Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 21 (1966)

Heft: 1

Artikel: Zur Theorie der Funktionalgleichung f(xy) = f(x) + f(y)
Autor: Ratz, Jurg

DOl: https://doi.org/10.5169/seals-24645

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-24645
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

10 J. Hoscuex: Uber Kegelschnitte mit gemeinsamem Kriimmungselement

Ubertriagt man (9) in die komplexe Schreibweise (vgl. [4]), so ergibt sich die Gleichung
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Die Bahnkurve des Mittelpunktes der betrachteten Kegelschnittschar ist also eine
Radlinie 3. Stufe.

Die Ortskurven der Brennpunkte und Scheitel der Scharkurven liegen allgemein
nicht mehr auf Radlinien, da die Bestimmung der Hauptachsen der Scharkurven auf
algebraische Formen fiihrt.

Eine Ausnahme bildet lediglich der Fall A2 = 0, also Parabeln mit gemeinsamem
Kriimmungselement. Der Scheitel aller Scharkurven liegt dann auf einer Radlinie
3. Stufe, ausserdem bewegen sich alle Punkte der Parabelachsen, die vom jeweiligen
Scheitel einen konstanten Abstand haben, auf Radlinien 4. Stufe. Ebenfalls Radlinien
4. Stufe sind die Bahnkurven aller der Punkte der Achsen von Hyperbeln und Ellipsen,
die von den Mittelpunkten der Scharkurven konstanten Abstand haben.

In den beiden Abbildungen sind Ellipsen und Hyperbeln mit gemeinsamem Kriim-
mungselement dargestellt. Als Achsenverhiltnis wurde A2 = 4 2, als Kriimmungs-
radius R = 2|A2%| gewidhlt. Die eingezeichneten Scharkurven g entsprechen dem
Parameterwert o = n/4, 4, und a, sind die jeweiligen Achsen, %, und %, die zugehdrigen
Hiillkurven. m ist die Bahnkurve der Mittelpunkte der Scharkurven.

J. HoscHEK, TH Darmstadt
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Zur Theorie der Funktionalgleichung f(x y) = f(x) + f( )

1. Einleitung. Eine auf der Menge P = {x € R | x > 0} erkldrte reellwertige
Losung der Funktionalgleichung

fEy)=fx+fy) [fr P—>R] (H)

nennen wir im folgenden eine H-Funktion. Im Hinblick auf die zentrale Problem-
stellung bei jeder Funktionalgleichung befassen wir uns hier mit der Frage, ob es
ausser den Logarithmusfunktionen noch weitere H-Funktionen gebe. Diese Frage ist
positiv zu beantworten (Korollar zu Satz 1). Ein weiteres Ziel dieser Note ist es, den
bekanntesten Bedingungen, die die Logarithmusfunktionen unter allen H-Funktionen
auszuzeichnen gestatten?), einige weitere grosstenteils scheinbar schwichere an die

1) Solche wurden in [8], Satz 6, zusammengestellt,
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Seite zu stellen (Satz 3). Mit jeder solchen Eigenschaft wird der pathologische
Charakter der unstetigen H-Funktionen prézisiert. Die Analogie der sich hier bieten-
den Situation mit derjenigen bei der Cauchyschen Grundgleichung

gu+v)=glu)+gv) [g° R—> K] (G)

springt ins Auge. In der Tat lassen sich nun auch wichtige Resultate aus der Theorie
von (G) auf unsere Funktionalgleichung (H) iibertragen.

2. Unstetige H-Funktionen. Unter einer additiven Funktion wollen wir im
folgenden eine Losung von (G) verstehen. Die Verbindung zwischen (H) und (G) wird
hergestellt durch

Satz 12): a) Die H-Funktionen f und die additiven Funktionen g entsprechen
etnander in eineindeutiger Weise vermoge f = g ol, bzw. g = f o171, wobei o das Kompo-
sitionssymbol, | die natiirliche Logarithmusfunktion und 1= deren Umbkehrfunktion be-
deuten. b) Die H-Funktion f ist genau dann stetig auf P, wenn die zu f gehorige additive
Funktion g auf R stetig ist. ¢) Der Logarithmusfunktion f mit f(x) == c I(x) entspricht die
additive Funktion g mit g(u) = c u.

Bewers: Bekanntlich ist / streng monoton wachsend und iiber P stetig und besitzt
die Wertmenge R. Somit existiert die Umkehrfunktion /! und ist nach bekannten
Sdtzen iiber ganz R stetig. Ferner geniigt sie daselbst der Funktionalgleichung

-1 (u + v) = I-Y(u) I-1(v) . (E)

In der Tat: Zu beliebigen «, v € R gibt es eindeutig x, y € P mit » = [(x), v = I(y), das
heisst [71(u) = x, [71(v) = y. Daraus resultiert /=1 (u + v) =71 [I(x) + I(y)] = [i(xy)] =
xy=10"Yu) - I7*(v). — Ist nun f eine H-Funktion und g= fo/-1, so gilt g (4 v) =
fl 4+ o)) = fIi-Yw) 12(0)] = fTYw)] + fT4(0)] = g() + g(v), womit die Additi-
vitit von g feststeht. — Ist umgekehrt g eine additive Funktion und f = g o, so gilt
flxy) = gll(x )] = ¢ [x) + Uy)] = gll(x)] + gll(y)] = f(x) + f(»). Somit ist f eine H-
Funktion. — Die Eineindeutigkeit des Sichentsprechens liegt auf der Hand. - b) folgt
mit Riicksicht auf die Stetigkeit von / und /- aus dem Kompositionssatz fiir stetige
Funktionen. — c) g(u) = f[I=Y(u)] = ¢ l[I7} ()] = c u.

Als Korollar von Satz 1 ergibt sich unter Berufung auf die auf dem Auswahlaxiom
fussende Konstruktion von G. HAMEL [4] die Existenz unstetiger Lésungen von (H).
Die Logarithmusfunktionen erscheinen also vom Standpunkt des Satzes 1 gewisser-
massen als die trivialen Losungen von (H).

3. Ein Satz von A. OSTROWSKI. Die Hamelsche Konstruktion unstetiger additi-
ver Funktionen léste zahlreiche Untersuchungen in der Theorie der Cauchyschen
Grundgleichung aus3), die von A. OsTRowsKI durch das Auffinden einer geniigend
schwachen hinreichenden Stetigkeitsbedingung gekront wurden?). Dass dieselbe Be-
dingung in gleicher Weise auch bei den H-Funktionen zustdndigist, besagt der folgende

2) Vergleiche [1], p. 48.
3) Historische Anmerkungen dazu findet man zum Beispiel in [3], p. 503 ff,
%) Vergleiche [7], p. 58.
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Satz 2: m bezeichne das eindimensionale Lebesguesche Mass. Gibt es zu einer H-
Funktion f eine beschrinkte m-messbare Menge M mit M C P, m(M) > 0 und ein offenes
Intervall I (C R) mat f(M) O I = &, dann ist f auf ganz P stetigh).

Beweis: Wegen MC P, Py,={xeR|x>1/n}, U Bj,=Pgit M=J (MNP,,),
n=1 n=1

und mit einem Grenzwertsatz des Lebesgueschen Masses folgt m (M 0O B,) >
m(M) > 0 [n > oo]. Somit gibt es eine natiirliche Zahl » mit M'= M 0 Py,
m(M') > 0 und wegen der Beschrianktheit von M’ zwei Zahlen a, b ¢ P mit M'C [a, b].
Die natiirliche Logarithmusfunktion / erfiillt iiber [a, ] eine Lipschitz-Bedingung¥®),
ist also absolut stetig tiber [a, 4], und mit M’ ist auch /(M') m-messbar?). Aus der fiir
beliebige «, y € P giiltigen Beziehung?)

y—Xx

- <) — Un) < 22 (1)

ergibt sich |y — x| min{l/y, 1/x} < |l(y) — /(*)| und hieraus fiir x, y € [a, b] weiter
ly —x|/b < |Uy) — l(x)]. Fir w=I(x), v=1Iy) entsteht daraus die Lipschitz-Be-
dingung

[I7Yw) — I Yu) | < b |v—u| (u,vell(a),(b)]), (2)

woraus wie vorhin die absolute Stetigkeit und schliesslich die Nullmengentreue von
{1 resultiert?). Die Annahme m[/(M’')] = 0 wiirde also m(M’) = 0 nach sich ziehen,
was der Konstruktion von M’ widerspricht; somit gilt m{/(M')] > 019). Nach der-
Voraussetzung iiber M gilt nun erst recht f(M') O I = ¢, und fiir die geméss Satz 1
zu f gehorige additive Funktion g ist dann f(M’) = g[/(M’)]. Meiden also die f~Werte
iiber M’ das Intervall I, so meiden es auch die g-Werte tiber der Menge /(M'), welche aber
nach dem Vorangehenden positives Mass hat. Der genannte Satz von A. OSTROWSKI4)
erlaubt den Schluss auf die Stetigkeit von g, also nach Satz 1b auch auf diejenige von f.

Dank der zentralen Stellung, welche die in Satz 2 vorkommende Eigenschaft
einer H-Funktion innehat, gibt es zahlreiche Korollarien, welche charakteristische
Eigenschaften der Logarithmusfunktionen liefern, so zum Beispiel:

Satz 3: Dafiir, dass eine H-Funktion f sogar eine Logarithmusfunktion ist, erweist
sich jede der folgenden Bedingungen als notwendig und hinreichendl):
(X) [ ist auf mindestens einem Intervall beschrinkt.
(XTI) f ist auf mindestens esnem Intervall einseitig beschrankt.
(XII)  Auf mindestens einem Intervall meiden die f-Werte ein offenes Intervall.
(XIIL)  fist auf mindestens esnem Intervall im Riemannschen Sinne eigentlich integrier-
bar.

5) Selbstverstindlich bedeutet die Annahme der Beschrianktheit von M keine Einbusse an Allgemein-
heit. Andererseits deutet sie auf die Moglichkeit hin, den nachfolgenden Beweis im Rahmen der sich auf
beschriankte Mengen beziehenden Masstheorie im engeren Sinne zu fiihren.

%) Vergleiche etwa [2], p. 117, oder [8], Satz 6, VIII.

?) Vergleiche etwa [6], p. 270, 271, 278.

8) Vergleiche etwa [2], p. 116, oder [8], Satz 6, V1.

%) Vergleiche etwa [6], p. 271, 276, 277.

10) Fiir eine Variante zu diesen Gedankengingen kann man sich etwa auf [5], p. 138-141, stiitzen.

11) Diese Bedingungen treten in der Theorie der Cauchyschen Grundgleichung (G) auf. Vergleiche
etwa [1], p. 48; [7], p. 56 ff; [9];%). Die Numerierung der Eigenschaften lehnt sich an [8], Satz 6 an. Die
Messbarkeit von Mengen und Funktionen bezieht sich iiberall auf das eindimensionale Lebesguesche Mass.
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(XIV)  fust auf mindestens esnem Intervall endlich und messbar.

(XV)  f hat auf mindestens eimem Intervall eine endliche und messbare Majorante.

(XVI)  f hat auf mindestens einer Menge positiven Masses etne endliche und messbare
Majorante.

(XVII) f st auf mindestens einer Menge positiven Masses einsestig beschrankt.

(XVIII) Auf mindestens einer Menge positiven Masses meiden die f-Werte ein offenes
Intervall.

Bewess: Es bestehen die folgenden Schlussketten: (X) = (XI) = (XII) = (XVIII);
(XIII) = (XIV) = (XV) = (XVI) = (XVII) = (XVIII). Die meisten Schliisse liegen
auf der Hand'%). Bezeichnet (III) die Stetigkeit von f auf P, so besagt Satz 2 die fiir
H-Funktionen bestehende Implikation (XVIII) = (III), womit das Hinreichen von
(X) bis (XVIII) erwiesen ist. Mit der Bemerkung (III) = (X), (III) = (XIII) ergibt
sich auch die Notwendigkeit. JUrG RATZ, Bern
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Uber die Dualitit bei der Konstruktion von Kegelschnitten

Der bekannten Fadenkonstruktion der Kegelschnitte aus den Brennpunkten steht in
der nichteuklidischen Ebene dual die Konstruktion aus den Brennlinien gegeniiber, wobei
die Summe der Winkel, die eine Kegelschnittangente mit einem Brennlinienpaar bildet,
konstant ist [1]1). Wir wollen hier untersuchen, welche Konstruktion der allgemeineren
Fadenkonstruktion von Graves [2] in der nichteuklidischen Ebene dual entspricht, und
versuchen, die Betrachtungen in den Raum zu iibertragen.

GRAVES hat gezeigt: Schlingt man um eine Ellipse einen geschlossenen Faden | und spannt
ihn iiber einen Punkt P, so ist P auf einer zur Ellipse konfokalen Ellipse beweglich. Diese
Konstruktion gilt auch in der nichteuklidischen Ebene [1].

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 15.
?) Die Uberlegungen lassen sich aber auch in die hyperbolische Ebene iibertragen, wenn man im Klein-
Cayleyschen Modell die Fadenkonstruktion auch in das Aussere des absoluten Kegelschnittes ausdehnt.
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