-
fung wird dabei die Matrizenmultiplikation im iiblichen Sinn verwendet. Es zeigt sich,
dass es in diesen Strukturen unendlich viele Linkseinselemente und zu jedem Element
und zu jeder Linkseinheit genau ein Rechtsinverses gibt. Es sei

a,a, ... a,
a,a, ... a, "
0 - .
58 = P s 0, aireell, EaJ#:O.
. s . “~
a,as ... a,,
Eine Linkseinheit ist
Fy www Ky
. . "
- 0 1 1 1 =
g =1 - . e S0, mit beliebigen »; und E ¥ =1. (1)
‘ j=1
xl . o 0 xn

Es sei ¢; ein Linkseinselement und

a, ...a,

ein Element aus S° Ein rechtsinverses Element az! von « beziiglich der Linkseinheit ¢;
ist von der Form

by ...b,

Xi

aglzz . . » bi— ’i=1,2,...,’n.

- T a0

Dann ist 1
o aR = EL .

Aus (1) folgt, dass es in S° unendlich viele Linkseinselemente gibt. Daraus ergibt sich,
dass S° keine Gruppe sein kann. Dass S° keine Rechtseinselemente besitzt, folgt unmittel-
bar aus dem bekannten Satz, dass eine Halbgruppe mit Einselement kein weiteres Links-
einselement hat und dass in einer Halbgruppe ohne Einselement von der Menge der
Links- bzw. Rechtseinselemente mindestens eine die leere Menge ist. (Vergleiche zum
Beispiel L. REpEI, Algebra, Teil 1, 1959, S. 45).

Betrachtet man die Menge S7, deren Elemente die transponierten Elemente von S
sind, so erhdlt man bei Einfiihrung der Matrizenmultiplikation als Verkniipfung eine

dhnliche Struktur S7°. In dieser gibt es dann unendlich viele Rechtseinselemente und zu

jedem Element und zu jeder Rechtseinheit gibt es genau ein Linksinverses. STe jst aus
analogen Griinden wiederum keine Gruppe.
Ubrigens haben die Matrizen o der Menge S die Eigenwerte

n
M=dy=...=%4_,=0, }*n=2"i-
1
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Die charakteristische Determinante ldsst sich ndmlich durch elementare Umformungen
in die Gestalt n
D =det(a — AI) = (—1)r—1An—1 <Zaj - l)
1

bringen. a hat also genau einen von Null verschiedenen Eigenwert 4,, und die Rechts-
inverse beziiglich einer bestimmten Linkseinheit mit den Elementen x,, ..., #, hat die
Elemente b; = ;4,7 L, ¢ =1, ..., n. R. Z. DomiaTy und H. FLoriaN, Graz

Note on Fermat Numbers

It is known that if F, = 22" + 1, then the numbers
d Ml :E!EI-‘}‘I’ n > 1:
an
M, =FF by, n>2,

are pseudoprimes, i.e. they are composite (clearly) and M, |2Mi — 2, (i =1, 2). The
fact, that the number M, is pseudoprime was also recently stated in these Elemente [2].
These results follow immediately from the following theorem, proved by M. CiporLA [1]:
ItM=F,F, ... F,, m >n > ... > s, then M is a pseudoprime if and only if m < 25.
A composite number N which has the property, that for every divisor 4 of N,
d|2¢—2 (1)
holds, is called a super-pseudoprime number.
In this note we shall prove the following
Theovem. The number M, is a super-pseudoprime.
We denote by A(m) the smallest natural number 4 such that m | 24 — 1. To prove our
Theorem we require the following known lemmas ([3], p. 343 and [1]).
Lemma 1. 1f d | F,, then A(d) = 27+1,
Lemma 2. If p is a prime and p | F,, then p = 2"+2% + 1.
Lemma 3. 1f m and » are relatively prime, then

A(mn) = [A(m), A(n)],
where [a, b] denotes the least common multiple of a and b.
Proof of the Theovem. 1t is enough to show that for every divisor d of M,, we have
Ad) |d—1. (2)
Let d | M,, thus d = d, d,, where d, | F,, d, | F,, and it is well known that (d,, d;) = 1.
From Lemma 2 we get d, = 2"+2k, + 1, dy = 2"+3 k, 4 1, and thus

d=d,dy=2"+2k + 1. (3)
On the other hand, by Lemma 1, 4(d,) = 2#+1, A(dy) = 2%#*2, and by Lemma 3,
A(d) = [A(dy), A(dg)] = 2"+2. (4)

From (4) and (3) we get (2), which implies (1), and the Theorem is proved.

Remark. The question, whether there exist infinitely many super-pseudoprime num-
bers M, seems to be difficult. Namely, it may be observed, that the number M, is a
super-pseudoprime if and only if every divisor of the number F, is of the form 2#+3 % 4 1.

We are unable to decide if there exist infinitely many of such Fermat numbers.
K. Szymiczek, Katowice, Poland
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A Variation on a Problem in Number Theory of H. STEINHAUS

Throughout this paper N will denote the natural numbers. Let # € N and suppose
that the digits in the decimal expansion for % are a,, ..., a;. Define a function s by

s(n) =Xaz.
It is known [3] that for each # € N there is a & such that s*(n) = s(s*~1(»n)) = 1 (in which
case sk+i(n) = 1 for all 4) or there is a & such that s*(#) = 4 (in which case s¥+8%(n) = 4
for all 4). We shall say that a natural number # is of type A in the first case and of type B
in the second case. In this paper the following theorem is proved.

Theovem 1. There exist avbitvavily long gaps between consecutive numbers of type A (type B).

The proof of this result is in two parts. First it is shown that if there exists a number
n such that » + % is of type B (type A) for & = 1, 4, 16, 20, 37, 42, 58, 89, 145, then there
are arbitrarily long gaps between consecutive numbers of type A (type B). Then it is
shown that, for each type, such a # exists.

The three facts contained in the following lemma are easily established and will be
helpful in the sequel.

Lemma 1. (a) If § < 10% and n = m - 10% then s(n + §) = s(m) + s(j); (b) n and s (n)
ave of the same type; (c) If ne N then theve is a number m such that s (m) = n.
The proofs of the following three lemmas are quite similar and only the first and last
will be proved.

Lemma 2. If theve exists ne N such that n + k is of type A (type B) for 1 < k < 243
then theve exists p € N such that p + k is of type A (type B) for 1 < k < 103,

To see this let p = g - 103 where s(q) = »n. If £ < 1000, s(k) < 81 4 81 + 81 < 243.
Thus z + 1 < s(p + k) = s(q) + s(k) < » + 243 and hence p + % is of type A (type B).-

Lemma 3. Let m e N wheve m > 3. If theve exists we N such that n + k is of type A
(type B) for 1 < k < 10™ then theve exists p € N such that p + k is of type A (type B) for
1<k 1010m—2

Lemma 4. If theve exists a n, such that ny + k is of type A (type B) for ke {1, 4, 16, 20,
37, 42, 58, 89, 145} then theve exists a p such that p + k is of type A (type B) for 1 < kb < 243.

Suppose #», satisfies the hypothesis of the lemma, that ¢, is such that s(¢,) = », and
for ¢ > 1, q; and »; are defined inductively as n; = ¢, - 103, where g, is such that s(g;,) =
n;_,. Let p = ny, then for 1 < & < 243, s10(p + k) = s°(s(ny) + s(B)) = $*(s(910) + S())
= $¥(ny + s(R)) = ... = ny + s%(k). But it can be shown that if 1 << £ < 243 then s¥%(%) e
{1, 4, 16, 20, 37, 42, 58, 89, 145} thus the lemma is true and we have the following theorem:

Theorem 2. If theve exists m € N such that n + k is of the type A (type B) for ke {1, 4,
16, 20, 37, 42, 58, 89, 145} then for all m € N theve exists p € N such that p + k is of type
A (type B) for k < m.

To prove theorem 1 we observe that in theorem 2, » = 1 works for numbers of type B.
In finding a number » that works for numbers of type A an IBM 1620 at the statistical
laboratory and computing center, University of Oregon, was employed in part. Calcula-
tions showed that the following numbers were of type A: 3293, 3296, 3301, 3308, 3436.
Let L, = 3291, L, be such that s(L,) = 3291, 2, = L, - 10% 4 3, L, be such that s(L,) =
Ry, kg = L,-10% 4 76, L, be such that s(L;) = &y, k3 = Lg-10® 4 62, L, be such that
s(L,) = ks and k= L,-10% + 122, Then if i€ {1, 4, 16, 20, 37, 42, 58, 89, 145} then
st (kg + 1) € {3293, 3296, 3301, 3308, 3436}. Hence &, + ¢ is of type A and n = &, works
for the » in theorem 2 and theorem 1 is proved.

Ricuarp B. CRITTENDEN and J. KENNETH HARRIS,
Oregon State University, Corvallis, USA
and Portland State College, Portland, USA
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sin-tan-Transformation, Polarisation und Pseudopolarisation
Uber die Aquivalenz von je 12 Formeln in der Theorie vierter Dreiecksstiicke

Seien abcd die Seiten, h, hyh, h die Hohen, g, 05 0.0 die Beriihrradien und s, s, s, s (oft
s-a, s-b, s-¢, s genannt) die Beriihrstrecken eines ebenen Dreiecks mit Innenwinkeln A B C
und Flicheninhalt F. Bekanntlich ist die 4. Hohe % der Umkreisdurchmesser, und die
4. Seite d = 2 F/h eine Taylorkreissehne = 6-Punktekreissehne.

d hohenparallel

Wegen P A
_ e S G - - 1
sin 4 > p b W 2F=ah,=dh (1)
tan_‘fl_:_‘_f_ =EQ_ ___ff_:g‘ﬂ P‘:Qasazgs (1/)

abca
nebst zyklischer Vertauschung —————» gilt folgender
ABCA

Aquivalenzsatz: Jede vichtige bzw. falsche multiplikative 1dentitdt in Stiicken aus ivgendeiner
der folgenden 12 Zeilen dev Tabelle bleibt vichtig bzw. falsch, wenn die Stiicke duvch die ent-
sprechenden ivgendeiner andeven Zeile evsetzt wevden:

Beispiel: Es gilt
abcd sind sinBsinC - 2 F (sin4 sinBsinC)~'-2F alblc1d

=R T & = e e
_ hahy b BTt gy R R gq0p0.0 _ tan(A4/2) tan(B/2) tan(C/2) - F
- a2 - (2F) - F2 - o?
[tan (4/2) tan(B/2) tan(C/2)]* - F _ 03050520 _ SaSp5c5™ _ SaSpScs
- 52 = 2 = 02 =T E2

Beweis : Zeile 1 lasst sich mittels (1) multiplikativ durch hochstens 4 Stiicke darstellen,
zum Beispiel durch a, b, ¢, sin4:

1) tan 4/2 = tan (4/2) etc.

a b c d he hy ke h sin A sin B sinC 2.
sin 4 sin B sinC  2F Iy hy he k1 a b c d
1/sind4 1/sinB 1/sinC 2F a b c a N hy h. h
a1 b1 c' d sin4 sinB sinC (2F)™! ha hy he W
ke hy h, h™' sinA sinB sinC 2F a1 b3 cl d
h, hy, he R a b c d 1/sin4 1/sinB 1/sinC 2.
0 0p 0 © Sa Sp S S tanA4/2') tanB/2 tanC/2 F
tanA/2 tanB/2 tanC/2 F Sq Sp sc 51 0 b 0 ©
1/tanA4/2 1/tan B/2 1/tanC/2 F 0a 0 ot Sq Sp S, S
gzt o5t o;1 ¢ tanA/2 tanB/2 tan C/2 F-1 Sq Sp S, S
Sa Sp s, s! tanA/2 tanB/2 tanC/2 F 0z oyt o:l o
Sa Sp S S Oa 0 0 @ 1/tanA4/2 1/tan B/2 1/tan C/Z F
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a, b, c,albcsin®A4, albcsinA, csind, bsind, a/sin4,
sind,a'bsind,a1csinA, bcsinA.

Analog ldsst sich Zeile 1’ mittels (1’) multiplikativ durch g,, ¢,, ¢,, tan4/2 darstellen.
Jede multiplikative Identitdt 1 = @ mit Stiicken nur aus Zeile 1 ldsst sich also in die
Gestalt 1=a*b¥c(sind)! mit ¥+ y+2=20 (2)
setzen, woraus mittels (1) durch Ausiibung der inversen Substitutionen wiederum 1 = @
folgt. Da (2) fiir alle Dreiecke gelten soll, ist b mit ¢ vertauschbar, also y = 2. Und weil
in (2) fiir ¥ + 0 bei konstantem Produkt b ¢ und konstantem Winkel 4 auch a konstant
wiirde, was aus bekannten geometrischen Griinden nicht zutrifit, so folgt » = 0, also
auch ¥y = z = 0. Dann ist aber auch ¢ = 0, und (2) reduziert sich auf die formale Identitit
1 = 1. Jede multiplikative Identitit 1 = @ mit Stiicken nur aus Zeile 1 ldsst sich also
allein mittels (1) beweisen. Dann lisst sich aber die zu 1 = @ isomorphe Identitdt 1 = @’
mit Stiicken nur aus Zeile 1’ allein mittels (1’) beweisen, was ja zu (1) isomorph ist. Daher
ist der Ubergang von einer der Zeilen 1 bis 6 zu der entsprechenden Zeile aus 1’ bis 6
legitim, desgleichen der umgekehrte Ubergang. Diese Uberginge werden sin-tan-Trans-
formation und tan-sin-Transformation genannt. Den vorstehenden Teilbeweis des Aqui-
valenzsatzes verdankt man E. TrosT.
Wegen der Isomorphie von (1) und (1’) bleibt nur noch zweierlei zu beweisen:
I. Der Ubergang zwischen Zeile 1 und Zeile 2 — kurz 1)2) —, genannt Polarisation. Er ist
niamlich dquivalent mit dem Ubergang 3)4) bzw. 5)6) und folgt aus der zu (1) isomorphen
Formelgruppe
_2F  hy  h, _ sind o L i

= A= snC ~smB ~ ki d=sind - -h,=2Fh1. (3)
Der zu 1)2) isomorphe Ubergang 1’)2’) werde Pseudopolarisation genannt.
II. Der Ubergang 2)3) nebst den dquivalenten Zeileniibergingen 4)5) und 6)1). Er kann
Seiten-Hoéhen-Vertauschung genannt werden (den isomorphen Ubergang 2’)3’) kann man
als Beriihrradien-Beriihrstrecken-Vertauschung bezeichnen). Er folgt aus der zu (3) iso-
morphen Formelgruppe

2F b _ c _1/sinA4 _ . L 1
h, = 2 " ifsnC = ismB - di h=1/sind) -a=2Fd?t. (4
Weil hiermit simtliche Zeileniiberginge als legitim erkannt sind, ist der Aquivalenzsatz
bewiesen.
Mit (1) (3) (4) und den isomorphen Formeln (1’) (3’) (4’), die man leicht vollstindig
hinschreibt, ist bereits gezeigt, dass durch Anwendung der 12-Zeilen-Tabelle nicht immer

12 verschiedene Beziehungen entstehen, sondern mitunter nur 6 (oder noch weniger). Das

ist auch der Fall bei
2F = (@ b ¢ dnr
D A A e S-S A
= (a =1 = b ¢ =
= (@ hzt Ay  h~Y)1-1 = (B21 byt Bt d)Li-1

(h =] hbl h 1 h— )ll—

Dieser Formelgruppe gesellen sich durch Anwendung des Aquivalenzsatzes genau 5 iso-
morphe Formelgruppen hinzu: d = , h= , B = ;@ = A N

Zur Erklarung der Bezelchnungen Polansatlon und Pseudopolarlsatmn sei auf Fol-
gendes hingewiesen: 2F und d sind beim ebenen Dreieck analog dem Eckensinus und
Polareckensinus des sphidrischen Dreiecks definierbar. % ist das ebene Analogon des
Moduls, beim ebenen Polarisieren geht 2 = 2 F/d in A~! = d/2 F iiber. Auf der Kugel sind
die Hohen (zum Beispiel %, und A7) von Dreieck und zugehorigem Polardreieck supple-
mentdr, weil sie gemass A, + 90° + A, + 90° = 360° auf einem Grosskreis verteilt liegen.
Analog sin#, = sink; geht in der Ebene beim Polarisieren %, in 4, (also in sich selbst)
iber. Schliesslich tauschen in der Ebene a und sin 4 beim Polarisieren die Rollen, wie auf
der Kugel sina und sin 4. Der zum Polarisieren im sin-Bereich isomorphe Vorgang im tan-
Bereich wird durch die Vorsilbe Pseudo kenntlich gemacht. — Durch Einfithrung einer
ehemals uneigentlichen Zahl ¢ wird ein isomorpher Zerfall in Linearfaktoren zum Beispiel
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bei den Polynomen ¥ —1=(x—1) (¥ + 1)und 42 + 1 = (¥ — 1) (¥ + 1) erzielt, durch Ein-
fithrung einer uneigentlichen Seite ¢ und Héhe % ein isomorpher Zerfall von sin- und tan-
Bereich in Stiicke und Formeln.

Der Beweis des Aquivalenzsatzes vereinfacht sich erheblich, wenn man Zeile 1) oder 1%)
in der allgemeinen Gestalt e* e¥ ¢ f eX Y eZ eT ¢f ¢ ¢ ¢® etwa mit unbestimmten » y z ¢
schreibt. Unter Zuhilfenahme der beiden orthogonalen Matrizen

i -1 1 1 1 . 1 -1 -1 1
- 1 -1 1 1 _ -1 1 -1 1
M= M = 1 1 -1 1 N=Nt=7l-1-1 1 1
1 1 1 —1 1 1 1 1

stosst man namlich auf die beiden Sechserzyklen

(» v 2 t)YM=( X Y Z 1T

( X Y Z-T)YM=( & 5 ¢ 9)

(& n §—-9)M=(-x—-y -2z )

(=% =y —2 -t M= (—-X-Y—-Z-1)

(—X—-Y—-2Z TYM=(-& —n —¢ —9)

(=&—=m—-C HM=( 2 y 2z —t)

(x v 2 t)N=( & »n ¢ 9)

(—¢-y-C HN-—( X YV Z T

(-X—-Y—-Z T)N=(x y =z —t)

(<% =y —z —t)N=(—& -y —¢ —9)

(& n C-89)N=(-X-Y-Z-T)

( X Y Z—-T)N=(—x—y —2z t),

und hierin stellen bereits die ersten 3 Zeilen den Beweis des Aquivalenzsatzes dar. —
Offenbar gibt es beliebig viele additive und multiplikative Beispiele ¥y 2¢ X YZ T
&n (¥ allein in der Dreieckslehre. Wir wihlten 2 naheliegende multiplikative: den
sin-Bereich und den tan-Bereich. I. PaascHE, Miinchen

4

Aufgaben

Aufgabe 501. Man bestimme den geometrischen Ort fiir das Zentrum einer rAumlichen
Inversion, welche drei gegebene Punkte in die Ecken eines gleichseitigen Dreiecks ab-
bildet. C. BINDSCHEDLER, Kiisnacht

Losung: Es seien Py, P,, P; die gegebenen Punkte, P*, P*, P;* deren Bilder bei einer
Inversion mit Zentrum M und Inversionsradius 7, ferner M P = 0;, MP* P¥ = o¥. Dann ist

o] =297, i=1,23, (1)
Aus der Ahnlichkeit der Dreiecke P,M P, und P* M P* folgt
P*P* @ PyPy =93 :01=17%:010s. (2)

Wegen der Forderung P*P* = P*P* = P;*P* ergibt sich aus (2) P,P,: 9,0, = P, P;: 0,04
oder

0s: @5 = PP, : P,P, und entsprechend g, : ¢, = PP : B,P,, 0,: 0, = B P, : BP,. (3)

Die Verhiltnisse der Entfernungen des Inversionszentrums M von den Ecken des
Dreiecks P, P,P; sind also gegeben; M liegt auf drei «Apollonischen Kugeln». Da aus
zwei der Bedingungen (3) die dritte folgt, haben diese drei Kugeln einen gemeinsamen
Schnittkreis und damit auch eine gemeinsame Zentrale. Dieser Kreis, dessen Mittelpunkt
auf jener Zentralen liegt und dessen Ebene zu ihr senkrecht steht, ist der gesuchte
geometrische Ort. W. JANIcHEN, Berlin-Zehlendorf

Weitere Losungen sandten G. GEISE (Dresden), K. ScHULER (Rottweil). und
K. Zacuarias, (Berlin)
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