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Über Kegelschnitte mit gemeinsamem Krümmungselement
und Erzeugung von Steinerzykloiden

F. Laurenti [3] [4] hat in zwei Untersuchungen gezeigt, dass die Achsen von
Parabeln mit gemeinsamem Krümmungselement Steinerzykloiden als Hüllkurven
besitzen. Dem analytischen Beweis von Laurenti hat W. Kickinger [2] eine
synthetische Beweisführung gegenübergestellt, weiter lässt sich nachweisen [1], dass

Ellipsen und Hyperbeln von konstantem Achsenverhältnis mit gemeinsamem
Krümmungselement Steinerzykloiden als Hüllkurven ihrer Achsen besitzen. Diese letzte
Aussage soll in der vorliegenden Untersuchung mit synthetischen Methoden bewiesen
werden.

F. Steiner ([5], S. 205) hat folgende Konstruktion des Krümmungsmittelpunktes
bei Kegelschnitten angegeben:

Treffen Tangente und Normale eines Punktes A eines Kegelschnitts die eine
Achse desselben in % und 9P, die andere in £ und fi1, errichtet man in dem Schnittpunkt

(9Ü21, 5t1 £) F auf der Geraden AF die Senkrechte, so trifft dieselbe die
Normale des Kegelschnitts in dem Krümmungsmittelpunkt.

Yi

Figur 1
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Liegen Ellipsen vor, so ist K das Krümmungszentrum, werden Hyperbeln
betrachtet, ist K1 das Krümmungszentrum (siehe Figur 1). Die Achsen des Kegelschnitts
werden dabei im Verhältnis _4£/_49I b2/a2 X2 const. geschnitten. Die Geraden
911M, 21 F, A £ sind Höhen des Dreiecks £* £ 9I1; der Mittelpunkt M des
Kegelschnitts und der Punkt F liegen daher auf dem Thaieskreis über 91 £, der Punkt F
bei Ellipsen ausserdem auf dem Thaieskreis über KA bzw. bei Hyperbeln auf dem
Thaieskreis über KXA, also im Schnitt der Kreise über 91 £ und A K bzw. A K1.

Durch Umkehr dieser Konstruktionsvorschrift von Steiner lässt sich eine
Vorschrift 33 gewinnen, welche die Achsen von Kegelschnitten von konstantem
Achsenverhältnis X2 mit gemeinsamem Krümmungselement liefert. Wir beschränken uns
zunächst auf Ellipsen (s. Figur 2):

Figur 2

Für alle Scharkurven ist der Kreis KA fest, sein Durchmesser gleich dem Radius R
des Krümmungselementes. Wegen b2\a2 A £/_4 91 X2 kann A 91 nur im Bereich
A Kß2 <A%<AK liegen, während gleichzeitig für A £ gilt A K < A £ < X2A K.
Wählt man innerhalb dieser Bereiche einen Punkt 91, so kann mit X2 A £ A 9t

£ sofort bestimmt werden. Wird nun der Kreis über 91 £ gezeichnet, so eihält man als
Schnittpunkt mit dem festen Kreis über AK den Punkt JF. Man ziehe jetzt die
Gerade £ F, ihr Schnittpunkt mit der Tangente t des Krümmungselementes sei 9t1;

der Schnitt der Geraden 9I1 91 mit dem Kreis über 91 £ sei M. Die Geraden M £ und
M 91 sind dann die gesuchten Achsen der Scharellipse, M ihr Mittelpunkt.

Nun muss noch gezeigt werden, dass die Geraden M £ bzw. M 91 Steinerzykloiden
einhüllen. Hat der Punkt 91 seine tiefste Lage 9t, (9t, 91 RfX2) eingenommen, hegt
die Achse M% parallel zur Elementtangente; ist A 9t A K, so steht die Achse M%
senkrecht zur Elementtangente. Die gesuchte Hüllkurve muss daher in K eine Spitze,
in 91, einen Extremwert besitzen. Nun schneidet M 91 den Kreis K0 durch 9t, mit dem
Radius A K(X2 - l)/4 X2 immer so, dass A Sx (A K + X2 A 91)\2 X2 ist, also Sx die
Strecke 91,91 halbiert. Damit ist aber schon gezeigt, dass die Hüllkurve der Geraden
M 91 eine Steinerzykloide ist, da auf der Gleichheit der Strecken 91S und 91, S eine
bekannte Konstruktion der Steinerzykloiden als Hüllgebilde von Geraden beruht
(siehe zum Beispiel [6], Seite 180).
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Analog kann der Beweis für die Gerade M £ bzw. für Hyperbeln mit gemeinsamem
Krümmungselement geführt werden. Die hier angegebene KonstruktionsVorschrift 93

dürfte wohl gleichzeitig eine bisher unbekannte Erzeugungsweise von Steinerzykloiden
sein.

J. Hoschek, TH Darmstadt
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Über die Nichtprimteiler von abx+c
Die Primzahl p wird Primteiler der ganzwertigen Funktion g(x) genannt, wenn die

Kongruenz g(x) 0 (mod p) eine ganzzahlige Lösung n mit g(n) #= 0 hat. Ist die
Kongruenz nicht lösbar, so heisst p Nichtprimteiler (NP) von g(x).

Pölya [1] hat gezeigt, dass für ganze a, b, c mit a c 4= 0, b ^ 2 die Funktion
g0(x) ab* + c unendlich viele Primteiler besitzt. Für die NP von gQ(x) gibt es keine
so allgemeine Aussage. Beispielsweise sind nach dem Fermatschen Satz die Primteiler

von b die einzigen NP von b* — 1. Für die Existenz von unendlich vielen NP
von gQ(x) ist somit eine Zusatzbedingung notwendig, die im Fall a 1 nach Schinzel [2]
— c 4= bk lautet. Eine Aussage über die Form der NP gibt der

Satz 1. Ist (a c, b) 1, b ^ 2 und | a c | 4= u2, so ist die Anzahl der NP von a bx + c

in jeder der Restklassen ± 1 (mod 4) unendlich1).
Wird der Definitionsbereich von g0(x) auf die ungeraden Zahlen beschränkt, so

gilt der

Satz 2. Ist (a c, b) 1, b ^ 2 und b 4= b\, so ist die Anzahl der NP von a b2x+1 + c

in jeder der Restklassen ± 1 (mod 4) unendlich.
Ohne Einschränkung von b ist Satz 2 nicht richtig. Jede Primzahl p 3 (mod 4)

ist nämlich Primteiler von

42*+i _ i ___ (22*+i _j_ i) (22*+i - 1) (2^-w + i) (2(/»-D/2 _ i).
Lemma 1. p 4= 2, (p, abc) 1, (b/p) 1, (—acjp) -1 => p NP von gö(x).
Beweis indirekt (Kongruenzen mod p):

b b%, abn + c==0^a2btn + ac 0, ~ac=(a bl)2, (-acjp) 1 Widerspruch!

l) Sind b und a c Quadratzahlen, so ist (nach Lemma 1) jedes abc nicht teilende p — 1 (mod 4) em
NP von gü(x). Ist 6 em Quadrat, so ist die Bedmgung (ac, b) 1 überflüssig, da Satz 1 sofort aus Lemma 1

und Lemma 3 folgt. Ebenso erhalt man für ac «2 und beliebiges 6^2 unendlich viele NP der Form
4w -f 3
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