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32 G. JaeEscuke und E. Trost: Uber die Nichtprimteiler von a b* + ¢

(3) ist nur moglich, wenn y gerade ist. Also ist — a b ¢ fiir fast alle p quadratischer Rest.
Hieraus folgt nach einem fritheren Satz2) (E. TRoOST [4]) — a bc = v2, also b = b}
(wegen (a ¢, b) = 1) im Widerspruch zur Voraussetzung.

G. JAEsCHKE, Sindelfingen und E. Trost, Ziirich3)
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Sur les nombres pseudopremiers de la forme zk+1.

On appelle pseudopremiers les nombres composés # tels que #|2" — 2. Dans le
travail [2]1) j’ai démontré qu’il existe une infinité de nombres pseudopremiers de la
forme n k 4 1 en utilisant le théoréme de ZsiGMONDY (voir [4]). Dans le travail (3],
en utilisant le théoréme de LEJEUNE-DIRICHLET sur la progression arithmétique j’ai
démontré que toute progression arithmeétique a x + b, ou a et b sont des nombres naturels
premiers entre eux, contient une infinité de nombres pseudopremiers. Le but de cette
note est de démontrer d’une fagon élémentaire et directe (sans faire appel au théo-
réme de ZSIGMONDY ni au théoréme de LEJEUNE-DIRICHLET) le théoréme suivant:
T. Pour tout nombre naturel n il existe une infinité de nombres pseudopremiers de la forue
nk+ 1, ou k est un nombre naturel.

Il est d’abord a remarquer que pour démontrer le théoréme T il suffit de démontrer
que pour tout nombre naturel # il existe au moins un nombre pseudopremier de la
forme # £ + 1, ol k est un nombre naturel, puisque alors pour tous deux nombres
naturels m et # il existe au moins un nombre pseudopremier de la forme # m ¢ + 1,
ou ¢ est un nombre naturel, et ce nombre pseudopremier est évidemment > m et de la
forme n k 4 1 (ou % est un nombre naturel).

Lemme 1. S¢ b est un nombre impair > 1 et si F, = 22" + 1, alors F, | ;oo =
E, (mod b) pour m >b, k=0,1,2, ...

Démonstration du lemme 1. Supposons que 2% | @(b) et 2*+! + @(b). On aura
@(b) /22| 2#90)2a] _ 1| 29090)] — 1, donc

P®) | Hototn _ 1 (1)

211
Comme 2™ > m > b > @(b) > 2% ona 2*| 2™ et il résulte de (1) que ¢(d) | 27 (2¢#0)] — 1) |
2m (2kele(®)] — 1), donc
@(b) | 2™ (2k##®] — 1)  pour k=1,2,3,.... (2)

%) Ist b fiir fast alle p n-ter Potenzrest und # £ 0 (mod 8), so ist b = b}. Fiir » = 0 (mod 8) ist ausser-
dem noch b = 2"/2 b moglich. «Fast alle» bedeutet hier, dass die Menge der Ausnahmeprimzahlen ver-
schwindende (Kroneckersche) Dichte hat.

3) Herrn J. STEINIG (Ziirich) danken wir fir kritische Bemerkungen.

1) Les chiffres en crochets renvoient aux travaux cités, page 33.
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Corhme 2 1 b, on a 2°® =1 (mod b) et, d’aprés (2) aussi 22" @***?-1 = 1 (mod ),

d'ou 22" N = 2™ (mod b), donc E,,, 40 = Fy (mod b) pour k=1,2, ..., ce
qui est évidemment vrai aussi pour £ = 0. Le lemme 1 est ainsi démontré.

Lemme 2 (théoréme de C1poLLA, cf. [1]): St k> 1, ny, n,, ... , n, sont des nombres

naturels,n, < n, < ... <, < 2™ alorsle nombre N = F E,_. F est pseudopremier.
Démonstration du lemme 2. Vu que #n, < n, < . < nk, onaN=1 (mod 22"),

d’ou, vu que 2" > n, (donc 2" >un,+1), N=1 (mod 21 On a donc, pour
1=1,2...,k:

7+ 1 np+1

F, =294 1|22%" — 1)22%" 12Vt 1,

et, les nombres de Fermat distincts étant premiers entre eux, on en déduit que
N = F,,IE,z...E,k|2N“1— 1|2N~— 2,

ce qui prouve que N est un nombre pseudopremier. Le lemme 2 est ainsi démontré.
Démonstration du théoréme T. Soit #» un nombre naturel donné quelconque et soit
3n=28b,0u2+b> 1. Nous prouverons que le nombre

N = F?m E3n+¢[w (b)] E3"+2¢[¢(b)] e Enﬂw(b)—l]w[tp(b)] (3)

est un nombre pseudopremier de la forme 3 # ¢ + 1.
Vu que 3% >0 et en vertu du lemme 1, nous avons Fy, = Fy, 4 se100 (mod b)
pour 2= 0,1,2,... On a donc
N=F (modbd). (4)
Tout diviseur > 1 du nombre F;, étant, comme on le sait, de la forme 2377+ 1 >
23" 4+ 1> 3 n > b, on trouve (F;,, b) = 1 et, d’aprés le théoréme d’EULER, (4) donne

n?

N=1 (modbd). ()

Or,ona 237 > 3 =28 b > B, donc 26| 22" *WN p_0,1,2,..., A0ou By, s poroen =
1 (mod 2%) pour 2 =0, 1, 2, ... ce qui donne, d’aprés (3):

N=1 (mod?2%. (6)

Les formules (5) et (6) donnent N = 1 (mod 3 #). En vertu du lemme 2 il nous reste a
démontrer que 23" > 3 n + [@(b) — 1] ¢[@(d)]. Pour n =1 (ou b= 3) nous vérifions
cette inégalité directement, et pour # > 2 elle est valable aussi, puisqu’alors on a

22> 30+ (302> 3n+ [p(3 ) — 1] ¢ [pB )] >3n+ [¢() — 1] ¢ [p(0)] -

Nous avons ainsi démontré que, pour tout nombre naturel » > 1 il existe au
moins un nombre pseudopremier de la forme »n £ + 1 ou %k est un nombre naturel, et,
comme nous le savons, il en résulte notre théoréme T. A. RoTkiewicz, Varsovie
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