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Rotors of Variable Regular Polygons
1. Introduction

It is well known that every closed curve has a circumscribed square [1, p. 86]1).
Furthermore, for every curve of constant width, all of the circumscribed rectangles
are squares. But the curves of constant width do not exhaust the class of curves all of
whose circumscribed rectangles are squares. It has been mentioned recently that other
curves also have this property. See [3] and [4, p. 97]. This note proposes to extend this
observation to other polygons.

2. Minkowski Sum of Two Curves

Take any point as origin in a plane in which two curves are given. Let ¢, be a
supporting line of one curve and let ¢,, parallel to ¢,, be a supporting line of the second
curve. Let p, and p, be the perpendicular distances from the origin to these lines. Let
t, be a third parallel line whose distance p, from the origin is equal to the sum of p,
and p,. Then the shape of the envelope of all lines, such as 7, is called the Minkowski
sum of the two given curves. The location of this derived curve depends upon the
choice of the origin, but the shape of this curve is independent of the choice of origin.
See [2, pp. 23-30] and [4, pp. 39-50].

3. Circumscribed Equiangular n-Gons

KARrTEszI [3] noted that a closed convex curve, made of four congruent arcs
(straight portions may be included) joining the vertices of a square, has the property
that every circumscribed rectangle is a square. The Minkowski sums of these curves
with ovals of constant width also have this property.

These results can be extended to other polygons. Rotors in regular polygons are
curves which can be rotated through all orientations while remaining in contact with
all the sides of the regular #-gon [5]. They include curves of constant width. A new
curve is obtained as the Minkowski sum of such a rotor with a closed convex curve
made of # congruent arcs joining the vertices of a regular #-gon. The arcs need not be
symmetric, but they must be coincident by appropriate rotations confined to the
plane. This new curve has the property that every circumscribed equiangular #-gon

1) Numbers in brackets refer to References, page 27.
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(for the given n) is also regular. This follows from the fact that the Minkowski sum of
two parallel similar polygons is a third parallel similar polygon.

4. Examples

Since all equiangular triangles are also regular, the infinite series of new cases
begins with the rotors in regular pentagons. An equiangular pentagon circumscribed
about a given regular pentagon (or any closed convex curve made of five congruent
arcs joining the vertices of a regular pentagon) is also regular; that is, the sides are
equal as well as the angles being equal. See Figure 1. The Minkowski sum of the regular
pentagon and a rotor in a regular pentagon is a curve whose equiangular circumscribed
pentagons are also regular. Curve C in Figure 2 is the Minkowski sum of the inner
pentagon A and its internal rotor B. Each outer pentagon E is a circumscribed
equiangular pentagon of curve C; hence it is also regular.

5. Internal Rotors of a Variable Regular n-Gon

Select E, one of the circumscribed pentagons of the curve C. Select any arbitrary
point within C as a center of rotation for the curve C. Let the five sides of the pentagon
E be allowed to move independently of each other, yet constrained to remain parallel
to their original positions. Then, as the curve C is rotated, the circumscribed pentagon
varies in size, but it always remains regular. Hence, the curve C is called an internal
rotor of the variable pentagon. In general, such internal rotors of variable regular
n-gons include, as special cases, internal rotors of fixed »n-gons (that is, fixed in both
size and direction). :

6. External Rotors of a Variable Regular n-Gon

If a curve of constant width is held fixed, a circumscribed square can be rotated
around it. All the vertices of the square describe the same curve. This curve, therefore,
has a continuous infinity of inscribed squares of the same size.

Similarly, all the vertices of a regular #-gon describe the same curve when the
n-gon is rotated about one of its internal rotors. As in the case of the square, this curve
has a continuous infinity of inscribed n-gons of the same size.



M. GoLpBERG: Rotors of Variable Regular Polygons 27

A regular n-curve, which consists of #» congruent segments joining the vertices of a
regular n#-gon, has a continuous infinity of inscribed regular #-gons. If we construct a
curve C, which is the Minkowski sum of a regular #-curve 4 and a rotor D in a regular
n-gon, then all the vertices of the circumscribed regular #-gons of this curve C describe
a new curve D. This curve D has an infinity of inscribed regular #-gons which are not
all of the same size.

In all of the foregoing cases, the #-gon may be considered as fixed in direction, but
the size may be variable as well as fixed. The new curve D may be considered as an
external rotor of the variable (or constant) #-gon.

7. Analytical Description of the Rotors

MEISSNER [5] [6] showed that the internal rotors in a regular #-gon may be ex-
pressed by the polar tangential equation

$p(0) = a, -{—2 (@, cosk 0 + b, sink 6) (1)
k-1

where p(6) is the distance from the origin to a tangent of inclination 6 and a,, b, = 0
when k2 %= +1 (mod #»).

The polar tangential equation of a regular #-curve may be represented by (1) where
a,, b, = 0 when & = 0 (mod #). Hence, the Minkowski sum of a rotor in an #-gon and
a regular n-curve is represented by (1) where a,, b, = 0 when 2= 0, 41 (mod #).

The external rotors are the isoptic curves of the internal rotors and they are
obtained as the locus of the vertex of an angle, equal to & (1 — 2/n), whose sides are
supporting lines of the internal rotor. The parametric equations of the external rotor
may be obtained as follows. Let a = p(8), and b = p (0 + y), where y = 2n/n. Let »
be the distance from the origin to the point (x, ¥) on the locus. Then,

a b
y=arccos7+arccos7=oc+ﬂ.

Let A = cosy = a bjr? — (/7 — a® |/r? — &2)/r®. Then,

lrzzab—]/r4¥_a272—b272+a2b2,

from which 72 = (a2 + 52 — 2 A4 a b)/(1 — 2?), and the sought parametric equations are
the following:

x=acosG~Vrz~a2sin0, y:asin0+V72~a2cosﬁ.

MicHAEL GOLDBERG, Washington, D.C., USA
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Uber Kegelschnitte mit gemeinsamem Kriimmungselement
und Erzeugung von Steinerzykloiden

F. LAURENTI [3] [4] hat in zwei Untersuchungen gezeigt, dass die Achsen von
Parabeln mit gemeinsamem Kriimmungselement Steinerzykloiden als Hiillkurven
besitzen. Dem analytischen Beweis von LAURENTI hat W. KICKINGER [2] eine syn-
thetische Beweisfithrung gegeniibergestellt, weiter lisst sich nachweisen [1], dass
Ellipsen und Hyperbeln von konstantem Achsenverhéltnis mit gemeinsamem Kriim-
mungselement Steinerzykloiden als Hiillkurven ihrer Achsen besitzen. Diese letzte
Aussage soll in der vorliegenden Untersuchung mit synthetischen Methoden bewiesen
werden. '

F. STEINER ([5], S. 205) hat folgende Konstruktion des Kriimmungsmittelpunktes
bei Kegelschnitten angegeben:

Treffen Tangente und Normale eines Punktes A eines Kegelschnitts die eine
Achse desselben in % und %!, die andere in € und !, errichtet man in dem Schnitt-
punkt (ALY, A L) = F auf der Geraden A F die Senkrechte, so trifft dieselbe die
Normale des Kegelschnitts in dem Kriimmungsmittelpunkt.

Figur 1
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