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Uber Kegelschnitte mit gemeinsamem Kriimmungselement
und Erzeugung von Steinerzykloiden

F. LAURENTI [3] [4] hat in zwei Untersuchungen gezeigt, dass die Achsen von
Parabeln mit gemeinsamem Kriimmungselement Steinerzykloiden als Hiillkurven
besitzen. Dem analytischen Beweis von LAURENTI hat W. KICKINGER [2] eine syn-
thetische Beweisfithrung gegeniibergestellt, weiter lisst sich nachweisen [1], dass
Ellipsen und Hyperbeln von konstantem Achsenverhéltnis mit gemeinsamem Kriim-
mungselement Steinerzykloiden als Hiillkurven ihrer Achsen besitzen. Diese letzte
Aussage soll in der vorliegenden Untersuchung mit synthetischen Methoden bewiesen
werden. '

F. STEINER ([5], S. 205) hat folgende Konstruktion des Kriimmungsmittelpunktes
bei Kegelschnitten angegeben:

Treffen Tangente und Normale eines Punktes A eines Kegelschnitts die eine
Achse desselben in % und %!, die andere in € und !, errichtet man in dem Schnitt-
punkt (ALY, A L) = F auf der Geraden A F die Senkrechte, so trifft dieselbe die
Normale des Kegelschnitts in dem Kriimmungsmittelpunkt.

Figur 1
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Liegen Ellipsen vor, so ist K das Kriimmungszentrum, werden Hyperbeln be-
trachtet, ist K das Kriimmungszentrum (siehe Figur 1). Die Achsen des Kegelschnitts
werden dabei im Verhiltnis 4 8/4 % = b%/a? = A2 = const. geschnitten. Die Geraden
A M, ' F, A 8 sind Hohen des Dreiecks €' ¢ UA!; der Mittelpunkt M des Kegel-
schnitts und der Punkt F liegen daher auf dem Thaleskreis iiber % €, der Punkt F
bei Ellipsen ausserdem auf dem Thaleskreis iiber K 4 bzw. bei Hyperbeln auf dem
Thaleskreis iiber K* 4, also im Schnitt der Kreise iiber % £ und 4 K bzw. 4 K.

Durch Umkehr dieser Konstruktionsvorschrift von STEINER lisst sich eine Vor-
schrift 8 gewinnen, welche die Achsen von Kegelschnitten von konstantem Achsen-
verhiltnis A% mit gemeinsamem Kriimmungselement liefert. Wir beschrinken uns
zundchst auf Ellipsen (s. Figur 2):

Figur 2

£

Fiir alle Scharkurven ist der Kreis K A4 fest, sein Durchmesser gleich dem Radius R
des Kriimmungselementes. Wegen 5%/a%? = A 2/A A = A2 kann A U nur im Bereich
AK|* < AN < AK liegen, wihrend gleichzeitig fiir 4  gilt A K < A48 < 24 K.
Wihlt man innerhalb dieser Bereiche einen Punkt %, so kann mit A24 28 =A%
£ sofort bestimmt werden. Wird nun der Kreis iiber U 8 gezeichnet, soerhilt man als
Schnittpunkt mit dem festen Kreis iiber 4 K den Punkt F. Man ziehe jetzt die
Gerade ¢ F, ihr Schnittpunkt mit der Tangente ¢ des Kriimmungselementes sei %!;
der Schnitt der Geraden ' % mit dem Kreis iiber A 8 sei M. Die Geraden M £ und
M % sind dann die gesuchten Achsen der Scharellipse, M ihr Mittelpunkt.

Nun muss noch gezeigt werden, dass die Geraden M £ bzw. M % Steinerzykloiden
einhiillen. Hat der Punkt % seine tiefste Lage U, (%, A = R/A%) eingenommen, liegt
die Achse M U parallel zur Elementtangente; ist A A = 4 K, so steht die Achse M A
senkrecht zur Elementtangente. Die gesuchte Hiillkurve muss daher in K eine Spitze,
in %, einen Extremwert besitzen. Nun schneidet M % den Kreis K, durch %, mit dem
Radius 4 K(A? — 1)/4 A2 immer so, dass 4 S; = (A K + A* A %)/2 22 ist, also S, die
Strecke %, % halbiert. Damit ist aber schon gezeigt, dass die Hiillkurve der Geraden
M % eine Steinerzykloide ist, da auf der Gleichheit der Strecken % S und %, S eine
bekannte Konstruktion der Steinerzykloiden als Hiillgebilde von Geraden beruht
(siehe zum Beispiel [6], Seite 180).
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Analog kann der Bewetis fiir die Gerade M £ bzw. fiir Hyperbeln mit gemeinsamem
Kriimmungselement gefiihrt werden. Die hier angegebene Konstruktionsvorschrift 8
diirfte wohl gleichzeitig eine bisher unbekannte Erzeugungsweise von Steinerzykloi-

den sein.
J. Hoscuek, TH Darmstadt
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Uber die Nichtptimteiler von 24"+ ¢

Die Primzahl $ wird Primteiler der ganzwertigen Funktion g(x) genannt, wenn die
Kongruenz g(x) = 0 (mod p) eine ganzzahlige Losung » mit g(») &= 0 hat. Ist die
Kongruenz nicht l6sbar, so heisst $ Nichtprimteiler (NP) von g(x).

PéLya [1] hat gezeigt, dass fiir ganze a, b, ¢ mit ac+ 0, b = 2 die Funktion
go(x) = a b* + ¢ unendlich viele Primteiler besitzt. Fiir die NP von gy(x) gibt es keine
so allgemeine Aussage. Beispielsweise sind nach dem Fermatschen Satz die Prim-
teiler von b die einzigen NP von b* — 1. Fiir die Existenz von unendlich vielen NP
von g,(x) ist somit eine Zusatzbedingung notwendig, die im Falla = 1 nach SCHINZEL [2]
—c¢ =+ b* lautet. Eine Aussage iiber die Form der NP gibt der

Satz 1. Ist (ac,b)=1,b=2und |ac|+ 2 so ist die Anzahl der NP von a b* + ¢
in jeder der Restklassen 4 1 (mod 4) unendlich?).

Wird der Definitionsbereich von gy(x) auf die ungeraden Zahlen beschrinkt, so
gilt der

Satz 2. Ist (ac,d) =1, b= 2 und b =+ %, so ist die Anzahl der NP von a4 b2*+1 4 ¢
in jeder der Restklassen 4 1 (mod 4) unendlich.

Ohne Einschriankung von b ist Satz 2 nicht richtig. Jede Primzahl $ = 3 (mod 4)
ist ndmlich Primteiler von

42x+1 _ 1 = (22x+1 4 1) (225+1 — 1) = (206-102 4 1) (200-D12 — 1),

Lemma 1. p+ 2, (p,abc)=1, (b/p) =1, (—ac/p) = —1=p = NP von gy(x).
Bewers indirekt (Kongruenzen mod 2):

b=0, ab"+c=0=>a’b"+ac=0, —ac=(abp)? (—ac/p) =1 Widerspruch!

1} Sind b und a ¢ Quadratzahlen, so ist (nach Lemma 1) jedes a b ¢ nicht teilende ;b = —~1 (mod 4) ein
NP von gy(x). Ist b ein Quadrat, so ist die Bedingung (ac, b) = 1 iiberfliissig, da Satz 1 sofort aus Lemma 1
und Lemma 3 folgt. Ebenso erhilt man fiir a c = %% und beliebiges b = 2 unendlich viele NP der Form
4m + 3
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