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32 G Jaeschke und E Trost Uber die Nichtprimteiler von a bx + c

(3) ist nur möglich, wenn y gerade ist Also ist — abc fur fast alle p quadratischer Rest
Hieraus folgt nach einem früheren Satz2) (E Trost [4]) — ab c v2, also b -= b\
(wegen (a c, b) 1) im Widerspruch zur Voraussetzung

G Jaeschke, Sindelfingen und E Trost, Zürich3)
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Sur les nombres pseudopremiers de la forme n k + 1.

On appelle pseudopremiers les nombres composes n tels que n | 2n — 2 Dans le

travail [2]1) j'ai dernontr£ qu'il existe une infinite de nombres pseudopremiers de la
forme n k -f 1 en utihsant le theoreme de Zsigmondy (voir [4]) Dans le travail [3],
en utihsant le theoreme de Lejeune-Dirichlet sur la progression arithmetique j'ai
d6montr6 que toute progression arithmitique a x + b, ou a etb sont des nombres naturels

premiers entre eux, contient une infinite de nombres pseudopremiers Le but de cette
note est de demontrer d'une facon elementaire et directe (sans faire appel au theoreme

de Zsigmondy ni au theoreme de Lejeune-Dirichlet) le theoreme suivant
T Pour tout nombre naturel n il existe une infinite de nombres pseudopremiers de la forme
n k -h 1, oü k est un nombre naturel

II est d'abord ä remarquer que pour demontrer le theoreme T il suffit de demontrer

que pour tout nombre naturel n il existe au moms un nombre pseudopremier de la
forme n k + 1, oü k est un nombre naturel, puisque alors pour tous deux nombres
naturels m et n il existe au moms un nombre pseudopremier de la forme nmt + 1,

ou t est un nombre naturel, et ce nombre pseudopremier est evidemment > m et de la
forme n k -f- 1 (oü k est un nombre naturel)

Lemme 1. Si b est un nombre impair > 1 et si Fm 22Tn -f 1, alors Fm + k(p[(p{b)]

Fm (mod b) pour m^b, k — 0,1, 2,

Dimonstration du lemme 1 Supposons que 2a | (p(b) et 2a+1 f cp(b) On aura
<p(b)/2a\ 2^(6)/2a] - 112^)] - 1, donc

<PJb)
2<p[q>m - 1 (1)

2a

Comme 2m > m > b > <p(b) > 2a, on a 2a 12m et il resulte de (1) que cp(b) \ 2m (2^6>] - 1) |

2m (2k(*<pm _ i), donc
<p(b) 12m (2k(*<pm _ l) pour k 1, 2, 3, (2)

a) Ist b fur fast alle p «-ter Potenzrest und n =£ 0 (mod 8), so ist b &J Fur n 0 (mod 8) ist ausserdem

noch b 2w/2&3 möglich «Fast alle» bedeutet hier, dass die Menge der Ausnahmeprimzahlen
verschwindende (Kroneckersche) Dichte hat

3) Herrn J Steinig (Zürich) danken wir für kritische Bemerkungen
x) Les chiffres en crochets renvoient aux travaux cit^s, page 33
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Comme 2ib,ona 2*<*> 1 (mod 6) et, d'apres (2) aussi 22m{2k(pMb)]~l] 1 (mod b),
d'ou 2»m + M*(*,]

ee 22m (mod b), donc iwMvW] ^ Fm (mod 6) pour k 1, 2, ce
qui est evidemment vrai aussi pour k 0. Le lemme 1 est ainsi dernontre\

Lemme 2 (theoreme de Cipolla, cf. [1]): Si k > 1, nx, n2, nk sont des nombres

naturels, nx < n2 < < nk < 2M\ alors le nombre N _P„t _F„a... Fn est pseudopremier.
Dimonstration du lemme 2. Vu que nx< n2< < nk, on a _V 1 (mod 22"1),

d'ou, vu que 2Ml > % (donc 2% > nÄ + 1), AT 1 (mod 2W/5+1). On a donc, pour
* 1, 2, ,k:

F 22"1 + 1 I 22Ht+1 - 11 22H+1 - 11 2N~1 - 1

et, les nombres de Fermat distincts etant premiers entre eux, on en deduit que

N=Fn Fn ...Fni\2N~1- 112^-2,
ce qui prouve que N est un nombre pseudopremier. Le lemme 2 est ainsi dernontre\

Dimonstration du theoreme T. Soit n un nombre naturel donne* quelconque et soit
3 n 2ß b, ou 2 -f b > 1. Nous prouverons que le nombre

^ -*3n *3?t + <p[<p(b)] *3 n + 2 <p[<p{b)] '" **3n+ [<p(b) -1] <p[tp(b)] (3)

est un nombre pseudopremier de la forme 3 n t + 1.

Vu que 3 n > b et en vertu du lemme 1, nous avons F3n FZn+k(p[(p{b)] (mod b)

pour & 0, 1, 2,... On a donc
N ^ F«b> (mod 6) (4)

Tout diviseur > 1 du nombre FZn etant, comme on le sait, de la forme 2Zn l -f- 1 >
23n + 1 > 3 n > &, on trouve (FZn, b) 1 et, d'apr&s le th£or6me d'EuLER, (4) donne

iV 1 (mod 6) (5)

Or, on a 23" > 3 n 2^6 > ß, donc 2^ | 2?n+h*m\ k 0,1, 2,..., d'ou F8ll+M„W]
1 (mod 2ß) pour ß 0, 1, 2, ce qui donne, d'apres (3):

N=l (mod 2ß) (6)

Les formules (5) et (6) donnent N 1 (mod 3 n). En vertu du lemme 2 il nous reste ä
demontrer que 2Zn > 3 n + [g?(6) — 1] 9?[<p(&)]. Pour n 1 (ou & 3) nous v&rifions
cette in^galite directement, et pour n > 2 eile est valable aussi, puisqu'alors on a

23" > 3 n + (3 n)2 > 3 n + [<p(3 n)-l]<p [<p(3 n)] > 3 n + [<p(b) - 1] <p [tp(b)]

Nous avons ainsi demontre que, pour tout nombre naturel n > 1 il existe au
moins un nombre pseudopremier de la forme n k + 1 ou k est un nombre naturel, et,
comme nous le savons, il en resulte notre theoreme T. A. Rotkiewicz, Varsovie
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