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Axiomatischer Aufbau der sphärisch-elliptischen Geometrie
(Fortsetzung)

2 Teil

Die Winkelsumme im sphärisch-elliptischen Dreieck

Im folgenden soll nach Beweis einiger Hilfssatze gezeigt werden, dass im sphansch-
elhptischen Dreieck die Winkelsumme grosser als 2 R ist Wegen des von der absoluten
Geometrie abweichenden Axiomensystems der sphärisch-elliptischen Geometrie
werden die Geraden wieder krummlinig gezeichnet Sämtliche hier durchgeführten
Überlegungen sind jedoch unabhängig von einem der speziellen Modelle fur die
sphärisch-elliptische Geometrie

Hilfssatz 1 Verbindet man einen Punkt P im Innern eines Dreiecks mit einer
Ecke, so enthalt die Verbindungsgerade einen Punkt der Gegenseite

Unter einem Punkt im Innern eines Dreiecks versteht man dabei einen Punkt, der
im Innern aller drei Dreickswmkel (siehe die Bemerkungen im Anschluss an Axiom
II, 6) hegt

Beweis von Hilfssatz 1

Figur 7

Auf der Strecke AB existiert (Figur 7) nach Axiom II, 2 und Definition 4 em Punkt Q
zwischen A und B derart, dass (A Q B) gilt

Die Gerade QP hat gemäss Axiom II, 6 angewandt auf das Dreieck ABC entweder
mit AC oder BC einen Punkt R gemeinsam, so dass entweder (A R C) oder (B R C)

gilt Geht Q P speziell durch C, ist bereits alles bewiesen
Wir nehmen an, dass R zwischen B und C hegt Fur das Dreieck QBR gilt nun

QB < AB und RB < BC, QB und RB sind daher Strecken gemäss Definition 3

Für QR ist das noch zu beweisen QR muss wegen I, 5 durch den Punkt Q auf der
Geraden durph AB hindurchgehen Da QB die Streckendefinition erfüllt, muss ~Q

ausserhalb der Strecke QB hegen Da AQ ebenfalls die Streckendefinition erfüllt, ist
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Q auch ein Punkt ausserhalb der Strecke AQ.7$ muss daher ausserhalb der Strecke
AB und damit ausserhalb des Dreiecks ABC liegen. Weil P ein Punkt im Innern des
Dreiecks ist, trennen sich die Punkte QR und PQ. QR ist daher eine Strecke im Innern
des Dreiecks ABC. Weil die Punkte QBR nicht auf einer Geraden liegen, und damit
keine zwei davon Gegenpunkte sind, ist gezeigt, dass QBR ein sphärisch-elliptisches
Dreieck darstellt.

Man kann nun auf dieses Dreieck das Axiom II, 6 anwenden. Die Gerade CP muss
danach die Seite QB in einem ^unkt S schneiden, da C ausserhalb der Seite BR liegt.

Hilfssatz 2: Jede Strecke ist eindeutig halbierbar.

Figur 8

Beweis: 1. Fall: A und B sind keine Gegenpunkte (Figur 8). Die Senkrechten in A
und B schneiden sich im Punkt S. Auf AS und BS werden gleiche Strecken AB' und
BA' abgetragen und die Strecken AA' und BB' gezeichnet.

AA' und BB' schneiden sich in D im Innern des Dreiecks ABS (Anwendung von
Axiom II, 6 auf A AA'S und weitere Anwendung von Axiom II, 5 wie beim Beweis

von Satz VIII). Es gilt:

AABB'^ABAA' nach Kongruenzsatz I.
Daraus folgt: <£ _4'_4£ <£ B'BA. Daher ist A ABD gleichschenklig. Die
Winkelhalbierende des Dreiecks ABD bei D halbiert AB in E.

2. Fall: A und B sind Gegenpunkte (Figur 9). Die Strecke AB ist in diesem Fall
eine der durch die Punkte A und B gehenden Halbgeraden. (Siehe Definition 1 und
Zusatz zu Definition 3.)

Figur 9

Man wählt innerhalb der Halbgeraden einen Punkt P. Dann sind AP und BP
Strecken im Sinn unserer Definition. AP möge die kleinere dieser beiden Strecken

von der Länge a sein. Wir können dann die Strecke AP von B aus bis Q abtragen, so
dass (BQP) gilt. P und Q liegen beide innerhalb der Halbgeraden AB, trennen also A
und B nicht und sind daher nach Axiom II, 5 keine Gegenpunkte. Auf die Punkte P
und Q kann dieselbe Betrachtung wie im 1. Fall angewandt werden. Der Punkt E
halbiert dann PQ und damit auch AB. Es ist nun noch zu zeigen, dass diese Halbierung

von AB eindeutig und damit von der Wahl des Punktes P unabhängig ist.
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{0

Figur 10

Zum Beweis (Figur 10) nehmen wir an, die Halbgerade AB besitze zwei Mittelpunkte
Ex und E2 D sei em Punkt ausserhalb der Geraden AB Em solcher existiert nach
Axiom I, 4 immer Dann gelten in den Dreiecken A ADEX und A ADE2 folgende
Beziehungen AD AD, <£ DAEX <£ DAE2,AEX AE2
Nach Axiom III, 5 muss dann auch <£ ADEX <£ ADE2 sein Da die Wmkelan-
tragung nach Axiom III, 4 eindeutig ist, folgt daraus, dass die Punkte Ex und E2
zusammenfallen müssen

Hilfssatz 3 Alle durch zwei Gegenpunkte S und 3"bestimmten entarteten Strecken
oder Halbgeraden smd zueinander kongruent Kongruenz besteht auch zwischen den

von zwei solchen Strecken bei 5 und 3T eingeschlossenen Winkeln

Figur 11

2 verschiedene Gerade gx und g2 durch S schneiden sich em zweites Mal in S (Figur 11)

Ax und A2 seien die Mitten der Strecken S5 auf gx und g2
Waren Ax und A2 Gegenpunkte, so mussten die Punkte Ax A2 S undSnach Satz la,

auf einer Geraden hegen im Gegensatz zur Annahme, dass gx und g2 verschiedene
Geraden smd Ax und A2 smd hier also keine Gegenpunkte

SAX o_T.i _5__l2 o._i2

Nach Kongruenzsatz III ergit sich dann

AAXA2S^AAXA2S
Daraus folgt

<£ olx <£ ax - R ia2=^Ca2=i., <£ Ax S A2 <£ Ax S A2

und wegen der erwiesenen Gleichschenkligkeit der beiden Dreiecke

Daher — —
_4iö + -liO =z Jx2ö + _Tloi3



J. Mall: Axiomatischer Aufbau der sphärisch-elliptischen Geometrie (Fortsetzung) 131

Ana'iog kann man für eine beliebige 3. Gerade gz durch 5 und S zeigen, dass gilt

AXS + AXS DS + DS,
womit alles bewiesen ist.

Hilfssatz 4: Zwei verschiedene Geraden haben genau ein gemeinsames Lot.
Die beiden Geraden gx und g2 mögen sich in zwei Gegenpunkten S und 5" (Axiom

I, 5) (Figur 12) schneiden. Die Verbindungsgerade ihrer Seitenmitten zwischen S und S

(Beweis von Hilfssatz 3) ist ein gemeinsames Lot.

^ -jo-—\ — ^ Figur 13

Figur 12

Wir nehmen an, die Strecke AXA2 se* dieses gemeinsame Mittellot. A'XA'2 sei ein zweites

gemeinsames Lot der beiden Geraden zwischen S und 5. Das führt jedoch zu
einem Widerspruch. Wegen der Kongruenz der Dreiecke AA'XA2S und AA'XA2S
muss das gemeinsame Lot A'XA'2 ebenfalls die beiden Halbgeraden zwischen S und 5
halbieren. Wegen der Eindeutigkeit der Halbierbarkeit müssen weiter die Punkte Ax
und A'x und A2 und A'2 zusammenfallen.

Hilfssatz 5: Alle durch irgend zwei Gegenpunkte begrenzte entartete Strecken
sind gleich lang. Die gemeinsame Länge aller dieser entarteten Strecken sei 2 e.

h__ '
o'K

R

S und S sind 2 Gegenpunkte (Figur 13). R ist ein beliebiger dritter Punkt. Die durch
R und S bestimmte Gerade gx geht auch durch S (siehe Satz la). Es gibt noch
wenigstens eine zweite von gx verschiedene Gerade g2 durch die Punkte 5 und _?.

Auf ihr wird P so gewählt, dass PS SR ist.
Dann gilt: A SPR £ A 'SRP nach Kongruenzsatz III, da PR PR, SR 5"P,

SP S?— PS S?— SR R&. (Nach Hilfssatz 3 ist S3T für alle Geraden durch
5 und S konstant.) Daraus folgt:

<£SP#=<£S#P=:<£a.
Dagx undg2 zwei verschiedene Geraden sind, sind P und R keine Gegenpunkte. Wären
P und R zwei Gegenpunkte, so müssten namhch gx und g2 miteinander identisch sein

(Satz 1, 2. Teil). Die Punkte P und R bestimmen daher genau eine Gerade. Dieselbe
schneidet gx zum 2. Mal im Gegenpunkt R von R. Es gilt weiter:

^*=^PRS^<£SPR=^:RPS=$:PRS (Hilfssatz 3)

1§RP ist also gleichschenklig. Daher ist:

SR^PS=SR.
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Daraus folgt: ^— _ _6 SS= RR 2e.
Damit ist alles bewiesen.

Hilfssatz 6: Die Senkrechten in den Punkten Ax, A2... einer Geraden schneiden
sich alle in zwei Gegenpunkten S S, und es gilt dann:

Axo A2Ö •••••• Ax%5 _t.2o — ••• z=- e

Figur 14

Beweis: Die Senkrechten in den Punkten Ax und _42 (keine Gegenpunkte) der
Geraden a schneiden sich in den Gegenpunkten S und ~5 (Figur 14). Aus der Kongruenz
der gleichschenkligen Dreiecke

A AXA2S ^ A AXA2S (Kongruenzsatz II)

Ax^ _T-2o AXS A2o e

_43 sei ein weiterer Punkt auf a. Es wird gezeigt, dass die durch S und _43 gehende
Gerade auf a senkrecht steht. AXAZ wird von A2 aus bis _44 auf a abgetragen. Es ist
also AXAB A2A± und

A Ax _43 5 £ A A2 _44 S (Kongruenzsatz I)
Daraus folgt:

<£SAZAX= <£SA±A2= <£<x und SA3 S_44

Daher ist A _43_44S gleichschenklig, und wegen oc + ß 2 R ergibt sich oc ß jR.

Die Senkrechte in _43 zu a geht also durch S und 5.

Hilfssatz 7: In einem rechtwinkligen Dreieck, dessen Katheten kleiner als e sind,
wird die Hypotenuse halbiert. Vom Mittelpunkt dieser Hypotenuse lässt sich dann

genau ein Lot auf jede der Katheten fällen, dessen Fusspunkt innerhalb der Katheten
Hegt. s

Di D Figur 15

Die Senkrechten in A und C zu AC schneiden sich in S mit SC e (Figur 15). SM
steht nach Hilfssatz 6 senkrecht zu AC. Da M innerhalb des Dreiecks ACS liegt, hegt
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D zwischen A und C (Hilfssatz 1). Es sei angenommen, MDX sei ein zweites Lot von M
auf AC. Dann muss MDX nach Hilfssatz 6 auch durch S hindurchgehen. Dann müssten
aber M und 5 Gegenpunkte sein, was nicht möglich ist, da MS < DXS e ist. Es gibt
also nur ein Lot von M auf AC.

Satz 3. Die Winkelsumme im Dreieck ist immer grösser als 2 R.
Zunächst wird gezeigt, dass in einem Dreieck, das einen einzigen rechten Winkel

hat und dessen Katheten kleiner als e sind, die Winkelsumme grösser als 2 R ist
(Figur 16).

R
E

tä
D C Figur 16

Ist ABC ein solches Dreieck, so halbieren wir zum Beweis die Hypotenuse AB und
erhalten den Mittelpunkt M. A und B sind hier wiederum keine Gegenpunkte, da
sonst der Winkel bei C kein rechter sein könnte. Von M wird ein Lot auf AC gefällt
mit dem Fusspunkt D. D muss zwischen A und C liegen (Hilfssatz 7). Auf der Geraden
durch M und D wird von M aus MD bis E angetragen. Die Punkte E und B bestimmen

eine Gerade gx. Ihre Schnittpunkte mit der durch ADC festgelegten Geraden g2
seien 5 und 5".

Nun gilt: A ADM £ A BEM nach Kongruenzsatz L Daher

<£BEM=^:ADM=R, <£ E B M <£ D A M <£a

ED ist also gemeinsames Lot der beiden Geraden gx und g2. Daraus folgt nach Hilfs-
satz 5: DS DS ES=ES e.

Nunmehr werde angenommen, die Winkelsumme im Dreieck A BC sei kleiner als 2 R,
also a + ß < R.

An BC wird nun in B ein rechter Winkel angetragen. Dann ist

<£S B Sx <x + ß+R<2R.
Der freie Schenkel des rechten Winkels in B liegt deshalb im Innern des Winkels CBÜJ,

und es gilt CSX < CS (Hilfssatz 1). Wegen CJ<D$=e folgt CSX < e.

Aus Hilfssatz 6 folgt für das Dreieck CSXB:

CSX BSx e.

Die beiden Aussagen CSX < e und CSX e widersprechen sich. Die Winkelsumme im
Dreieck ABC kann also nicht kleiner als 2 R sein.

Nunmehr werde angenommen, dass die Winkelsumme im Dreieck 2 R ist. Dann
gilt: oc + ß R und die Punkte Sx und 3T fallen zusammen. Nun ist DS" e (Hilfssatz

6), und ebenso C5"= e (Hilfssatz 6). Da jedoch C5*< D?ist, folgt e < e, also
ebenfalls ein Widerspruch.
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Damit ist der Satz für alle rechtwinkligen Dreiecke mit Katheten kleiner als e und
einem rechten Winkel bewiesen. Ist eine Kathete, etwa_4C, e, so fallen die Punkte S

und A zusammen und ß ist ein rechter Winkel. A ABC hat demnach zwei rechte
Winkel und seine Winkelsumme ist also grösser als 2 R.

Figur 17

Es sei nun A BC ein bei C rechtwinkliges Dreieck (Figur 17), in dem e < AC < 2 e gelte.
Zwischen A und C gibt es dann einen Punkt A', so dass A'C e ist. Dann ist A'B
gleich e und weiter <£ A'BC R. Da A'B innerhalb des A ABC verläuft, ist
<£ ABC > R und damit die Winkelsumme jedenfalls wieder grösser als 2 R.

Figur 18

Nun nehmen wir an, die Katheten BC und AC seien grösser als e (Figur 18). Der
Winkel bei C ist R. C sei der Gegenpunkt von C. DE sei das gemeinsame Lot der
beiden durch BC und AC bestimmten Geraden gx undg2. Es gilt also: CE ED e.

Dreieck DCE ist dreirechtwinklig. Wegen <£ EDC R und ED e folgt nach
Hilfssatz 6 «£ EAD R und EA e. Da _4J_t innerhalb des Dreiecks ABC verläuft,
muss <£ BAC > R sein. Daher ist die Winkelsumme im Dreieck ABC grösser als 2 R.

Alle Dreiecke mit wenigstens einem rechten Winkel haben also eine Winkelsumme
grösser als 2 R.

Nunmehr ist noch der Fall eines behebigen Dreiecks zu behandeln. Sind hier
wenigstens zwei Winkel grösser als R, so ist nichts zu beweisen. Es ist nur noch der
Fall zu erledigen, dass etwa a < R, ß < R und y < R oder a < R, ß < R und

y > R ist.

Figur 19
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In A und B werden die Senkrechten errichtet, die sich in den Gegenpunkten S und S
schneiden (Figur 19). Wegen der Voraussetzung a < R, ß < R liegt Punkt C im
Innern des Dreiecks ABS. Die durch 5 und C bestimmte Gerade hat nach Hilfssatz 1

mit AB den zwischen A und B liegenden Punkt E gemeinsam und steht senkrecht zu
AB (Hilfssatz 6). Das Dreieck ABC ist demnach in die beiden rechtwinkligen Dreiecke

AEC und BEC zerlegt, deren Winkelsumme grösser als 2 R ist. Daraus folgt
dann auch für das Dreieck ABC <z + ß-\-y>2R, was zu beweisen war.

Die hier ohne Modell entwickelte sphärisch-elliptische Geometrie lässt sich, wie
bereits erwähnt, an verschiedenen Modellen veranschaulichen. Als einfachstes Modell
kommt die Geometrie auf der Kugeloberfläche in Frage. Sie erfüllt das hier aufgestellte

Axiomensystem. Genau so lässt sich diese elliptische Geometrie aber auch im
elliptischen Kreisbündel realisieren. Unter einem Bündelkreis versteht man dabei
jeden Kreis und jede Gerade, die einen gegebenen sogenannten Fundamentalkreis
diametral schneiden. Jeder Punkt der Ebene wird dann als sphärisch-elliptischer
Punkt und jeder Diametralkreis als sphärisch-elliptische Gerade definiert. Dieses
Modell erfüllt ebenfalls das aufgestellte Axiomensystem. Es sei hier kurz noch auf die
Definition der Gegenpunkte bei diesem Modell hingewiesen.

Der Fundamentalkreis sei k (Figur 20). Ein Diametralkreis bezüglich des
Durchmessers AB von k ist eine elliptische Gerade. Alle Sehnen durch M schneiden g in
Gegenpunkten etwa S und 5. Jeder Kreis durch 5 und _? schneidet k diametral, ist also
eine elliptische Gerade. Durch S und j? gehen also unendlich viele elliptische Geraden.
Auf den weiteren Aufbau der elliptischen Geometrie in diesem Modell wurde hier
verzichtet.

Figur 20

Die Gültigkeit der im 1. Teil formulierten Axiome lässt sich für das elliptische
Kreisbündel ohne weiteres zeigen, erfordert aber, wenn dies unabhängig vom Kugelmodell
erfolgt, immerhin einen bestimmten Aufwand an Überlegungen und Figuren, so dass

aus räumlichen Gründen darauf verzichtet wird.
Der in dieser Abhandlung durchgeführte axiomatische Aufbau der

sphärischelliptischen Geometrie wurde vorgenommen, weil in der Literatur eine axiomatische
Entwicklung dieser Disziplin in der hier gegebenen Darstellung nicht gefunden werden

konnte. Mit diesem Thema hat sich noch W. Dieck1) in der Schrift: «Nichteukli-

x) W. Dieck, Nichteuklidische Geometrie in der Kugelebene (Math. Physikalische Bibliothek 31, Teubner
1918).
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dische Geometrie in der Kugelebene» befasst. Das von ihm benützte Axiomensystem
weicht jedoch von dem in der vorliegenden Arbeit aufgestellten Axiomensystem in
wesentlichen Punkten ab. Beim Aufbau der nichteuklidischen Geometrie in der Kugelebene

selbst bedient sich Dieck verschiedentlich, wohl zur Abkürzung mancher
Beweise, auch anschaulicher Vorstellungen aus der bekannten Kugelgeometrie. In der
hier nun entwickelten Gestalt eignet sich die sphärisch-elliptische Geometrie durchaus
für die Behandlung in speziellen Kursen (Arbeitsgemeinschaften) für mathematisch
besonders interessierte Schüler der Oberstufe. Bei der Aufstellung des Axiomensystems

wurde, wie bereits erwähnt, nicht darauf geachtet, unbedingt ein völlig
unabhängiges System zu gewinnen, um den Aufbau der sphärisch-elliptischen Geometrie
nicht zu kompliziert und unübersichtlich zu gestalten.

J. Mall, Weiden/BRD.

Kleine Mitteilung

Über eine Ungleichung von S.S. Wagner

S. S. Wagner kundigt in den Notices of the American Mathematicai Society, vol. 12

(1965), p. 220 folgende Ungleichung an:

tZat bt + x£at bÄ2 ^ IZa* + 2x£a% a\ f£ b\ + 2x£bt b\
(1)

(at,bt reell, 0 <_.#:£ 1).

Für diese Ungleichung wird em komplizierter Induktionsbeweis angedeutet, der anscheinend

mehrere hundert einzelne Rechnungen erfordert. Doch lässt sich (1) auf folgende
Weise ganz einfach beweisen:
Man forme die Ungleichung mittels der Identitäten

2Jat bj £at 2Jbt - £ at bt

sJ^M^a^,)2-^?
um und setze dabei 1 — x y. Es gilt x ^ 0, y ^ 0.
Man erhält

[x £at EK + y £at &,]« g \x{Zat)* + y 2a*] [x(Zb^ + y Zb*]. (2)

Ausmultipliziert ergibt das

xy[(Za^Zbf+(ZbtVZaj-~2ZatZbtZaJbJ] + ynZalZb^-(Zatbt)^^0. (3)

Der Koeffizient von xy ist J^ (b: £at — a3 £bt)% und daher nicht negativ; der Koeffizient
1

von y2 ist nach der Cauchy-Schwarzsehen Ungleichung ebenfalls nicht negativ. Da x ^ 0,

y 2£ 0, ist damit die Ungleichung von Wagner bewiesen.
P. Flor, Wien
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