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(XIV)  fust auf mindestens esnem Intervall endlich und messbar.

(XV)  f hat auf mindestens eimem Intervall eine endliche und messbare Majorante.

(XVI)  f hat auf mindestens einer Menge positiven Masses etne endliche und messbare
Majorante.

(XVII) f st auf mindestens einer Menge positiven Masses einsestig beschrankt.

(XVIII) Auf mindestens einer Menge positiven Masses meiden die f-Werte ein offenes
Intervall.

Bewess: Es bestehen die folgenden Schlussketten: (X) = (XI) = (XII) = (XVIII);
(XIII) = (XIV) = (XV) = (XVI) = (XVII) = (XVIII). Die meisten Schliisse liegen
auf der Hand'%). Bezeichnet (III) die Stetigkeit von f auf P, so besagt Satz 2 die fiir
H-Funktionen bestehende Implikation (XVIII) = (III), womit das Hinreichen von
(X) bis (XVIII) erwiesen ist. Mit der Bemerkung (III) = (X), (III) = (XIII) ergibt
sich auch die Notwendigkeit. JUrG RATZ, Bern
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Kleine Mitteilungen

Uber die Dualitit bei der Konstruktion von Kegelschnitten

Der bekannten Fadenkonstruktion der Kegelschnitte aus den Brennpunkten steht in
der nichteuklidischen Ebene dual die Konstruktion aus den Brennlinien gegeniiber, wobei
die Summe der Winkel, die eine Kegelschnittangente mit einem Brennlinienpaar bildet,
konstant ist [1]1). Wir wollen hier untersuchen, welche Konstruktion der allgemeineren
Fadenkonstruktion von Graves [2] in der nichteuklidischen Ebene dual entspricht, und
versuchen, die Betrachtungen in den Raum zu iibertragen.

GRAVES hat gezeigt: Schlingt man um eine Ellipse einen geschlossenen Faden | und spannt
ihn iiber einen Punkt P, so ist P auf einer zur Ellipse konfokalen Ellipse beweglich. Diese
Konstruktion gilt auch in der nichteuklidischen Ebene [1].

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 15.
?) Die Uberlegungen lassen sich aber auch in die hyperbolische Ebene iibertragen, wenn man im Klein-
Cayleyschen Modell die Fadenkonstruktion auch in das Aussere des absoluten Kegelschnittes ausdehnt.
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Wir beschrinken unsere Betrachtungen auf den elliptischen Fall?). Dual entsprechen
den Punkten des Fadens die Stiitzgeraden eines Ellipsenabschnittes, einem Bogenelement
des Fadens entspricht (bis auf einen Massfaktor) der Kontingenzwinkel der Stiitzgeraden
und damit der festen Fadenldnge eine feste geoditische Gesamtkriimmung des Randes
unseres Ellipsenabschnittes. Wenden wir hierauf den Satz von GAuss-BONNET an, so
folgt wegen der konstanten Kriimmung der nichteuklidischen Ebene, dass der festen
Lange des Fadens f dual ein fester Flicheninhalt des Ellipsenabschnittes F entspricht.

@ /;\E\

Figur 1

Den konfokalen Kegelschnitten, das sind solche, deren gemeinsame Tangenten isotrop
sind, die also gemeinsame Brennpunkte haben, entsprechen dual homothetische Kegel-
schnitte, das sind solche, deren gemeinsame Punkte isotrop sind, die also gemeinsame

Brennlinien haben.
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Ganz dhnliche Uberlegungen gelten, wenn man den Faden wie in der Figur 2 (links)
am Kegelschnitt befestigt.

Um zur dualen Figur (rechts) zu gelangen, muss man zum zundchst nicht geschlossenen
Faden f einen zweiten, festen Faden f* hinzunehmen und von der Gesamtlinge die beiden
Bogen AA* und BB* subtrahieren.

So folgt: Schliessen eine feste Sehne p* und eine bewegliche Sehne p eines Kegelschnittes K,
mat diesem eine Fliche F festen Inhalts ein, so ist p bewegliche Tangente eines festen, zu K,
homothetischen Kegelschnittes K.

Da die beiden Fadenenden in P bekanntlich gleiche Winkel mit der Tangente bilden,
wird die Sehne p vom Beriihrungspunkt mit K halbiert3).

Bei einem Grenziibergang zur euklidischen Ebene bleibt der Satz erhalten [3]. Aus den
homothetischen Kegelschnitten werden konzentrische, (im Sinne von CHASLES) dhnliche
und dhnlich gelegene Kegelschnitte oder kongruente Parabeln gleicher Achse. Fiir den
Fall, dass K, dazu in ein Geradenpaar zerfillt, hat man die schon ARCHIMEDES bekannte
Konstruktion der Hyperbeltangenten [6].

Wir wollen beide Konstruktionen noch unter einem anderen Gesichtspunkt betrachten:
In der Integralgeometrie [4] wird der Inhalt eines Flichenstiickes F bestimmt durch die
«Anzahl» oder das «Mass aller Punkte» von F, und der Umfang einer Eilinie f durch das

Figur 2

3) Damit kann ein einfacher Beweis unserer Konstruktion gegeben werden [2].
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«Mass aller Geraden», die f treffen, wobei die «Dichte» der Punkte oder Geraden natiirlich

vom absoluten Kegelschnitt abhidngt [5]. Beide Masse stehen sich dual gegeniiber.
Wir beschrinken uns auf Eilinien in der elliptischen Ebene. Allen Geraden, die die

Eilinie f der Figur 1 treffen, entsprechen dual alle Punkte des Ausseren der dualen Figur.
Gehen wir von der Konstruktion homothetischer Kegelschnitte aus, so ist mit dem Inhalt
von F auch der endliche Inhalt des Ausseren F von F, also das Mass der Punkte von F,
damit das Mass der dualen Geraden, die f treffen, und somit die Linge von f fest.

Diese integralgeometrischen Uberlegungen lassen sich in den nichteuklidischen Raum
iibertragen. Dort heissen zwei Quadriken konfokal, wenn sie die gleichen oo! isotropen
Tangentialebenen, und homothetisch, wenn sie die gleichen oo! isotropen Punkte gemein
haben. Es gilt die folgende Konstruktion homothetischer Quadriken:

Schneiden eine bewegliche Ebene ¢ und eine feste Ebene e* aus einer Quadrik Q, ein Stiick
vom festen Volumen V aus, so ist € bewegliche Tangentialebene einer festen, zu Q, homotheti-
schen Quadrik Q.

Dieser Satz, der im euklidischen Raum bei der Untersuchung schwimmender Flachen
zweiter Ordnung Anwendung findet [3], ist auch im nichteuklidischen Raum leicht mit
Hilfe der Tatsache zu beweisen, dass jede Sehne von Q,, die gleichzeitig Tangente von Q
ist, vom Beriihrungspunkt halbiert wird [1]4).

Wir beschrianken uns auch hier auf Eiflichen im elliptischen Raum, dann entspricht
dem endlichen Mass der dusseren Punkte einer Eifliche das Mass der Ebenen, die die duale
Eifliche treffen. Insbesondere entspricht einem Ellipsoidabschnitt dual der Kappen-
korper eines Ellipsoides (vgl. Figur 1).

So folgt: Ist M das Mass aller Ebenen, die die konvexe Hiille H eines Ellipsoides Ey und
eines im Ausseven von E, gelegenen Punktes P treffen, so ist bei festgehaltenem M der Punkt P
auf einem festen, zu E, konfokalen Ellipsoid E beweglich.

Fiihren wir auch hier den Grenziibergang zur euklidischen Metrik durch, so ist nach
einem Ergebnis von CROFTON [4] das Mass M gleich dem Integral der mittleren Kriitmmung
von H, und es folgt die bekannte Ubertragung der Fadenkonstruktion der Kegelschnitte
nach GRAVEs auf Quadriken im Raum [6].

W. BouM, Technische Universitdt Berlin-Charlottenburg
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A Theorem concerning SODDY-Circles

1. Imtroduction. Let I'y be the inscribed circle (center J,) of 44,4,4;. We denote by
I'y (k =1, 2, 3) the escribed circle (center J,) touching 4,4, between A; and A,,, kim
being a permutation of the indices 1, 2, 3. The point of contact of I'; with 4;4,, will be
denoted by A4;, (= 0, 1, 2, 3). It is well known that the three lines A4;4;, (¢ = 1, 2, 3)
have a common point of intersection L;. There are three circles I';,, I;,, I';3 orthogonal
to I'; and having 4,, A,, 44 as their centers respectively. Moreover there exist fwo circles
o; and oj touching the triplet (I';,, I'j,, I';5); these two circles form a pair of SoppY-circles
[1]Y); evidently there are four of these pairs.

4) Damit lassen sich etwa fiir eine sehr kleine Bewegung von ¢ leicht gleich grosse Volumenelemente
verschiedenen Vorzeichens, die sich gegenseitig aufheben, angeben.
1) Numbers in brackets refer to References, page 16.
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Let S; and S} be the centers of g; and ¢} respectively. In the present note we want to
make some remarks concerning the following theorem proved by A. VANDEGHEN [2]:
The four lines S;S; (j = 0, 1, 2, 3) ave concurvent theiv common point of intersection being
the veflection L of the ovthocenter H of A A,A,A, with respect to the civcumcenter O of this
triangle.

It is easy to prove

Theovem 1. The two centers of similitude of the pair (o;, 0j) are J; and L;.
The theorem of VANDEGHEN is now clearly equivalent to

Theovem 2. The four lines J;L; (j = 0, 1, 2, 3) are concurrent their common point L
being the reflection of H with respect to O.

It may be pointed out that this theorem is not new; it was already known to E. LEMOINE
[3]. In § 3 we give 4 geometrical proof (believed to be new) of this theorem.

2. Proof of Theovem 1 (Fig. 1;j = 0, k = 3). The inversion which has A4, as its center
and lets I';; invariant transforms I';; and I, into the tangent-lines I'j; and I'j,, to I';
perpendicular to 4;4,,. The circles o; and o; are therefore transformed into two equal
circles g; and g} each of which is tangent to I'j, I';; and I'f,,. The centers of similitude of
the pair (o,, 6;) are 4, and the point at infinity of the line through A4; perpendicular to
A,A4,,. This leads to the conclusion that the centers of similitude of the pair (o, 05) are
on the lines A;;A; and A4, J; (¢ = 1, 2, 3) and so theorem 1 is proved.

Remark. Additionnally we have proved in this way that the lines 4;4;;, (k¢ = 1, 2, 3)
have in fact a point L; in common.

3. Proof of Theovem 2 (Fig. 2; § = 0). In this section we make use of the fact that the
line joining the isodynamic points (the isodynamic join for short) of a triangle contains
the orthocentre of the pedal triangle (of the orthocentre) of the given triangle. Clearly
L;is the LEMoINE-point of 4 4,4 ;,4 ;3. Theorem 2 is therefore equivalent to the assertion

Figur 1
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that LJ; is the isodynamic join of A A4;,4;,4 ;4 or, somewhat more sophisticated, that
L]; is parallel to this isodynamic join. To establish this fact we observe that j; is the
orthocenter of A4 J,J;], ., jklm being a permutation of the indices 0, 1, 2, 3, whereas
4 A;A,A4 is the pedal triangle of J; with respect to A Ji.J1 m. Moreover the triangles
JeJ1 ] m and AjAjyAj, are homothetic. Their isodynamic joins are therefore parallel
Denoting by O; the circumcenter of A [, J;],, we see by the above theorem that O;H is
the isodynamic joinof A [, J,Jn. As Oj is the reflection of J; with respect to O, we have
LJ; || O;H, which proves the assertion.

G. R. VELDKAMP, Technological University Eindhoven, Netherlands
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Aufgaben

Aufgabe 493. Es seien f(¢), g(f) zwei stetige periodische Funktionen mit der Periode
2 n, deren erste Fourier-Koeffizienten verschwinden:

2n gn 2n 2n
/f(t) cost dt =/ f(¢) sint dt =/g(t) cost dt :/g(t) sintdt = 0.
0 0 0 0

Ausserdem sei g(¢#) > 0. Dann hat f(#)/g(¢) wenigstens vier Extrema in 0 < ¢ < 2 o.
Dieser Satz enthdlt alle bekannten Sidtze aus der Verwandtschaft des Vierscheitel-
satzes. Man beweise ihn und finde neue Anwendungen.

o H. GUGGENHEIMER, Minneapolis (USA)

Lésung des Aufgabenstellers: 1. Eine stetige Funktion ist dann und nur dann der
Kriimmungsradius eines C2-Ovals als Funktion des Stiitzwinkels ¢ (Winkel zwischen
x-Achse und orientierter Tangente), wenn sie die Bedingungen fiir g(¢) erfiillt. In diesem
Fall ist nimlich, wenn s die Bogenldnge und x(s) die Vektorgleichung bedeutet,

#(2 7) — %(0) =9€dx=¢x’ ds Ejn(z?jf)g(t) at=0.
0

Die Kurve %(s) ist lokal konvex, sternféormig und geschlossen, also einfach geschlossen
und (z.B. nach Satz 1, p. 115 in STRUBECKER, Differentialgeometrie I, 3. Aufl. Sammlung
Goschen 1113/1113a) konvex.

2. Der behauptete Satz folgt nun nach dem HERGLoTzschen (indirekten) Beweis des
Vierscheitelsatzes (l.c. p. 119). Wir nehmen an, dass d(f/g) nur zwei Nullstellen besitze,
die den Punkten A, B auf x(s) entsprechen. A(x,y) =ax+ by 4 c=0 sei die Ver-
bindungsgerade von 4 und B. k(x, ¥) d(f/g) hat dann in allen von 4 und B verschiedenen
Punkten dasselbe Vorzeichen. Andererseits ist

fd(f/g~0und/xdf/g—-—//g"lx ds——-/f (5:105; =0.

Man erhilt also den Widerspruch

2n
f(ax+by+c) d(f/g) = 0.
0
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