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Kleine Mitteilungen

Mehrfache Kreisunterdeckungen und Kreisiiberdeckungen auf der Kugel

Eine Menge in der Ebene liegender offener Kreisscheiben wird eine k-fache Kreisunter-
deckung genannt, wenn jeder Punkt der Ebene zu hochstens 2 Scheiben gehoért. In dhn-
licher Weise definieren wir eine k-facke Kreisiibevdeckung als eine Menge abgeschlossener
Kreisscheiben mit der Eigenschaft, dass jeder Punkt der Ebene zu wenigstens £ Scheiben
gehort. Es erheben sich die Probleme: aus kongruenten Kreisen moglichst dichte k-fache
Unterdeckungen und méglichst diinne k-fache Uberdeckungen zu konstruieren.

Im folgenden betrachten wir stets kongruente Kreise enthaltende Anordnungen. Die
Dichte einer k-fachen Unterdeckung oder Uberdeckung geteilt durch & nennen wir die
reduzievte Dichle.

Die Dichten der dichtesten einfachen Kreisunterdeckung und der diinnsten einfachen
Kreisiiberdeckung betragen z/}/12 = 0,906 ... bzw. 27/)/27 = 1,209 ... [6] [9]. HEPPES
[7] [8] hat 2-, 3- und 4fache Kreisunterdeckungen mit einer reduzierten Dichte ~ 0,927
und eine 5fache Kreisunterdeckung mit einer reduzierten Dichte ~ 0,950 angegeben.
Ferner hat DANzER [5] eine 2fache Kreisiiberdeckung und BruNpoN [1] 3- und 4fache
Kreisiiberdeckungen mit den reduzierten Dichten ~ 1,174, 1,146, 1,089 konstruiert.
Weitere Ergebnisse in dieser Richtung finden sich in [3], [4], [8].

Bekanntlich ldsst sich die Kugel durch mehr als zwei Kreise weder so dicht einfach
unterdecken noch so diinn einfach iiberdecken wie die Ebene [6]. Gelten analoge Sitze
auch fiir mehrfache Kreisanordnungen ? Um diese Frage zu prizisieren, formulieren wir
folgende

Awussagen. Die Kugel ldsst sich durch mehr als 22 Kreise nicht so dicht (diinn) A-fach
unterdecken (iiberdecken) wie die Ebene.

Die Frage ist, fiir welche Werte von % diese Aussagen richtig sind.

Da in der Ebene fiir die reduzierte Dichte mehr als einfacher Kreisunterdeckungen und
Kreisiiberdeckungen nur die triviale obere bzw. untere Schranke 1 bekannt ist, kénnen wir
diese Frage zur Zeit fiir keinen Wert von 2 > 1 entscheiden. Wir beschranken uns nur auf
zwei einfache Beispiele, die die Richtigkeit der obigen Aussagen fiir 2 = 3 fraglich machen.
Fiir 2 = 2 sind mir derartige Beispiele nicht bekannt.

Wir betrachten eine Fliche 4 BD eines der Einheitskugel einbeschriebenen reguldren
Ikosaeders. C sei der Mittelpunkt der sphirischen Strecke BD. Die fraglichen Kreis-
anordnungen bestehen aus den um die Ecken des Ikosaeders mit dem Radius b = AC bzw.
mit dem Radius ¢ = 4 B geschlagenen Kreisen. Da im ersten Fall in das sphérische Drei-
eck ABD nur die Kreise mit den Mittelpunkten 4, B und D hineingreifen, bilden diese
Kreise eine dreifache Kreisunterdeckung. Im zweiten Fall wird dagegen das Dreieck 4 BD
durch jeden der drei Kreise mit den Mittelpunkten 4, B und D iiberdeckt. Deshalb bilden
die Kreise eine dreifache Uberdeckung.

Diese Kreisanordnungen lassen sich noch einfacher kennzeichnen. Wir ordnen jeder
Ecke eines Ikosaeders {3, 5} das durch die benachbarten Ecken bestimmte sphérische
Fiinfeck zu [6]. Diese zwolf Fiinfecke bilden das durch KerPLER entdeckte Sternmosaik
{5,5/2}. Es handelt sich um die Fldacheninkreise und Flichenumkreise dieses Mosaiks.

Wir berechnen jetzt die entsprechenden reduzierten Dichten d und D. Da im sphéri-
schen Dreieck 4 BC die Winkel bei A, B und C 36°, 72° und 90° sind, haben wir

cosb — cos 72° COSC — ctg72°
~ sin36° °’ T tg36° ¢
Hieraus ergibt sich
12 2x(1 — cosb) cos72°\
4= S 2(1 - W) = 0,9485...
und 12 2x2(1 ) tg 72°
_ 12 2z(1 —cosc) _ ctg72%y
D= - _2(1 tg36°) 1,1055....

Diese Werte zeigen, dass unsere Kreisanordnungen dichter bzw. diinner sind als die
uns bekannten dreifachen ebenen Kreissysteme.,
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Fiir grossere Werte von £ erhalten wir ziemlich giinstige Anordnungen auf folgende
triviale Weise. Wir betrachten auf einem Grosskreis 2k + 1 dquidistante Punkte und
schlagen um jeden Punkt einen Kreis vom Radius n#/(2k + 1). Fiir die reduzierte Dichte
dy der so konstruierten k-fachen Kreisunterdeckung ergibt sich
2 n(l — cos—lk—)
g _ 2k+1 2k +1 __2k+1(1_§mwle

Tk 47 T2k 4k+2)'
Wir betrachten ferner £ Paare antipodischer Halbkugeln und eine weitere beliebige Halb-
kugel. Es entsteht eine k-fache Kreisiiberdeckung mit einer reduzierten Dichte

ki S
2k

Dy =
L. FEjEs T6TH, Budapest
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Eine Bemerkung zum Artikel: Wissenswertes um das Dreieck
(BERNSTEIN und STEINIG, El. Math. 79, 8-10 (1964))

In dem obengenannten Artikel haben BERNSTEIN und STEINIG zweil Gruppen von Un-
gleichungen bewiesen. Dabei benutzten sie Beziehungen zwischen den Radien des Um-
kreises und Inkreises und verwandte Lingen. Ich mdéchte hiermit einen Beweis mitteilen,
der die erste Gruppe dieser Ungleichungen mit den einfachsten elementaren Mitteln be-
weist und eine Moglichkeit zu anderen dhnlichen Resultaten bietet. Dabei scheint dieser
Beweis nichts zur zweiten Gruppe von Ungleichungen beizutragen.

Wie BERNSTEIN und STEINIG es getan haben, beschrinken wir uns auf das spitz-
winklige Dreieck 4 BC. Es bezeichne durchwegs < 4 den grossten, < C den kleinsten
Winkel, und X Q die Summe der Abstinde eines beliebigen Punktes Q von den drei Drei-
ecksseiten. Wie gewohnlich bedeuten O, I, S, H den Umkreismittelpunkt, Inkreismittel-
punkt, Schwerpunkt und Hohenschnittpunkt. Dann ist zu beweisen, dass

JHLKYIKXYS<}YO,

wobei Gleichheit durchwegs nur fiir das gleichseitige Dreieck gilt.

Der Beweis beruht auf zwei Tatsachen:

I. Die betreffenden Geraden, aus einer Ecke des spitzwinkligen Dreiecks gezeichnet,
haben stets folgendeReihenfolge: kiirzere Seite, Hohe, Winkelhalbierende, Schwerlinie,
Umkreisradius, lingere Seite. Dies ist wohlbekannt und der Beweis ganz elementar.

I1. Der Punkt P soll eine Gerade XY beschreiben, wo X ein beliebiger Punkt auf der
kiirzesten Dreiecksseite A B und Y ein beliebiger Punkt auf der lingsten Dreiecksseite BC
bedeutet. Liuft der Punkt nun von X nach Y, so nimmt X P stindig zu.
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Zum Beweis betrachten wir zuerst den speziellen Fall, wenn X in die Ecke 4 fillt.
Bezeichnen wir die zwei Senkrechten von Y zu den Seiten 4B, AC mit p,, P, und die
Hoéhe von der Ecke 4 mit 4,, dann ist

ahy=Ccpe+ bpy < a(pe+ po)

und folglich
ha < Pe + 128 (1)

Py \
_ N Figur1
¢

Es seien nun 4,, Y, irgend zwei Punkte auf der Geraden AY. Wir zeichnen ein zum
Dreieck A BC dhnliches und dhnlich gelegenes Dreieck 4,B,C,, so dass 4, dem Punkte 4,
Y, dem Punkte Y entspricht, dann ist, wie aus Figur 1 ersichtlich, nach (1)

EYI-’ZAZ[:POI_*_PM—"}"(M}O'

Damit wichst die Abstandsumme stdndig wenn der Punkt sich von der Ecke zur
lingsten Seite hin bewegt.

Auf dhnliche Weise kann man beweisen, dass auf der Geraden CX, wo X ein Punkt auf
der kiirzesten Seite ist, die Abstandsumme stindig abnimmt, wenn der Punkt sich von C
nach X bewegt.

Aus dem Bewiesenen folgt leicht, dass auf der allgemeinen Geraden XY die Abstand-
summe zunimmt, wenn der Punkt sich von X nach Y bewegt. Die Figuren 2a und 2b
sollen den Beweis fiir die zwei verschiedenen moglichen Lagen der Geraden andeuten.

Figur 2b

Figur 2a

8 Y G, C 8 Y 4

Die drei Punkte H, S, O liegen, in dieser Reihenfolge, auf der Eulerschen Geraden.
Betrachtet man die Reihenfolge der Verbindungslinien mit der Ecke 4 bzw. C, dann ist
mit Hilfe von I leicht zu sehen, dass die Schnittpunkte der Eulerschen Geraden mit dem
Dreieck auf der kiirzesten und lingsten Seite liegen. Damit sind, nach I1, die Ungleichungen

2HLSYS<XYO

bewiesen. Um auch X' I einzureihen, kénnten wir leicht zeigen, dass auch die Geraden HI
und IS die obige Eigenschaft besitzen. Es ist aber auskunftsreicher, hier einen Satz von
PriMrose [1] iiber die Abstandsummen anzuwenden. PRIMROSE hat bewiesen, dass alle
Punkte, die gleiche Abstandsummen von den drei Dreiecksseiten aufzeigen, auf einer
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Geraden liegen, die senkrecht zur Geraden OI ist. Wie oben, ldsst sich leicht einsehen, dass
0!I das Dreieck in zwei Punkten, X und Y, schneidet, die auf der kiirzesten, bzw. auf der
lingsten Seite sich befinden. Bewegt sich nun der Punkt P in irgendeiner Weise so, dass
seine senkrechte Projektion auf OI sich von X nach Y bewegt, so folgt nach PRIMROSE,
dass die Abstandsumme sich stiandig vergrossert. Die Punkte H, I, S, O reihen sich nun
ganz unmittelbar in der gewiinschten Reihenfolge ein.

Offenbar koénnten wir andere bemerkenswerte Punkte in diese Ungleichungen ein-
reihen. Insbesondere liegt auch F, der Mittelpunkt des Feuerbachkreises, auf der Euler-
schen Geraden. Unmittelbar ergibt sich

JHSYF<XYS.

Allgemein kann man aber nichts iiber die Grossenbeziehung von X' I und X F aussagen.
Nimmt man ndmlich ein gleichschenkliges Dreieck (4 B = AC), dann liegen alle unsere
Punkte auf der Hohe zur Seite BC. Die Reihenfolge hingt aber von der Grosse des Winkels
A ab. Man findet durch elementare Betrachtungen, dass fiir < 4 > 60° (BC die lingste
Seite) die Punkte sich in der Reihenfolge A, H, F, I, S, O befinden. Ist aber & 4 < 60°
(BC die kiirzeste Seite), dann ist die Reihenfolge 4, O, S, F, I, H. Alsogilt 2 F < X 1
fir <4 > 60°und 2 F > X I fiir << A < 60°. Dabei bleibt die Frage, welche Faktoren
im allgemeinen Dreieck die Grossenbeziehung von 2 F und X' I bestimmen, unbeantwortet.

EstHER SzZEKERES, University of Sydney, Sydney, Australien
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Integration of Multiple - Valued Functions by Residues

Elementary texts on complex variable theory usually include, as illustrations of the
oo

evaluation of real integrals by residues, integrals of the type f x%* f(x) dx where « is a

0
suitably restricted real number. The contour required in this evaluation (Figure 1) consists
of a cut along the real axis and circles of radii » and R. The purpose of this note is to point
out that if f(¥) is restricted to be a function of »" (» = positive integer > 2) the contour
of Figure 1 can be replaced by a wedge bounded by the rays 6 = 0, § = 2 n/n and arcs
C,, Cg of circles of radii » and R (Figure 2). Thus it is not necessary to consider all the
singular points of f(z) but only those lying in this wedge. A particular case appears in a
problem in CARTAN [1; p. 115, § 23 (ii)]!) where f(x) = 1/(1 + 7).

N

Figure 1 Figure 2

1) Numbers in brackets refer to References, page 39.



38 Kleine Mitteilungen

More precisely we have the following theorem, which paraphrases the standard case as
stated in PENNISI [2; p. 268].
Theovem. Let f be a function satisfying the following conditions:
(i) fis a meromorphic function;
(ii) fis a function of 27: f(z) = F(2"), n = positive integer > 2;
(ii1) f has no poles on the positive real axis;
(iv) lim|z|**+1|f(2)| = 0 and lim |2z|**! |f(2)| = O,
Z-»00 z2—0

where « is a real number such that « + 1 is not a multiple of #.

Then 00 e @+ °
/x“f(x)dx=-— - 7

sin (7 (o« + 1)/n)
0

where S is the sum of the residues at those poles of z* f(z) which lie in the wedge
0 <6< 2afn.
A single-valued branch of the multiple-valued function 2% is taken by defining z* as
exp (« logz) where
logz=loglz|+10, 6,<0<b,+2xm.

The ray 6, which produces a cut in the plane can be any ray lying outside the given wedge
and need not be along the positive real axis.

With the above modifications the proof proceeds along the same lines as in PENNI1sI.
We note in passing that (iii) and (ii) imply that f has no poles on the ray 6 = 2 n/xn.

Example 1

f(z)=—1+zn.

Condition (iv) implies that 0 < « + 1 < #. The function f has a poie within the wedge at
z = e*in with residue — n-1 ¢ (*+1)/% 50 that by the theorem
o0

«  9x z[n
/x 1+ sin(n(«+ 1)/n)’

0

The extension to the case where f has simple poles on the positive real axis is immediate.
Noting that f then also has simple poles on the ray 6 = 2 n/», and indenting the contour so
that the poles on the bounding rays lie outside the contour (Figure 3) we obtain for the
principal value of the integral

[e o]
7 e-in(a+ym 1,
P.V./x“f(x)dx: - ST (s+ _Z—s)

where S is the sum of the residues at all the poles in the wedge 0 < 6 < 2 n/n and S’ is
the sum of the residues at all the simple poles on the rays 6 = 0, 6 = 2 n/n.

bt

Figur 3
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Remark. Since, for n > 2, « = 0 is an admissible value the result of this note can be
o0

used for the evaluation of many integrals of the form f f(¥) d». A discussion of integrals

0
of this type using a contour similar to that in Figure 2 can be found in [3].
H. KaurmaN and S. MELAMED, McGill University, Montreal
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Aufgaben

Aufgabe 497. In einem Dreieck mit gegebenen Seiten a und b stehe die Verbindungs-
gerade von In- und Umkreismittelpunkt normal auf der Schwerlinie #_. Man konstruiere
das Dreieck. F. LEUENBERGER, Kiisnacht

1. Lésung : Die Dreiecksseite ¢ ist das harmonische Mittel der Seiten ¢ und b. Demnach
ist ¢ eindeutig aus ¢ und b und somit das Dreieck eindeutig aus den drei Seiten konstruier-
bar!). Zum Nachweis obiger Eigenschaft von ¢ seien die Ecken des Dreiecks durch die
auf den Umkreismittelpunkt M bezogenen Vektoren a, b, ¢ dargestellt. Dann ist m,
= (a+b— 2c)/2 und, wenn I der Inkreismittelpunkt ist, MI= (aa+bb+cc)/(a+ b+ c).
Aus der Bedingung m_ | MI folgt

(@a+b—2c)(aa+bb+cc)=0.

Daraus ergibt sich unter Beriicksichtigung von a? = b? = ¢2? = #? (» = Umkreisradius) und
a b = y? — c?/2 usw. die von » unabhingige Gleichung
o — =0
s c—2ab
mit der einzigen positiven Losung ¢ = 2 a b/(a + b) (die zweite Losung ¢ = —(a + b)
ist negativ). O. REUTTER, Ochsenhausen

c? +

Eine dhnliche Lésung sandte W. JANICHEN (Berlin).

2nd Solution: Let h,, h,, h, denote the triangle’s altitudes. The median m passes
through the triangle’s center of gravity G, and the distances from G to the triangle’s sides
have the sum (&, + &, + &,)/3.

Now it is known?) that the locus of all points in a triangle whose distances from the
three sides have the same sum is a line perpendicular to the line joining the triangle’s in-
center and circumcenter. Since m  also passes through vertex C, wehave (b, + h, + k) /3 =h,,

or equivalently
1 1 /1 1
i (7 g ?) :

Thus we can construct ¢ and hence the required triangle. J. StEINIG, Ziirich

1) Determination: Ist etwa a < b, dann geniigt ¢ als harmonisches Mittel von a und b der Ungleichung

a < ¢<b. Da zudem a+c > b sein muss (Dreiecksungleichung), folgt a > (V;- 1) b als notwendige
Bedingung fiir die Konstruierbarkeit des Dreiecks.
%) E. J. F. PriMROSE, A Triangle Property, note 2967, Math. Gaz. 45, 231-232 (1961).
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