Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 21 (1966)

Heft: 3

Artikel: Satze Uber das Sehnenviereck in der spharischen und hyperbolischen
Geometrie

Autor: Zeitler, H.

DOl: https://doi.org/10.5169/seals-24650

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-24650
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zestschrift zur Pflege deyr Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichis

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El. Math. Band XXI Heft 3 Seiten 49-72 10. Mai 1966

Sitze iiber das Sehnenviereck in der sphirischen
und hyperbolischen Geometrie

1. Einleitung

Die Ecken P,, P,, P,, P, eines Vierecks liegen auf einem Kreis. Die Seiten und
Diagonalen dieses Vierecks werden wie folgt bezeichnet: a, = P, P,, a,= B, F;,
3= Py Py, a,= P, P,,e= P, P, f= P, P,. Dann gelten folgende Sitze:

Satz des PTOLEMAUS

ef=a,a;+ aza,. (Te)
Satz des BRAHMAGUPTAY) " Gy Gy + Ga @

LA, Sl X (ITg)

f al a4 + a2 a3

Durch Multiplikation bzw. Division beider Gleichungen erhilt man eine dritte Formel.:

(a1 a2 + a3 ay) (a, a3 + a, a,) o (aya4+ ay as) (@, as + ap a,) III
a, a, + a, a, und f N a, a, + a;z a, - F)

82 =

Die genannten Sitze stimmen auch dann noch, wenn der Kreis, auf dem die Eck-
punkte des Vierecks liegen, zur Geraden entartet.

Analoge Sitze gibt es auch fiir die sphirische und hyperbolische Geometrie. Die
dazugehérenden Beweise lassen sich auf verschiedene Arten fithren. Man kann auf
Modelle iiberhaupt verzichten und verwendet dann nur axiomatisch bewiesene Sitze
der betreffenden Geometrie. Oder aber man arbeitet mit Modellen aus dem Bereich
der euklidischen Geometrie. In diesem Falle sind als Beweismittel alle bekannten
Sitze der euklidischen Geometrie zugelassen. Auf dem ersten Wege hat O. PERRON
[1] [2] die Sitze I und III fiir die hyperbolische Geometrie bewiesen. In der vorlie-
genden Arbeit zeigen wir die Giiltigkeit der Sitze I und II (und damit auch III) fiir
die sphirische und hyperbolische Geometrie im Rahmen von Modellen.

1) Nach einer Mitteilung von Herrn Prof. STRUBECKER findet sich diese Formel zn}ers? bei d.em Inder
BRAHMAGUPTA (* 598), allerdings ohne Beweis und ohne explizite Angabe der.Gﬁltlgkextsbedmgungen.
Aligemein hat die Formel fiir alle Sehnenvierecke erst REGIOMONTAN (1464) bewiesen,
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2. Die Sitze im Kugelmodell der sphirischen Geometrie

a) Formulierung der Sdtze

Die Ecken P,, P, P;, P, eines sphérischen Vierecks liegen auf einem sphirischen
Kreis. Die Seiten und Diagonalen dieses Vierecks werden wie folgt bezeichnet:

alzl)lpz, 02=P2P3, a3=P3P4, a4=P4P1, e=P2P4, f:P1P3.

Dann gelten folgende Sitze:

. e . f . @ . a5 L @ . a4
sin—- sin—% = sin—— sin—— -+ sin s S5 (Ig)
N . a . Gy . ag . a4,
sm2R B sm2R szR +sm—~2R stR (H)
sin—f-— - sin—2L sin_24 4 sin %2 sin_22 . °
2R 2R 2R 2R 2R

Die Sitze stimmen auch dann noch, wenn der Kreis zur sphirischen Geraden ent-
artet (R ist dabei eine positive Konstante, deren Wert von der sphérischen Lingen-
einheit abhidngt. Im Kugelmodell wird R als Radius der Modellkugel interpretiert).

b) Skizze des Kugelmodells

Den Grundbegriffen der sphdrischen Geometrie werden euklidische Begriffe zu-
geordnet. Zum Beispiel:

Sphirische- Punkte ... alle euklidischen Punkte der Oberfliche einer Kugel
vom Radius R,

Sphérische Geraden . . . alle Grosskreise der Kugel,

Sphérische Kreise . . . alle Kleinkreise auf der Kugel.

c) Zusammenhang zwischen euklidischer und sphirischer Lingenmasszahl

Figur 1

Zwei Modellpunkte P, Q (Figur 1) bestimmen eine sphirische Strecke der Linge @ und
gleichzeitig eine euklidische Strecke der Ldnge a. Wir suchen jetzt einen Zusammen-
hang zwischen den beiden Lingenmasszahlen. Zu den Punkten P, Q gehort der
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Mittelpunktswinkel ¢ P M Q = a/R. Aus dem euklidischen Dreieck P M Q ent-
nehmen wir dann sofort den gesuchten Zusammenhang:

a=2Rsin"> (1)

d) Der Bewers

Vier Punkte P, P,, B, P, auf einem sphirischen Kreis oder einer sphirischen
Geraden bestimmen ein sphérisches Sehnenviereck mit den Seiten a,, a,, a,, a, und
den Diagonalen e, f. Im Modell liegen die vier Punkte auf einem Kugelkleinkreis oder
einem Kugelgrosskreis. Sie bestimmen also auch noch ein euklidisches Sehnenviereck
mit den Seiten a,, 4,, a3, 4, und den Diagonalen ¢, f. Aus der Giiltigkeit von (I) und
(Ilg) fiir das euklidische Sehnenviereck folgt mit (1) durch Einsetzen sofort die Giil-
tigkeit der Formeln (Ig) und (IIg).

3. Die Sitze im Poincaré-Modell der hyperbolischen Geometrie
a) Hilfssatz

Wird ein euklidisches Sehnenviereck, wie aus Figur 2 ersichtlich, orthogonal auf
eine, ausserhalb des Vierecks liegende Gerade projiziert und bezeichnen wir die Lote
von P, auf diese Gerade mit 4, (¢ = 1,2,3,4), so gilt:

£ T ... W
Vighy, _ Vhiky Vhohy — Vighy Vigly (1)
i a4 n ay 4y ’
Vi b Vinhs Viihy — Vigh Vg by
oder nach leichter Umformung:
e h4 a; a, + k2 Az ay (II/I)
f o magay+hyaia’ E

Dieser Satz behilt seine Giiltigkeit auch dann noch, wenn der Kreis zur Geraden

entartet.
h
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Zum Beweis geben wir die Flache des Dreiecks P; P, P, auf zwei verschiedene
Arten an:

A, A4 € h+k hy + & hy + h
44,,1 el 49294—-’1‘" — 0104 — 12 *010:.

(Dabei ist » der Radius des Kreises, auf dem die Eckpunkte des Vierecks liegen).
Analog gilt fiir die Fliache des Dreiecks P, P, P,;:

hthg,0..

Ay As € he + R h+h
24: = 32 4@3@4 3@2@3

Durch Multiplikation mit 44 bzw. 4, und Addition folgt:

“2“‘(“1“4” +agazhy) = hyhy Q1 Qo+ ho by Qu Qr — 7y hy Q3 Qg — 7y 5y Q Q.

Entsprechend ergibt sich durch Betrachtung der Dreiecke P, P, P; und P, F; F;:

(“1“2h4+43“4h2)=h3h491@2+h2h3Q4Q1—ﬁ1h4Q302“hlth4Q3-

Da die rechtsstehenden Ausdriicke gleich sind, erhdlt man durch Division sofort
(II;). Dieser und andere Beweise unseres Hilfssatzes, ausserdem gewisse Verall-
gemeinerungen finden sich in [3].

i
27

Figur 3

Liegen die Punkte P, auf einer Geraden, wie Figur 3 zeigt, so gilt:

g =M I Sl T 7 S T Sl 'Y
1 cosa ’ 2 cosaa ’ 8 cosa 4 cosa ’
f= hy — hy e:’h—hz
cosee cosa

Die Richtigkeit der Gleichung (IIf) in diesem Entartungsfall erkennen wir sofort
durch Einsetzen. Damit ist der Hilfssatz vollstindig bewiesen.

b) Formulierung der Sitze

Die Ecken P,, P,, B;, P, eines hyperbolischen Vierecks liegen auf einem Horo-
zyklus, einem Hyperzyklus, einem gewohnlichen hyperbolischen Kreis oder einer
hyperbolischen Geraden. Die Seiten und Diagonalen dieses Vierecks werden wie folgt
bezeichnet:

a,=P P, a=PF, a=PFRP, ao=PFPP, e=FKPF, f[=PPF
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Dann gelten folgende Sitze:

e JF _ a8
Sh*Z—I?* Sh‘z——R“ = Sh *2 I S h 2 R 5 (IH)
e e a2 _
shog ShZRSh +Sth ZR
o b . (ILy)
1R Sh R 2 R 2 R

(R ist dabei eine positive Konstante, deren Wert von der hyperbolischen Lingen-
einheit abhingt.)

c) Skizze des (speziellen) Poincaré-Modells

Den Grundbegriffen der hyperbolischen Geometrie werden euklidische Begriffe
zugeordnet. Zum Beispiel:

Hyperbolische Punkte ... alle euklidischen Punkte einer Halbebene. Die Punkte
der Begrenzungsgeraden (Achse) dieser ausgezeichneten
Halbebene gelten nicht als hyperbolische Punkte,

Hyperbolische Geraden ... alle euklidischen Halbkreise und Halbgeraden der aus-
gezeichneten Halbebene, die auf der Achse senkrecht
stehen,

Hyperbolische Kreise ... alle euklidischen Geraden, Kreise und Kreisbégen der
ausgezeichneten Halbebene, die keine hyperbolischen
Geraden darstellen (Drei Arten: Horozyklus, Hyper-
zyklus, gewohnlicher hyperbolischer Kreis).

d) Zusammenhang zwischen euklidischer und hyperbolischer Lingenmasszahl

Zwei Modellpunkte P, O bestimmen eine hyperbolische Strecke der Linge a und
gleichzeitig eine euklidische Strecke der Linge 4. Wir suchen wieder einen Zusam-
menhang zwischen den beiden Masszahlen.

Figur 4

Ist die durch P und Q eindeutig bestimmte hyperbolische Gerade nicht zur eukli-
dischen Geraden entartet, so gilt fiir die hyperbolische Lénge a der hyperbolischen
Strecke P Q mit den Bezeichnungen von Figur 4 bekanntlich ([4], S. 61):

a=Rl {l—i—cosq)2 . 1+cos¢1]-

2 1—cosg, =~ 1—cosg,
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Daraus folgt:

g9I2R _ ( 14 cosp, 1 — cosg, )1/4
1 —cosg, 1+ cosg,;

Wir erhalten also:

P =—1—(6"/2R _ 6—a/2R) _ 1 V(1 + cosg,) (1 — Coszl) — V(1 — cosgy) (1 + Cos @)
2R 2 2 V/sing, sing, :
Durch Anwendung von Additionstheoremen ergibt sich:
in¥1— P2
8 sin 2

sh-— = ——————,
2R Vsin @, Sing,

Aus Figur 4 entnehmen wir weiter:

1
7

: hy o 1 P a
- 5 51n992-7, Sin 2 =2,

sing, =

Das aber bedeutet :

a=2)hh, shs% (2)

Ist die durch P und Q eindeutig bestimmte hyperbolische Gerade gleichzeitig eukli-
dische Gerade (Figur 4, rechts), so gilt fiir die hyperbolische Linge a der hyperboli-
schen Strecke P Q bekanntlich ([4], S. 40):

= hy
a = R ln-h—l— &
Damit ergibt sich weiter: —
hy
und schliesslich: _
Sh_a___,_}_(l/:’?_?_ E)._ hy — hy &
2R 2 hy hy 2Vhy by 2Vhy h, |

Das aber ist wieder Formel (2).

e) Der Beweis

Vier Punkte P,, B,, P,;, P, aut einem gewohnlichen hyperbolischen Kreis, einem
Horozyklus, einem Hyperzyklus oder einer hyperbolischen Geraden bestimmen ein
hyperbolisches Sehnenviereck mit den Seiten a;, a,, @3, @, und den Diagonalen e, f.
Im Poincaré-Modell liegen die vier Punkte entweder auf einem euklidischen Kreis
oder einer euklidischen Geraden. Sie bestimmen also auch noch ein euklidisches
Sehnenviereck mit den Seiten a,, a,, a3, 4, und den Diagonalen e, f.

Aus der Giiltigkeit von (I;) und (II}) fiir das euklidische Sehnenviereck folgt mit
(2) durch Einsetzen sofort die Giiltigkeit der Formeln (I,;) und (IL,).
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4. Zusammenfassung der Formeln

Wir weisen noch auf die Uberginge zwischen den einzelnen Formeln hin. Aus
den sphirischen Formeln werden sofort die euklidischen, wenn der Kugelradius R
unbegrenzt wichst. Nimmt man dagegen eine Kugel mit rein imagindrem Radius,
ersetzt man also R durch ¢ R, so gehen die sphirischen in die hyperbolischen Formeln
iiber.

Meist wird die Liangeneinheit so festgelegt, dass die Konstante R den Wert 1 hat.
Fiir diesen Fall fassen wir die beiden Formeln fiir die drei Geometrien zu je einer
einzigen zusammen.

Wir definieren ([5], S. 64):

S(a) =

= sm]/K a.

Damit lauten die Sitze:

s(3) st2) - s(2) s(%) + s(2) (%),
| st _ ot ) 2(3) (2

() _s() 2
BEREESES
(

I. PToLEMAUS:

S
S (”2‘ ) 2
Fiir 2 = 1 sind dies die Formeln (L), (IIg), fiir £ = —1 (I), (II) und fiir 2 >0
schliesslich (Ij,), (II). H. ZeiTLER, Weiden, Deutschl.
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Kleine Mitteilungen
Explizite Darstellungen der natiirlichen Logarithmusfunktion

1. Problemstellung. Die natiirliche Logarithmusfunktion ist gekennzeichnet als die
einzige Losung der Funktionalgleichung

Hws %g) = [(%1) + f(x2) [f: P> R]Y (H)
mit der zusitzlichen Bedingung
fr) =x -1 [alle x € P]¥). (1)

1) R bedeute durchwegs die Menge der reellen Zahlen, P diejenige der positiven reellen Zahlen.
2) Vergleiche [1], p. 114. Fiir andere zur Charakterisierung geeignete Eigenschaften vergleiche 8],
Sitze 6 und 7.
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