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Element besitzt, dagegen ist die Ordnungszahl 2 eine Menge mit zwei: Elementen,
ndmlich 0 und 1, also 2 = {0; 1}.

Primzahlen sind die von 1 verschiedenen Zahlen, die sich nicht als Produkt von
zwei von 1 verschiedenen Zahlen darstellen lassen.

Man kann die Zahlen in einer Reihe anordnen?) und findet, dass die Primzahlen
zundchst sehr stark tiberwiegen: unter den ersten 285536 Zahlen sind nur sechs keine
Primzahlen.

Es ist nun merkwiirdig, dass trotzdem das Analogon zur Goldbachschen Vermutung
tir diese Zahlen nicht erfiilit ist:

Das Doppelte 2 - a einer von 0 und 1 verschiedenen Zahl a ist hier nicht immer die
Summe von zwei Primzahlen.

Einfache Gegenbeispiele sind je das Doppelte der Zahlen2 - 2und 2 - 2, wobei 2 wieder
die Ordnungszahl zwei bedeutet. Wie man aus den zugehorigen Figuren sofort ersieht,
sind hier die einzigen Darstellungen als Summe von zwei von 0 verschiedenen Zahlen
die folgenden:

2+3-2 oder 2:2+2-2 oder 3:24+2 und 2-2+2.2;

es ergibt sich also keine Summe von zwei Primzahlen.

Das Doppelte der Zahl 2 - 2 ist aber Summe von zwei Primzahlen; es ist ndmlich

' 2-2-2={0;2}+{{1;3}}.

Die beiden Summanden haben die « Stufenzahlen» 3 und 5 und sind deshalb Primzahlen.

Es folgt, dass sich die Goldbachsche Vermutung, sofern sie fiir die natiirlichen
Zahlen erfiillt ist, auf jeden Fall nicht allein aus den allgemeinen Prinzipien der Addi-
tion und Multiplikation herleiten ldsst, soweit diese auch fiir die verallgemeinerten
Zahlen gelten.

Das Zustandekommen der obigen Gegenbeispiele hingt mit der Tatsache zusammen,
dass es unter den verallgemeinerten Zahlen von 1 verschiedene «Monozahlen» gibt:

Monozahlen sind die von 0 verschiedenen Zahlen, die sich nicht als Summe von
zwei von 0 verschiedenen Zahlen darstellen lassen.

Die Ordnungszahl 2 ist Monozahl, ebenso auch jede Zahl der Form {O; n} wenn
n eine natiirliche Zahl ist. Es gibt also unendlich viele Monozahlen.

Das Vierfache einer von 1 verschiedenen Monozahl « ist nie die Summe von zwei
Primzahlen, da hier nur die Zerfdllungen a +3-a oder 2-a+ 2-a oder 3-a+ a
moglich sind; es gibt hier also unendlich viele «Nicht-Goldbach-Zahlen».

P. FINSLER, Ziirich

Begriindung und
Charakterisierung der reellen Logarithmusfunktionen
1. Einleitung

Schon mehrfach in der mathematischen Literatur waren die reellen Logarithmus-
funktionen Gegenstand axiomatischer Kennzeichnung. Gemeinsam an den bekannte-
sten Charakterisierungen sind die Angabe der Definitionsmenge P={x|x € R,x > 0}1),

1) R bezeichne durchwegs die Menge der reellen Zahlen.
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die Reellwertigkeit und die Funktionalgleichung

%y, %y € P = f(xy %) = f(%1) + f(%a) , (H)
welche also besagt, dass f einen Homomorphismus der Gruppe <P, > in die Gruppe
(R, +) darstellt. Eine iiber P definierte reellwertige Funktion mit der Eigenschaft (H)
nennen wir im folgenden eine H-Funktion. In dieser Sprechweise lauten einige der
oben erwihnten Kennzeichnungen wie folgt:

Satz 12): Es gibt genau eine H-Funktion f mit der Eigenschaft
xeP=>flx) <x—1. (V,)
Satz 23): Es gibt genau eine H-Funktion f mit der Eigenschaft

im 1% o1 1. (VIL)

x —1

Satz 34%): Zu jeder veellen Zahl a > 0, a + 1 gibt es genau eine monotone H-Funktion
fmit f(a) = 1. Im Falle a > 1 ist sie monoton wachsend, im Falle 0 < a < 1 monoton
fallend.

Satz 45): Zu jeder veellen Zahl a > 0, a + 1 gibt es genau eine stetige H-Funktion f
mat f(a) = 1.

In der vorliegenden Arbeit sollen vorerst gleichwertige Eigenschaften von H-
Funktionen aufgewiesen werden (Satz 6). Die vier vorgenannten Aussagen erscheinen
sodann als Korollarien eines einzigen Existenz- und Eindeutigkeitssatzes (Satz 7).
Dabei wollen wir ausdriicklich anmerken, dass sich die gesamte Argumentation auf
einer Vorstufe zum eigentlichen Infinitesimalkalkiil abspielt, indem die Definition
der Ableitung gerade noch beriihrt wird, ohne dass jedoch die Berufung auf hohere
Ergebnisse notwendig ist. Es seien einige spezielle hier verwendete Resultate erwdhnt:

(A) Ist a > 0, a + 1, so gibt es in jedem offenen Intervall positiver reeller Zahlen
unendlich viele Potenzen von @ mit rationalen Exponenten.

(B) Fiir a > 0 gilt a'* > 1 fiir n -> oo.

(C) %1, %, >0, %, + x5, 0 < A< 1, Arational = x} 212 < A%, + (1 — 1) #,.

(D) Fiir jede natiirliche Zahl » gilt # (1 — e~1) < 1 < » (el* — 1).

Besonders sei noch hervorgehoben, dass wir keine Potenzen mit irrationalen
Exponenten voraussetzen und somit direkt an die elementarste Stufe der Potenz-
lehre anschliessen. Im Gegenteil eignet sich die hier gegebene Begriindung der
Logarithmusfunktionen zur nachherigen Einfithrung jener Potenzen®).

Zum Beweis von (A) bis (D) mégen einige Hinweise gentigen: (A) folgt aus den
Anordnungseigenschaften der reellen Zahlen und (B) aus bekannten elementaren
Konvergenzsitzen. Ist A = m/n, so ist (C) die Ungleichheit zwischen arithmetischem
und geometrischem Mittel, angewandt auf den aus m Exemplaren x; und #» — m
Exemplaren x, bestehenden Zahlenkomplex. (D) ist fiir » = 1 trivial und fiir » > 2
mit der Beziehung (1 + 1/n)" < e < (1 + 1/(n — 1))" d4quivalent.

%) Vergleiche [2], p. 114.

%) Vergleiche [2], p. 119, Aufgabe 2.

4) Vergleiche [3], p. 80.

5) Vergleiche [3], p. 82.
8) Vergleiche etwa das Vorgehen in [2], p. 121-124, oder [5], p. 246.
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2. Aquivalenzsatz

Vorgingig befassen wir uns mit den Folgerungen von (H) allein:

Satz 5: Ist f eine H-Funktion, so gilt:

f1)=0, (1)

xeP = f(%) — —f(x), 2)

5, m € P f(52) = flw) — (s, 3)

x € P, A rational > f(x") = 1 f(x) . 4)
Fijy jedes c € R ist auch cf esne H-Funktion. (5)

Offensichtlich sind (1) und (2) die Spezialfille von (4) fir A=0 und A= —1.
Zum Beweis bemerken wir nur, dass (1) und (2) durch geeignete Setzungen in (H) ge-
wonnen werden kénnen; es ergibt sich dann miihelos (3). Fiir (4) ist ein stufenweises
Fortschreiten iiber 4 = 1, 4 natiirlich, 4 ganz, A rational angezeigt, und die Aussage (5)
liegt auf der Hand.

Es entspricht nun durchaus einem axiomatischen Standpunkt, die logischen Zu-
sammenhinge zwischen gewissen zusitzlichen Eigenschaften von H-Funktionen zu
erortern. Einige wichtige Zusammenhéinge der genannten Art werden durch den
nidchsten Satz zum Ausdruck gebracht. An der Normierung f(e) = 1 kann im Hin-
blick auf (5) festgehalten werden, indem unmittelbar klar ist, wie die durch Multipli-
kation von f mit einer Konstanten aus (I,) bis (IX,) entstehenden allgemeingiiltigen
Bedingungen (I) bis (IX) lauten.

Satz 6 (Aquivalenzsatz): Fiir H-Funktionen f sind die nachfolgenden Eigen-
schaften logisch gleichwertig:

[ ist (streng) monoton wachsend; f(e) = 1. (I,)
f1st an einer Stelle xy € P stetig, f(e) =1. (IL,)
[ ist auf ganz P stetig; f(e) = 1. (I1T,)
f ist (streng) konkav; f(e) = 1. (Iv,)
Fijr alle x € P gilt f(x) < x— 1. (V,)
Fiir alle x,, %y € P gilt ﬁ—iﬁ < flag) — flay) < "2;1”1 : (VL)
[ ist auf ganz P differenzierbar, und es gilt fiir alle x4 € P:

L =fa 2 ) (VIT,)

f erfiillt fiir jedes a € P iiber der Menge P, = {x |x > a} die Lipschitz- Bedingung

1f () = F3) | < = |2 — 2] fle)=1. (VIIL,)

Fiir jedes a € P ist f iiber P, gleichmdssig stetig, f(e) = 1. (IX,)
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Die Normierungsbedingung braucht bei (V,), (VI,), (VIL,) nicht vermerkt zu wer-
den, da sie dort als Folgerung gewonnen werden kann. Eine H-Funktion £, welche eine
(und damit jede) der Eigenschaften (I) bis (IX) besitzt, heisse fiir unsere Zwecke fortan
kurz eine L-Funktion,; im Falle f(¢) = 1 nennen wir sie normiert. Offenbar ist fiir
jedes ¢ € R mit f auch ¢ f eine L-Funktion.

Der Beweis verlduft nach dem folgenden Plan: (I,) = (IL,) = (IIL,) = (I,)streng =
(L); (Lnstreng = (IVi)streng = (IV,) = (V,) = (VL) = (VIL,) = (III); (VI,) =
(VIIL,) = (IX,) = (II,). Offensichtlich wird der Satz damit vollumfinglich bewiesen
sein. - (I,,) = (IL,) : Mit (I,) folgt fiir beliebiges x, € P die Beschranktheit von f iiber
dem Intervall [xy/2,3 x,/2] und daher wiederum mit (I,) die Existenz der einseitigen
Grenzwerte f (%, + 0) und f (xy — 0). Fiir a, = x,e!r, b, = 5y gilt a, | %y, b, } %,
und nach (H) und (4) f(a,) = f (o) + 1/n > f(xo), f (b,) = flatg) — 1/ > f (%) [n > o0].
Definitionsgemaiss gilt aber auch f(a,) > f (%o + 0), f(b,) > f (xo — 0) [# - o0], das
heisst insgesamt f(x,) = f (%, + 0) = f (xy — 0), womit (II,) feststeht. — (I1,,) = (IIL,):
Ist x € P beliebig und x, > x [#n > oo}, so folgt x,, %y/x - x4, und mit (H), (I1,) und (3)
ergibt sich f(x,) = f (%, %/x) + f (x[xg) > f(xo0) + f(x) — flxo) = f(x) [n > o). f ist
also bei x stetig und (III,) bewiesen. — (II1;,) = (I,)ereng: Ist 1 < x, dann gibt es eine
rationale Zahl ¢ und eine monoton wachsende Folge positiver rationaler Zahlen g, mit
en > x; x << e?. Wegen g, < o existiert /= limp,[#n > o0], und es ist 1> 0.
Andererseits folgt wegen (4) und (II1,) g, = f(e%) > f(x) [# - o0], also gilt f(x) =
[ > 0.Aus1 < xfolgt demnach f(x) > 0. Aus 0 < x; < x,ergibt sich somit 1 < x,/x,
oder f(x,/x;) > 0 oder schliesslich mit (3) f(x;) < f(x,), das heisst (I,)streng - — (In)streng =
(I,) ist trivial. — (L;)sreng = (IVp)atreng: Es seien x;, %, € P, x; # %5, 0 <A < 1.
Nach (C) gilt im Hinblick auf (I,)yeng, (H) und (4) fiir rationales 4: (a) 4 f(x;) +
(1 —4) flxg) < f[Ax,+ (1 —24) %5], also (IV,)sreng- Es sei nun A irrational und
u; € (0,1) rational mit u; >4 [{>oco]. Sind weiter @ = max {%, %}, ;=
pi %y + (1 — ) %, =A%+ (1 — ) xp, s0 gilt |y, — 2 = |(p; — A) %1+ (A — ) x| <
2a |p; — Al, also folgt y; > x [+ > oo]. Nach (a) gilt u; f(%,) + (L — w) f(x2) <F(»))
und wegen der Stetigkeit, die hier auf Grund von (I,) = (IL,) = (IIL,) = (L,)streng =
(I,) verbiirgt ist, auch (b) A f(x,) + (1 — 4) f(xs) < f(x). Es gilt nun noch, die soeben
aus dem Grenziibergang entstandene Unschirfe zu eliminieren. Ist 4, = min {4, 1 — 1},
so folgt mit Riicksicht auf die Irrationalitit von 4: 0 < A, < 1/2. Setzt man weiter
g =% — Ay (% — %1), % = % + Ao (% — %y), 50 gilt x5, 2, > 0, (x5 292 < (33 + 2,)[2 =
%, also (c) [f(x,) + f(x,)1/2 < f(x). Sei 0.E.d.A. 4g= A (der Fall ;=1 — A erledigt
sich analog). Dann ergibt sich x3=2A4%;, + (1 — 21) x,, x, = %, und mit (b): (d)
22f(x%) + (L — 224) f(x;) < f(x,), also insgesamt nach (d) und (c): Af(x,) +
(L—2) f(%a) = [2Af(%1) + (1= 22) f(xa) + f(%2)]/2 < [f(%5) + f(%2)]/2 < J (%), womit
(IV,)streng eTWiesen ist. — (IV,,)seeng= (IV,,) ist trivial. — (IV,) = (V,,): Fiir x = 1ist
(V,) im Hinblick auf (1) trivial. Ist 1 < x (der Fall0 < x < 1 wird dhnlich behandelt),
so gibt es eine natiirliche Zahl # mit 1 < el* < x, und mit A = (e¥* — 1)/(x — 1) gilt
ein = 2 x 4+ (1 — A). Aus (IV,), (1) und (4) folgt A f(x) < 1/n oder wegen A > 0 auch
f(x) <1/(n A) = (x — 1)/n (e — 1) und im Hinblick auf (D) f(x) < x — 1, also erst
recht (V,). — (V,,) = (VI,): Ersetzt man in (V,) x durch x,/x; bzw. x,/%,, so ergibt
sich mit (3) die Behauptung (VL). — (VL,) = (VIL,) : Fir x; = %y < % = x, folgt aus
(VL): 1/x < [f(x) — f(%)]1/(x — %) < 1/x,, fiir x5 = % < %y = %, dagegen 1/x >[f(x) —
F(x)1/(x — %o) = 1/x,, woraus (VII,) unmittelbar resultiert. -~ (VIL,) = (III,) : Mit

L]
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(VIL,) folgt £(x) — f(xg) = {[/(x) — f (%)) (x — %)} - (¥ — %) > (1/x) -0 = 0. Folglich ist
f bei x, stetig. Fiir x, = 1 folgt aus (VII,) weiter f[(1 + 1/n)"]=nf(1 + 1/n)=f(1 +
1/n)/(1 + 1/n — 1) -> 1, und mit der Stetigkeit von f, die soeben aus (V1I,) gefolgert
wurde, auch f[(1 + 1/n)"] > f(e), woraus sich f(e) = 1 ergibt. — (VI,) = (VIIL,) : Fiir
%1, Xy = a folgt aus (VL) f(x) — f(x;) < (% — 1) /%) <[22 — 11| /%y < [ — 4]/
und f(x;) — f(%s) < (% — %5)[%g < |%; — %,][%5 < |%3 — #4]/a@ und hieraus weiter die
Ungleichung in (VIIL,). Nach den bisherigen Ausfithrungen ist (VI,) beispielsweise mit
(III,) logisch gleichwertig, und f(e) = 1 ist sichergestellt. — (VIII,) = (IX,,) : Wahlt
man d(e) = a ¢, so folgt aus x,, %, € Py, |x3 — x| < O(e) stets |f(xg) — f(xy)| < e&. -
(IX,) = (II,,) ist trivial.

3. Existenz- und Eindeutigkeitssatz

Ein wohlbekanntes Verfahren zum Beweis von Existenz und Eindeutigkeit eines
mathematischen Objektes besteht darin, aus den notwendigen Bedingungen seine
explizite Gestalt zu erschliessen und von dieser nachzuweisen, dass die einschldgigen
Eigenschaften vorhanden sind. Der erste Teil hat axiomatischen, der zweite kon-
struktiven Charakter. So beweisen wir den in der Einleitung erwihnten

Satz 7 (Existenz- und Eindeutigkeitssatz): Es gibt genawu eine normierte L-
Funktion 1. Sie besitzt die Wertmenge R, und fiir jede L-Funktion f gilt

xeP=>fx) =cllx) mit c=f(e)?). (6)

Obwohl an verschiedenen Orten Beweise der im wesentlichen gleichen Sachlage
gegeben werden8), skizzieren wir hier einen Gedanken, der deshalb lohnend erscheint,
weil er in den verschiedensten mathematischen Theorien — auch auf der elementaren
Stufe — mit Erfolg angewandt werden kann: Wir meinen den Gedanken des beidseiti-
gen Approximierens und Fortsetzens geeigneter Funktionen auf umfassendere
Definitionsmengen.

Beweis: 1. Eindeutigkeit der normierten L-Funktion: Zu jedem x € P gibt es
rationale Zahlen g, o mit e¢ < x < ¢, woraus sich ¢ < ¢ und die Existenz der Zahlen

c(x) = supp [ rational, & < ], (7)
c(x) = info [0 rational, x < €°] (8)

ergibt. Ist f eine normierte L-Funktion, so resultiert mit (I,) und (4)
% eP=c(x) < flx) < clx) . 9)

Zu beliebigen x € P, ¢ > 0 gibt es eine natiirliche Zahl » mit 1/n < & und weiter eine
ganze Zahl p mit e? << x» < e+, also efir < x < el#+lis, Daraus folgt ¢c(x) > p/n,
c(x) < (p + 1)/n, also &(x) — c(x) < 1/n < ¢, das heisst

xeP=c(x) = c(x) - (10)
7) Vergleiche [1], p. 48. Der Satz erweist sich auch als Korollar eines zum Beispiel in [4], p. 99, formu-

lierten Erweiterungssatzes fiir monotone Funktionen.
%) Vergleiche ?), 4), %), 7) und [6], [7], [8].
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Aus (9) und (10) folgt nun nicht nur die eindeutige Bestimmtheit von £, sondern auch
eine der expliziten Gestalten:
f(x) = l(x) = supp = info  [p, o rational] . (11)
<y zseC
2. Existenz einer normaerten L-Funktion: Es bleibt zu verifizieren, dass / in der Tat
eine normierte L-Funktion ist. Monotonie und Normiertheit ergeben sich unmittelbar
aus (11). Fir die Giiltigkeit von (H) geniigt ein Hinweis auf (10) und die einfach her-
leitbare Zeile )

%y, %g € P = c(xy) + c(%p) < ¢(x1 %) < C(xy %g) < 0(xy) + () - (12)

3. Wertmenge von l: Fiir ein beliebiges # aus R gilt nach (4) und (IIL,): /(e®) =
[u] <u<[u]+ 1=Ie*+1)9), Also muss / nach dem Zwischenwertsatz auf dem durch
el und e+ berandeten Intervall den Wert # annehmen, und es gilt # € f(P) und
schliesslich f(P) = R.

4. Nachweis von (6): Sei f eine beliebige L-Funktion. Fiir f(e) = 0 folgt aus (4) die
Tatsache f(e?) = O (¢ rational) und hieraus mit (A) und (I) weiter f(x) = O fiir alle x
in P. Somit gilt (6) mit ¢ = 0 = f(¢). Ist dagegen f(¢) + 0, so ist durch g(x) = f(x)/f(e)
eine normierte L-Funktion g gegeben, und es gilt g = /, also wiederum (6) mit ¢ = f(e).

Es gelingt jetzt mit einfachsten Schliissen, die zu Beginn formulierten Sitze 1
bis 4 herzuleiten: Nach dem Aquivalenzsatz ist (V,) fiir normierte L-Funktionen
charakteristisch, und aus (VII)) folgt1®) die Stetigkeit von f an der Stelle 1, sowie
f(e) = 1, womit die Satze 1 und 2 hergeleitet sind. In den Sdtzen 3 und 4 ist von einer
L-Funktion f mit f(a) = 1 die Rede (@ € P,a + 1). Aus (6) folgt fiirx = a: 1 = f(a) =
¢ - l(a) oder ¢ = 1/l(a), insgesamt f(x) = [(x)/l(a), das heisst Existenz und Eindeutigkeit
von f. Es moge noch das soeben erschienene Resultat

[ ist eine L-Funktion mit f(a) = 1 = f(e) =
speziell erwihnt werden.

Definition: Ist a > 0, a + 1, so heisst die (nach Satz 3 und 4 einzige) L-Funktion
f mat f(a) = 1 die Logarithmusfunktion zur Basis a. Die Logarithmusfunkiton I zur
Basis e heisst die natiirliche Logarithmusfunktion.

In dieser Sprechweise besagt Satz 7, dass die in Satz 6 aufgefithrten Eigenschaften
(I) bis (IX) die Logarithmusfunktionen unter allen H-Funktionen charakterisieren;
ferner bilden die Logarithmusfunktionen nach Hinzunahme der identisch verschwin-
denden H-Funktion einen eindimensionalen linearen Raum. JUrGc RATz, Bern

1
Ha)

(13)
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Axiomatischer Aufbau der sphirisch-elliptischen Geometrie
(Fortsetzung)

2. Texd
Die Winkelsumme im sphirisch-elliptischen Dreieck

Im folgenden soll nach Beweis einiger Hilfssdtze gezeigt werden, dass im sphérisch-
elliptischen Dreieck die Winkelsumme grésser als 2 R ist. Wegen des von der absoluten
Geametrie abweichenden Axiomensystems der sphérisch-elliptischen Geometrie
werden die Geraden wieder krummlinig gezeichnet. Sdmtliche hier durchgefiihrten
Uberlegungen sind jedoch unabhingig von einem der speziellen Modelle fiir die sphi-
risch-elliptische Geometrie.

Hilfssatz 7. Verbindet man einen Punkt P im Innern eines Dreiecks mit einer
Ecke, so enthilt die Verbindungsgerade einen Punkt der Gegenseite. ’

Unter einem Punkt im Innern eines Dreiecks versteht man dabei einen Punkt, der
im Innern aller drei Dreickswinkel (siche die Bemerkungen im Anschluss an Axiom
IT, 6) liegt.

Bewets von Hilfssatz 1:

5 Figur 7

Auf der Strecke A B existiert (Figur 7) nach Axiom II, 2 und Definition 4 ein Punkt Q
zwischen 4 und B derart, dass (4 Q B) gilt.

Die Gerade QP hat gemiss Axiom II, 6 angewandt auf das Dreieck 4 BC entweder
mit AC oder BC einen Punkt R gemeinsam, so dass entweder (4 R C) oder (B R C)
gilt. Geht Q P speziell durch C, ist bereits alles bewiesen.

Wir nehmen an, dass R zwischen B und C liegt. Fiir das Dreieck QBR gilt nun:
QOB < AB und RB < BC, (B und RB sind daher Strecken gemiss Definition 3.
Filr QR ist das noch zu beweisen. QR muss wegen I, 5 durch den Punkt Q auf der
Geraden durch 4B hindurchgehen. Da QB die Streckendefinition erfiillt, muss Q
ausserhalb der Strecke QB liegen. Da AQ ebenfalls die Streckendefinition erfiillt, ist



	Begründung und Charakterisierung der reellen Logarithmusfunktionen

