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Sätze über das Sehnenviereck in der sphärischen
und hyperbolischen Geometrie

1. Einleitung
Die Ecken Plt P2, P3, P4 eines Vierecks liegen auf einem Kreis. Die Seiten und

Diagonalen dieses Vierecks werden wie folgt bezeichnet: ax PXP2, a2= P2 P3,

as P3 P4, a4 P4 Plt e P2 P4, / Px P3. Dann gelten folgende Sätze:

Satz des Ptolemäus
ef=a1a3 + a2a/k. (IE)

Satz des Brahmagupta1)
____

ai a2 + az a* /jj \

f a1ai-\- a2a3
' E'

Durch Multiplikation bzw. Division beider Gleichungen erhält man eine dritte Formel;

„2 — (al a2 + aZ &i) (ai aZ + a2 ai) un(J f2 __-
(al a* + ^2 az) (al H + a2 ai) (HI)J n.- n. 4- /_._ /_. ^ ^''

ax aA + a2a3 J ax a2 + az at

Die genannten Sätze stimmen auch dann noch, wenn der Kreis, auf dem die
Eckpunkte des Vierecks liegen, zur Geraden entartet.

Analoge Sätze gibt es auch für die sphärische und hyperbolische Geometrie. Die

dazugehörenden Beweise lassen sich auf verschiedene Arten führen. Man kann auf
Modelle überhaupt verzichten und verwendet dann nur axiomatisch bewiesene Sätze

der betreffenden Geometrie. Oder aber man arbeitet mit Modellen aus dem Bereich
der euklidischen Geometrie. In diesem Falle sind als Beweismittel alle bekannten
Sätze der euklidischen Geometrie zugelassen. Auf dem ersten Wege hat O. Perron
[1] [2] die Sätze I und III für die hyperbolische Geometrie bewiesen. In der

vorliegenden Arbeit zeigen wir die Gültigkeit der Sätze I und II (und damit auch III) für
die sphärische und hyperbolische Geometrie im Rahmen von Modellen.

*) Nach einer Mitteilung von Herrn Prof. Strubecker findet sich diese Formel zuerst bei dem Inder
Brahmagupta (* 598), allerdings ohne Beweis und ohne explizite Angabe der Gültigkeitsbedingungen.
Allgemein hat die Formel für alle Sehnenvierecke erst Regiomontan (1464) bewiesen.



50 H. Zeitler: Sätze über das SehnenViereck in der sphärischen und hyperbolischen Geometrie

2. Die Sätze im Kugelmodell der sphärischen Geometrie

a) Formulierung der Sätze

Die Ecken Plf P2, P3, P4 eines sphärischen Vierecks liegen auf einem sphärischen
Kreis. Die Seiten und Diagonalen dieses Vierecks werden wie folgt bezeichnet:

a1 P1P2, a2^P2Pz, a3 P3Pt, aA P,Pt, e^P2P,, f=PlPz.
Dann gelten folgende Sätze:

sinÄ sinÄ sinYR sinÄ + sinÄ sinYr • ^
e a* a» a, a,

smYW smYksmYR+smTRsmYR
}

sinÄ shli\ sinÄ + sinÄsinik
Die Sätze stimmen auch dann noch, wenn der Kreis zur sphärischen Geraden
entartet (R ist dabei eine positive Konstante, deren Wert von der sphärischen Längeneinheit

abhängt. Im Kugelmodell wird R als Radius der Modellkugel interpretiert).

b) Skizze des Kugelmodells

Den Grundbegriffen der sphärischen Geometrie werden euklidische Begriffe
zugeordnet. Zum Beispiel:

Sphärische Punkte alle euklidischen Punkte der Oberfläche einer Kugel
vom Radius R,

Sphärische Geraden alle Grosskreise der Kugel,

Sphärische Kreise alle Kleinkreise auf der Kugel.

c) Zusammenhang zwischen euklidischer und sphärischer Längenmasszahl

Figur 1

Zwei Modellpunkte P, Q (Figur 1) bestimmen eine sphärische Strecke der Länge a und
gleichzeitig eine euklidische Strecke der Länge a. Wir suchen jetzt einen Zusammenhang

zwischen den beiden Längenmasszahlen. Zu den Punkten P, Q gehört der
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Mittelpunktswinkel <£ PM Q ajR. Aus dem euklidischen Dreieck PMQ
entnehmen wir dann sofort den gesuchten Zusammenhang:

a 2i?sin 2R (1)

d) Der Beweis

Vier Punkte Pif P2, P3, P4 auf einem sphärischen Kreis oder einer sphärischen
Geraden bestimmen ein sphärisches Sehnenviereck mit den Seiten av a2, az, ö4 und
den Diagonalen e, /. Im Modell liegen die vier Punkte auf einem Kugelkleinkreis oder
einem Kugelgrosskreis. Sie bestimmen also auch noch ein euklidisches Sehnenviereck
mit den Seiten alt a2, a3, <z4 und den Diagonalen e, f. Aus der Gültigkeit von (IE) und
(IIE) für das euklidische Sehnenviereck folgt mit (1) durch Einsetzen sofort die
Gültigkeit der Formeln (Is) und (IIS).

3. Die Sätze im Poincare-Modell der hyperbolischen Geometrie

a) Hilfssatz

Wird ein euklidisches Sehnenviereck, wie aus Figur 2 ersichtlich, orthogonal auf
eine, ausserhalb des Vierecks liegende Gerade projiziert und bezeichnen wir die Lote
von Pt auf diese Gerade mit ht (i 1,2,3,4), so gilt:

#i a2 + a3a4

Yhjh2 _ ]/hx h2 ]/h2 h3 ]/hz fr4 ]/h^ hx

f
]Jhx hz j/äx h2 ]jhx hi

oder nach leichter Umformung:

+ a2az
]/h2 h3 |/ä8 ä4

e Ä4 ax a2 -f h2 a3 a4

/ ~
hx a2 az + K ai a*

'

(ny

(n_)

Dieser Satz behält seine Gültigkeit auch dann noch, wenn der Kreis zur Geraden

entartet.

Figur 2
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Zum Beweis geben wir die Fläche des Dreiecks Px P2 P4 auf zwei verschiedene
Arten an:

04^1« h* + h* n n hi + h n n K±Jh n n_______„ _= _ (^2 ^ ^ y1 ^4 _ yi y2 %

(Dabei ist r der Radius des Kieises, auf dem die Eckpunkte des Vierecks liegen).
Analog gilt für die Fläche des Dreiecks P2 P3 P4:

a2a3e _ hz + K n n _i_
^2 + hz n n h + K n n

Durch Multiplikation mit Ä3 bzw. &2 und Addition folgt:

-2~ K ^4 Ä3 + a2 H hi) Ä3 ^4 öi (?a + K K (?4 öi - K h* Q* Q2 ~ K K (?4 Qz •

Entsprechend ergibt sich durch Betrachtung der Dreiecke Pt P2 P3 und Pl P3 P4:

-jy («! Äg ^4 + #3 «4 Äa) Ä3 K Ql (?2 + Ä2 hZ (?4 (?1 ~ *1 K Qs Ql ~ K K <?4 Qs •

Da die rechtsstehenden Ausdrücke gleich sind, erhält man durch Division sofort
(Iig). Dieser und andere Beweise unseres Hilfssatzes, ausserdem gewisse
Verallgemeinerungen finden sich in [3].

Figur 3

Liegen die Punkte Pt auf einer Geraden, wie Figur 3 zeigt, so gilt:

_ K-K n __ K ~ K h-h3 _ hj-^
1 cosa A cosa ö cosa * cosa

cosa cosa

Die Richtigkeit der Gleichung (11^) in diesem Entartungsfall erkennen wir sofort
durch Einsetzen. Damit ist der Hilfssatz vollständig bewiesen.

b) Formulierung der Sätze

Die Ecken Px, P2, P3, P4 eines hyperbolischen Vierecks liegen auf einem
Horozyklus, einem Hyperzyklus, einem gewöhnlichen hyperbolischen Kreis oder einer
hyperbolischen Geraden. Die Seiten und Diagonalen dieses Vierecks werden wie folgt
bezeichnet:

a1 PlP%, ö2 P2P3, a^PBP^ a4 PiPlt e P2PAt f^PtP^
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Dann gelten folgende Satze

sh—— sh * sh öl sh-^- -4- sh-^- sh ~±- (1 \Sn
2 i_ Sn2R Sn

2 R Sn
2 R + Sn

2 R Sn
2 R ' (1HJ

sh
2 7?

sh /
2Ä

sh_i shYi +sh_i shTi
(Hh)

(jR ist dabei eme positive Konstante, deren Wert von der hyperbolischen Längeneinheit

abhangt)

c) Skizze des (speziellen) Pomcare-Modells

Den Grundbegriffen der hyperbolischen Geometrie werden euklidische Begriffe
zugeordnet Zum Beispiel

Hyperbolische Punkte alle euklidischen Punkte einer Halbebene Die Punkte
der Begrenzungsgeraden (Achse) dieser ausgezeichneten
Halbebene gelten nicht als hyperbolische Punkte,

Hyperbolische Geraden alle euklidischen Halbkreise und Halbgeraden der aus¬

gezeichneten Halbebene, die auf der Achse senkrecht
stehen,

Hyperbolische Kreise alle euklidischen Geraden, Kreise und Kreisbogen der

ausgezeichneten Halbebene, die keine hyperbolischen
Geraden darstellen (Drei Arten Horozyklus, Hyper-
zyklus, gewöhnlicher hyperbolischer Kreis)

d) Zusammenhang zwischen euklidischer und hyperbolischer Langenmasszahl

Zwei Modellpunkte P, Q bestimmen eine hyperbolische Strecke der Lange a und
gleichzeitig eine euklidische Strecke der Lange a Wir suchen wieder einen
Zusammenhang zwischen den beiden Masszahlen

*P*

Figur 4

Ist die duich P und Q eindeutig bestimmte hyperbolische Gerade nicht zur
euklidischen Geraden entartet, so gilt fur die hyperbolische Lange a der hyperbolischen
Strecke P Q mit den Bezeichnungen von Figur 4 bekanntlich ([4], S 61)

JL
2 Mi

1 + cos<p2

— cosg?2

1 4- cosy?!'
1 — cos^.
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Daraus folgt:
2R _

1 + COS£?2 1 — COS??! X1/4

\ 1 — cos qp2 1 -{- cos wx }cos qp2 1 -\- cos q>x

Wir erhalten also:

sh-_?L==_l(g«/2^_g-o/2Ä\==_L 1/(1 + cosy2) (1 - cosyi) - 1/(1 - cosy2) (1 + cosyi
2 R 2 2 j/sin^ sjn ^a

Durch Anwendung von Additionstheoremen ergibt sich:

sin-^^-
u a

2 R j/sm^ smg?2

Aus Figur 4 entnehmen wir weiter:

hx h» ' <Pt — <P* a
vi r > v<ä y » 2 2r

Das aber bedeutet:

a 2 j/*^ sh^- (2)

Ist die durch P und @ eindeutig bestimmte hyperbolische Gerade gleichzeitig
euklidische Gerade (Figur 4, rechts), so gilt für die hyperbolische Länge a der hyperbolischen

Strecke P Q bekanntlich ([4], S. 40):

Damit ergibt sich weiter

a R ln-^

eaßR

und schliesslich:
-n

sn2i. 2-ly^ y *. / 21/ä^ 2/m^'
Das aber ist wieder Formel (2).

e) Der Beweis

Vier Punkte Plt P2, P3, P4 auf einem gewöhnlichen hyperbolischen Kreis, einem

Horozyklus, einem Hyperzyklus oder einer hyperbolischen Geraden bestimmen ein

hyperbolisches Sehnenviereck mit den Seiten alt a2, az, a4 und den Diagonalen e, f.
Im Poincare-Modell liegen die vier Punkte entweder auf einem euklidischen Kreis
oder einer eukhdischen Geraden. Sie bestimmen also auch noch ein euklidisches
Sehnenviereck mit den Seiten ax, a%, a%, #4 und den Diagonalen e, f.

Aus der Gültigkeit von (IE) und (Iiy für das euklidische Sehnenviereck folgt mit
(2) durch Einsetzen sofort die Gültigkeit der Formeln (IH) und (IIH).
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4. Zusammenfassung der Formeln

Wir weisen noch auf die Übergange zwischen den einzelnen Formeln hin Aus
den sphärischen Formeln werden sofort die euklidischen, wenn der Kugelradius R
unbegrenzt wachst Nimmt man dagegen eme Kugel mit rem imaginärem Radius,
ersetzt man also R durch i R, so gehen die sphärischen in die hyperbolischen Formeln
uber

Meist wird die Längeneinheit so festgelegt, dass die Konstante R den Wert 1 hat
Fur diesen Fall fassen wir die beiden Formeln fur die drei Geometrien zu je einer
einzigen zusammen

Wir definieren ([5], S 64)

S(a) —p=r sm]/K aw ]/K '
Damit lauten die Satze

I Ptolemäus x x

II Brahmagupta

s(_) *(*M*M*M-.)
Für k 1 sind dies die Formeln (Is), (IIS), für k — 1 (IH), (IIH) und fur k -> 0

schliesslich (IE), (IIE) H Zeitler, Weiden, Deutschi
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Kleine Mitteilungen
Explizite Darstellungen der natürlichem Logarithmusfunktion

1. Problemstellung. Die natürliche Logarithmusfunktion ist gekennzeichnet als die
einzige Losung der Funktionalgleichung

/(*i *.) /(*i) + /(*i) [/ P -> Ä]l) (H)

mit der zusatzlichen Bedingung
f(x) <> x - 1 [alle # e P] 2). (1)

*) R bedeute durchwegs die Menge der reellen Zahlen, P diejenige der positiven reellen Zahlen
2) Vergleiche [1], p 114 Fur andere zur Charakterisierung geeignete Eigenschaften vergleiche [8],

Satze 6 und 7
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