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Axiomatischer Aufbau der sphirisch-elliptischen Geometrie
(Fortsetzung)

2. Texd
Die Winkelsumme im sphirisch-elliptischen Dreieck

Im folgenden soll nach Beweis einiger Hilfssdtze gezeigt werden, dass im sphérisch-
elliptischen Dreieck die Winkelsumme grésser als 2 R ist. Wegen des von der absoluten
Geametrie abweichenden Axiomensystems der sphérisch-elliptischen Geometrie
werden die Geraden wieder krummlinig gezeichnet. Sdmtliche hier durchgefiihrten
Uberlegungen sind jedoch unabhingig von einem der speziellen Modelle fiir die sphi-
risch-elliptische Geometrie.

Hilfssatz 7. Verbindet man einen Punkt P im Innern eines Dreiecks mit einer
Ecke, so enthilt die Verbindungsgerade einen Punkt der Gegenseite. ’

Unter einem Punkt im Innern eines Dreiecks versteht man dabei einen Punkt, der
im Innern aller drei Dreickswinkel (siche die Bemerkungen im Anschluss an Axiom
IT, 6) liegt.

Bewets von Hilfssatz 1:

5 Figur 7

Auf der Strecke A B existiert (Figur 7) nach Axiom II, 2 und Definition 4 ein Punkt Q
zwischen 4 und B derart, dass (4 Q B) gilt.

Die Gerade QP hat gemiss Axiom II, 6 angewandt auf das Dreieck 4 BC entweder
mit AC oder BC einen Punkt R gemeinsam, so dass entweder (4 R C) oder (B R C)
gilt. Geht Q P speziell durch C, ist bereits alles bewiesen.

Wir nehmen an, dass R zwischen B und C liegt. Fiir das Dreieck QBR gilt nun:
QOB < AB und RB < BC, (B und RB sind daher Strecken gemiss Definition 3.
Filr QR ist das noch zu beweisen. QR muss wegen I, 5 durch den Punkt Q auf der
Geraden durch 4B hindurchgehen. Da QB die Streckendefinition erfiillt, muss Q
ausserhalb der Strecke QB liegen. Da AQ ebenfalls die Streckendefinition erfiillt, ist
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Q auch ein Punkt ausserhalb der Strecke AQ. Q muss daher ausserhalb der Strecke
A B und damit ausserhalb des Dreiecks 4 BC liegen. Weil P ein Punkt im Innern des
Dreiecks ist, trennen sich die Punkte QR und PQ. QR ist daher eine Strecke im Innern
des Dreiecks A BC. Weil die Punkte Q BR nicht auf einer Geraden liegen, und damit
keine zwei davon Gegenpunkte sind, ist gezeigt, dass QBR ein sphérisch-elliptisches
Dreieck darstellt.

Man kann nun auf dieses Dreieck das Axiom II, 6 anwenden. Die Gerade C P muss
danach die Seite QB in einem.Punkt S schneiden, da C ausserhalb der Seite BR liegt.

Hilfssatz 2: Jede Strecke ist eindeutig halbierbar.

Figur 8

Beweis: 1. Fall: A und B sind keine Gegenpunkte (Figur 8). Die Senkrechten in 4
und B schneiden sich im Punkt S. Auf A4S und BS werden gleiche Strecken 4 B’ und
BA’ abgetragen und die Strecken A4’ und BB’ gezeichnet.

AA’' und BB’ schneiden sich in D im Innern des Dreiecks 4 BS (Anwendung von
Axiom II, 6 auf A AA’S und weitere Anwendung von Axiom II, 5 wie beim Beweis
von Satz VIII). Es gilt:

AABB ~xABAA" nach KongruenzsatzI.

Daraus folgt: <t A’AB = < B'BA. Daher ist A ABD gleichschenklig. Die Winkel-
halbierende des Dreiecks A BD bei D halbiert AB in E.

2. Fall: 4 und B sind Gegenpunkte (Figur 9). Die Strecke A B ist in diesem Fall
eine der durch die Punkte 4 und B gehenden Halbgeraden. (Siehe Definition 1 und
Zusatz zu Definition 3.)

Figur 9

Man wihlt innerhalb der Halbgeraden einen Punkt P. Dann sind AP und BP
Strecken im Sinn unserer Definition. A P mége die kleinere dieser beiden Strecken
von der Linge a sein. Wir kénnen dann die Strecke A P von B aus bis Q) abtragen, so
dass (BQP) gilt. P und Q liegen beide innerhalb der Halbgeraden 4 B, trennen also 4
und B nicht und sind daher nach Axiom II, 5 keine Gegenpunkte. Auf die Punkte P
und Q kann dieselbe Betrachtung wie im 1. Fall angewandt werden. Der Punkt E
halbiert dann PQ und damit auch 4 B. Es ist nun noch zu zeigen, dass diese Halbie-
rung von A B eindeutig und damit von der Wahl des Punktes P unabhingig ist.
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D

2

A £ Figur 10

Zum Beweis (Figur 10) nehmen wir an, die Halbgerade A B besitze zwei Mittelpunkte
E, und E,. D sei ein Punkt ausserhalb der Geraden 4 B. Ein solcher existiert nach
Axiom I, 4 immer. Dann gelten in den Dreiecken A ADE, und A ADE, folgende Be-
ziehungen: AD = AD, < DAE, = { DAE,, AE, = AE,

Nach Axiom III, 5 muss dann auch <¢ ADE, = ¢ ADE, sein. Da die Winkelan-
tragung nach Axiom III, 4 eindeutig ist, folgt daraus, dass die Punkte E, und E,
zusammenfallen miissen.

Hilfssatz 3: Alle durch zwei Gegenpunkte S und S bestimmten entarteten Strecken
oder Halbgeraden sind zueinander kongruent. Kongruenz besteht auch zwischen den
von zwei solchen Strecken bei S und S eingeschlossenen Winkeln.

S

Figur 11

2 verschiedene Gerade g, und g, durch S schneiden sich ein zweites Malin S (Figur 11).
A, und A, seien die Mitten der Strecken SS auf g, und g,.

Wiren 4, und 4, Gegenpunkte, so miissten die Punkte 4, A, S und Snach Satz 1a,
auf einer Geraden liegen im Gegensatz zur Annahme, dass g; und g, verschiedene
Geraden sind. 4, und 4, sind hier also keine Gegenpunkte.

Es gilt: - -
= & SA,=SA,; SA,=SA,.
Nach Kongruenzsatz III ergit sich dann

AA A, S DA AA,S.
Daraus folgt:

Joa =% =R; Foag=<L%K=R; JA4,S4,=LA4,54,
und wegen der erwiesenen Gleichschenkligkeit der beiden Dreiecke
A,S=A4,S=A4,5=4,5. |

Dah _ _
aher AS+ 4,5 = 4,5 + 4,5.
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Anaiog kann man fiir eine beliebige 3. Gerade gz durch S und S zeigen, dass gilt

A,S + A,S=DS + DS,
womit alles bewiesen ist.
Hilfssatz 4: Zwei verschiedene Geraden haben genau ein gemeinsames Lot.
Die beiden Geraden g, und g, mégen sich in zwei Gegenpunkten S und S (Axiom
I, 5) (Figur 12) schneiden. Die Verbindungsgerade ihrer Seitenmitten zwischen Sund S
(Beweis von Hilfssatz 3) ist ein gemeinsames Lot.

3 Figur 12

Wir nehmen an, die Strecke 4,4, sei dieses gemeinsame Mittellot. 4,4, sei ein zwei-
tes gemeinsames Lot der beiden Geraden zwischen S und S. Das fiihrt jedoch zu
einem Widerspruch. Wegen der Kongruenz der Dreiecke A A;4,S und A A]A4,S
muss das gemeinsame Lot 4,4, ebenfalls die beiden Halbgeraden zwischen S und S
halbieren. Wegen der Eindeutigkeit der Halbierbarkeit miissen weiter die Punkte 4,

und 4, und 4, und 4, zusammenfallen.

Hilfssatz 5: Alle durch irgend zwei Gegenpunkte begrenzte entartete Strecken
sind gleich lang. Die gemeinsame Linge aller dieser entarteten Strecken sei 2 e.

92 P _
g2
S
G " Figur 13

S und S sind 2 Gegenpunkte (Figur 13). R ist ein beliebiger dritter Punkt. Die durch
R und S bestimmte Gerade g, geht auch durch S (siehe Satz 1a). Es gibt noch
wenigstens eine zweite von g; verschiedene Gerade g, durch die Punkte S und S.
Auf ihr wird P so gewihlt, dass PS = SR ist.

Danngilt: A SPR ~ A SRP nach Kongruenzsatz III, da PR = PR, SR = SP,
SP =SS — PS =S5 — SR = RS. (Nach Hilfssatz 3 ist SS fiir alle Geraden durch
S und S konstant.) Daraus folgt:

XSPR=%SRP=<ua.

Da g, und g, zwei verschiedene Geraden sind, sind P und R keine Gegenpunkte. Wiren
P und R zwei Gegenpunkte, so miissten ndmlich g, und g, miteinander identisch sein
(Satz 1, 2. Teil). Die Punkte P und R bestimmen daher genau eine Gerade. Dieselbe
schneidet g, zum 2. Mal im Gegenpunkt R von R. Es gilt weiter:

Xa=<XPRS=<XSPR=JXRPS=XPRS (Hilfssatz 3)
SRP ist also gleichschenklig. Daher ist:
SR=PS5=3SR.
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D folgt: _ _
arats 10'e SS=RR=2ec.

Damit ist alles bewiesen.
Hilfssatz 6: Die Senkrechten in den Punkten 4, 4,... einer Geraden schneiden
sich alle in zwei Gegenpunkten S'S, und es giit dann:

AIS: AzS: """:AI—S-=A2§= ree =€,

°S Figur 14
Beweis: Die Senkrechten in den Punkten 4; und 4, (keine Gegenpunkte) der

Geraden a schneiden sich in den Gegenpunkten S und S (Figur 14). Aus der Kongruenz
der gleichschenkligen Dreiecke

AA A, S~ A A A, S (Kongruenzsatz II)
A15=A25=A1—§=A2—§=6.

Ag sei ein weiterer Punkt auf a. Es wird gezeigt, dass die durch S und 4, gehende
Gerade auf a senkrecht steht. 4,4, wird von A4, aus bis 4, auf a abgetragen. Es ist

AA A3 S DA, A, S (Kongruenzsatz I)

folgt:

Daraus folgt:
X SA4; 4, =< SA4,4,= <o und Sd;= S4,.

Daher ist A A44,S gleichschenklig, und wegen « + B = 2 R ergibt sich a = f = R.
Die Senkrechte in 44 zu a4 geht also durch S und S. -

Hilfssatz 7: In einem rechtwinkligen Dreieck, dessen Katheten kleiner als e sind,
wird die Hypotenuse halbiert. Vom Mittelpunkt dieser Hypotenuse ldsst sich dann
genau ein Lot auf jede der Katheten fillen, dessen Fusspunkt innerhalb der Katheten

liegt.

Figur 15

Die Senkrechten in 4 und C zu AC schneiden sich in S mit SC = e (Figur 15). SM
steht nach Hilfssatz 6 senkrecht zu AC. Da M innerhalb des Dreiecks ACS liegt, liegt
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D zwischen 4 und C (Hilfssatz 1). Es sei angenommen, M D; sei ein zweites Lot von M
auf AC. Dann muss M D, nach Hilfssatz 6 auch durch S hindurchgehen. Dann miissten
aber M und S Gegenpunkte sein, was nicht moglich ist, da MS < D,S = eist. Es gibt
also nur ein Lot von M auf AC.

Satz 3. Die Winkelsumme im Dreieck ist immer grosser als 2 R.

Zunidchst wird gezeigt, dass in einem Dreieck, das einen einzigen rechten Winkel
hat und dessen Katheten kleiner als e sind, die Winkelsumme grosser als 2 R ist
(Figur 16). .

Figur 16

Ist ABC ein solches Dreieck, so halbieren wir zum Beweis die Hypotenuse 4 B und
erhalten den Mittelpunkt M. A und B sind hier wiederum keine Gegenpunkte, da
sonst der Winkel bei C kein rechter sein kénnte. Von M wird ein Lot auf AC gefallt
mit dem Fusspunkt D. D muss zwischen 4 und C liegen (Hilfssatz 7). Auf der Geraden
durch M und D wird von M aus M D bis E angetragen. Die Punkte E und B bestim-
men eine Gerade g,. IThre Schnittpunkte mit der durch ADC festgelegten Geraden g,
seien S und S.
Nun gilt: A ADM ~ A BEM nach Kongruenzsatz I. Daher

XBEM=YADM=R, YEBM=%DAM=J«.

ED ist also gemeinsames Lot der beiden Geraden g, und g,. Daraus folgt nach Hilfs-

satz 3: DS=DS—ES=ES=—e.
Nunmehr werde angenommen, die Winkelsumme im Dreieck 4 BC sei kleiner als 2 R,
alsoa + g < R.

An BC wird nun in B ein rechter Winkel angetragen. Dann ist
LXSBS;=a+8+R<2R.

Der freie Schenkel des rechten Winkels in B liegt deshalb im Innern des Winkels CBS,
und es gilt CS; < CS (Hilfssatz 1). Wegen CS < DS = ¢ folgt CS,; < e.
Aus Hilfssatz 6 folgt fiir das Dreieck CS,B:

CS,=BS;=¢.

Die beiden Aussagen CS; < e und CS, = ¢ widersprechen sich. Die Winkelsumme im
Dreieck A BC kann also nicht kleiner als 2 R sein.

Nunmehr werde angenommen, dass die Winkelsumme im Dreieck 2 R ist. Dann
gilt: « + B = R und die Punkte S, und S fallen zusammen. Nun ist DS = ¢ (Hilfs-
satz 6), und ebenso CS = ¢ (Hilfssatz 6). Da jedoch CS < D5 ist, folgt ¢ < ¢, also
ebenfalls ein Widerspruch. ’
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Damit ist der Satz fiir alle rechtwinkligen Dreiecke mit Katheten kleiner als ¢ und
einem rechten Winkel bewiesen. Ist eine Kathete, etwa AC, = ¢, so fallen die Punkte S
und A zusammen und g ist ein rechter Winkel. A 4 BC hat demnach zwei rechte
Winkel und seine Winkelsumme ist also grosser als 2 R.

Figur 17

Esseinun 4 BC ein bei C rechtwinkliges Dreieck (Figur 17), indem e < AC < 2 ¢ gelte.
Zwischen A und C gibt es dann einen Punkt A’, so dass A'C = ¢ ist. Dann ist 4'B
gleich e und weiter { A’BC = R. Da A’'B innerhalb des A ABC verliuft, ist
< ABC > R und damit die Winkelsumme jedenfalls wieder grosser als 2 R.

Figur 18

Nun nehmen wir an, die Katheten BC und AC seien grésser als e (Figur 18). Der
Winkel bei C ist R. C sei der Gegenpunkt von C. DE sei das gemeinsame Lot der
beiden durch BC und AC bestimmten Geraden g, und g,. Es gilt also: CE = ED = e.

Dreieck DCE ist dreirechtwinklig. Wegen <t EDC = R und ED = e folgt nach
Hilfssatz 6 <t EAD = R und EA = e. Da AE innerhalb des Dreiecks A BC verliuft,
muss < BAC > R sein. Daher ist die Winkelsumme im Dreieck A BC grésser als 2 R.

Alle Dreiecke mit wenigstens einem rechten Winkel haben also eine Winkelsumme
grosser als 2 R.

Nunmehr ist noch der Fall eines beliebigen Dreiecks zu behandeln. Sind hier
wenigstens zwei Winkel grésser als R, so ist nichts zu beweisen. Es ist nur noch der
Fall zu erledigen, dass etwa « < R, < R und y < R oder « < R, $ < R und
y > R ist.

S Figur 19
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In A und B werden die Senkrechten errichtet, die sich in den Gegenpunkten S und S
schneiden (Figur 19). Wegen der Voraussetzung a < R, § < R liegt Punkt C im
Innern des Dreiecks A BS. Die durch S und C bestimmte Gerade hat nach Hilfssatz 1
mit A B den zwischen 4 und B liegenden Punkt E gemeinsam und steht senkrecht zu
A B (Hilfssatz 6). Das Dreieck A BC ist demnach in die beiden rechtwinkligen Drei-
ecke AEC und BEC zerlegt, deren Winkelsumme grosser als 2 R ist. Daraus folgt
dann auch fiir das Dreieck ABC « + f# + y > 2 R, was zu beweisen war.

Die hier ohne Modell entwickelte sphirisch-elliptische Geometrie lisst sich, wie
bereits erwdhnt, an verschiedenen Modellen veranschaulichen. Als einfachstes Modell
kommt die Geometrie auf der Kugeloberfliche in Frage. Sie erfiillt das hier aufge-
stellte Axiomensystem. Genau so lisst sich diese elliptische Geometrie aber auch im
elliptischen Kreisbiindel realisieren. Unter einem Biindelkreis versteht man dabei
jeden Kreis und jede Gerade, die einen gegebenen sogenannten Fundamentalkreis
diametral schneiden. Jeder Punkt der Ebene wird dann als sphérisch-elliptischer
Punkt und jeder Diametralkreis als sphirisch-elliptische Gerade definiert. Dieses
Modell erfiillt ebenfalls das aufgestellte Axiomensystem. Es sei hier kurz noch auf die
Definition der Gegenpunkte bei diesem Modell hingewiesen.

Der Fundamentalkreis sei 2 (Figur 20). Ein Diametralkreis beziiglich des Durch-
messers AB von k ist eine elliptische Gerade. Alle Sehnen durch M schneiden g in
Gegenpunkten etwa S und S. Jeder Kreis durch S und S schneidet % diametral, ist also
eine elliptische Gerade. Durch S und S gehen also unendlich viele elliptische Geraden.
Auf den weiteren Aufbau der elliptischen Geometrie in diesem Modell wurde hier ver-
zichtet.

Die Giiltigkeit der im 1. Teil formulierten Axiome lésst sich fiir das elliptische Kreis-
biindel ohne weiteres zeigen, erfordert aber, wenn dies unabhingig vom Kugelmodell
erfolgt, immerhin einen bestimmten Aufwand an Uberlegungen und Figuren, so dass
aus rdumlichen Griinden darauf verzichtet wird.

Der in dieser Abhandlung durchgefiihrte axiomatische Aufbau der sphérisch-
elliptischen Geometrie wurde vorgenommen, weil in der Literatur eine axiomatische
Entwicklung dieser Disziplin in der hier gegebenen Darstellung nicht gefunden wer-
den konnte. Mit diesem Thema hat sich noch W. Dieck?) in der Schrift: « Nichteukli-

1) W. Dieck, Nichieuklidische Geometrie in der Kugelebene (Math. Physikalische Bibliothek 31, Teubner
1918).



136 Kleine Mitteilung

dische Geometrie in der Kugelebene» befasst. Das von ihm beniitzte Axiomensystem
weicht jedoch von dem in der vorliegenden Arbeit aufgestellten Axiomensystem in
wesentlichen Punkten ab. Beim Aufbau der nichteuklidischen Geometrie in der Kugel-
ebene selbst bedient sich DiEck verschiedentlich, wohl zur Abkiirzung mancher Be-
weise, auch anschaulicher Vorstellungen aus der bekannten Kugelgeometrie. In der
hier nun entwickelten Gestalt eignet sich die sphirisch-elliptische Geometrie durchaus
fiir die Behandlung in speziellen Kursen (Arbeitsgemeinschaften) fiir mathematisch
besonders interessierte Schiiler der Oberstufe. Bei der Aufstellung des Axiomen-
systems wurde, wie bereits erwidhnt, nicht darauf geachtet, unbedingt ein véllig un-
abhingiges System zu gewinnen, um den Aufbau der sphirisch-elliptischen Geometrie

nicht zu kompliziert und uniibersichtlich zu gestalten.
J. Ma1rr, Weiden/BRD.

Kleine Mitteilung

Uber eine Ungleichung von S. S. WAGNER

S. S. WaGNER kiindigt in den Notices of the American Mathematical Society, vol. 72
(1965), p. 220 folgende Ungleichung an:

(Z‘a,—b,- + xZuibj)zg (Zaf—}— ZxZaiaj) (Z‘bf + Zbe,-bj)
id] . i<j i<y

(1),
(@;, b; reell, 0 <x<1).

Fiir diese Ungleichung wird ein komplizierter Induktionsbeweis angedeutet, der anschei-

nend mehrere hundert einzelne Rechnungen erfordert. Doch ldsst sich (1) auf folgende

Weise ganz einfach beweisen:
Man forme die Ungleichung mittels der Identitdten

D, aibj=Xa; Xb;— Xa;b;

id]
2 a;a;=(Za)— Xal
i<j
2 D bibj = (Zb)~ X b}
<]

um und setze dabeil — ¥ =y. Esgilt ¥ =0,y = 0.
Man erhilt

xXa; Xb;+y Xa;bP=[x(Xa)+y Xal (#(20)*+y Zb]]. (2)
Ausmultipliziert ergibt das
xy[(Za)2 X0} + (Zb) Xa}—2Xa; Xb; Xajbj]+y* [Nat b — (Xa;0)]=0. (3)
Der Koeffizient von xy istZ (b; X a; — a; X' b;)® und daher nicht negativ; der Koeffizient
von y?2 ist nach der Cauchy-’Schwarzschen Ungleichung ebenfalls nicht negativ. Da ¥ = 0,

y 2 0, ist damit die Ungleichung von WAGNER bewiesen.
P. FLor, Wien
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