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Element besitzt, dagegen ist die Ordnungszahl 2 eine Menge mit zwei Elementen,
namhch 0 und 1, also 2 {0; l}.

Primzahlen sind die von 1 verschiedenen Zahlen, die sich nicht als Produkt von
zwei von 1 verschiedenen Zahlen darstellen lassen.

Man kann die Zahlen in einer Reihe anordnen2) und findet, dass die Primzahlen
zunächst sehr stark überwiegen: unter den ersten 265536 Zahlen sind nur sechs keine
Primzahlen.

Es ist nun merkwürdig, dass trotzdem das Analogon zur Goldbachschen Vermutung
für diese Zahlen nicht erfüllt ist:

Das Doppelte 2 • a einer von 0 und 1 verschiedenen Zahl a ist hier nicht immer die
Summe von zwei Primzahlen.

Einfache Gegenbeispiele sind je das Doppelte der Zahlen 2 • 2 und 2 • 2, wobei 2 wieder
die Ordnungszahl zwei bedeutet. Wie man aus den zugehörigen Figuren sofort ersieht,
sind hier die einzigen Darstellungen als Summe von zwei von 0 verschiedenen Zahlen
die folgenden:

2 + 3-2 oder 2-2 + 2-2 oder 3-2 + 2 und 2-2 + 2-2;
es ergibt sich also keine Summe von zwei Primzahlen.

Das Doppelte der Zahl 2 • 2 ist aber Summe von zwei Primzahlen; es ist nämlich

2-2-2 {0;2} + {{l;3}}.
Die beiden Summanden haben die « Stufenzahlen » 3 und 5 und sind deshalb Primzahlen.

Es folgt, dass sich die Goldbachsche Vermutung, sofern sie für die natürlichen
Zahlen erfüllt ist, auf jeden Fall nicht allein aus den allgemeinen Prinzipien der Addition

und Multiplikation herleiten lässt, soweit diese auch für die verallgemeinerten
Zahlen gelten.

Das Zustandekommen der obigen Gegenbeispielehängt mit derTatsache zusammen,
dass es unter den verallgemeinerten Zahlen von 1 verschiedene «Monozahlen» gibt:

Monozahlen sind die von 0 verschiedenen Zahlen, die sich nicht als Summe von
zwei von 0 verschiedenen Zahlen darstellen lassen.

Die Ordnungszahl 2 ist Monozahl, ebenso auch jede Zahl der Form {0; nj, wenn
n eine natürliche Zahl ist. Es gibt also unendlich viele Monozahlen.

Das Vierfache einer von 1 verschiedenen Monozahl a ist nie die Summe von zwei
Primzahlen, da hier nur die Zerfällungen a + 3 • a oder 2 • a + 2 • a oder 3 • a + a

möglich sind; es gibt hier also unendlich viele «Nicht-Goldbach-Zahlen».

P. Finsler, Zürich

Begründung und

Charakterisierung der reellen Logarithmusfunktionen
1. Einleitung

Schon mehrfach in der mathematischen Literatur waren die reellen Logarithmusfunktionen

Gegenstand axiomatischer Kennzeichnung. Gemeinsam an den bekanntesten

Charakterisierungen sind die Angabe der Definitionsmenge P {x \ x e R, x > 0}*),

*) R bezeichne durchwegs die Menge der reellen Zahlen.
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die Reellwertigkeit und die Funktionalgleichung

xx, x2 € P => f(xx x2) f(xx) + f(x2) (H)

welche also besagt, dass/einen Homomorphismus der Gruppe <P, •> in die Gruppe
(R, +> darstellt. Eine über P definierte reellwertige Funktion mit der Eigenschaft (H)
nennen wir im folgenden eine H-Funktion. In dieser Sprechweise lauten einige der
oben erwähnten Kennzeichnungen wie folgt:

Satz 12): Es gibt genau eine H-Funktion fmit der Eigenschaft

x e P => f(x) <x-l. (Vn)

Satz 23): Es gibt genau eine H-Funktion fmit der Eigenschaft

Satz 34): Zu jeder reellen Zahl a > 0, a 4= 1 gibt es genau eine monotone H-Funktion

fmit f(a) 1. Im Falle a > 1 ist sie monoton wachsend, im Falle 0 < a < 1 monoton
fallend.

Satz 45): Zu jeder reellen Zahl a > 0, a # 1 gibt es genau eine stetige H-Funktionf
mit f(a) 1.

In der vorliegenden Arbeit sollen vorerst gleichwertige Eigenschaften von H-
Funktionen aufgewiesen werden (Satz 6). Die vier vorgenannten Aussagen erscheinen
sodann als Korollarien eines einzigen Existenz- und Eindeutigkeitssatzes (Satz 7).
Dabei wollen wir ausdrücklich anmerken, dass sich die gesamte Argumentation auf
einer Vorstufe zum eigentlichen Infinitesimalkalkül abspielt, indem die Definition
der Ableitung gerade noch berührt wird, ohne dass jedoch die Berufung auf höhere

Ergebnisse notwendig ist. Es seien einige spezielle hier verwendete Resultate erwähnt:

(A) Ist a > 0, a + 1, so gibt es in jedem offenen Intervall positiver reeller Zahlen
unendlich viele Potenzen von a mit rationalen Exponenten.

(B) Für a > 0 gilt a^n -> 1 im n -> oo.
(C) xx, x2 > 0, xx + x2, 0 < A < 1, A rational => x\ x\~x < A xx + (1 — A) x2.
(D) Für jede natürliche Zahl n gilt n (1 - e~^n) <Kn (e1^ - 1).

Besonders sei noch hervorgehoben, dass wir keine Potenzen mit irrationalen
Exponenten voraussetzen und somit direkt an die elementarste Stufe der Potenzlehre

anschliessen. Im Gegenteil eignet sich die hier gegebene Begründung der

Logarithmusfunktionen zur nachherigen Einführung jener Potenzen8).
Zum Beweis von (A) bis (D) mögen einige Hinweise genügen: (A) folgt aus den

Anordnungseigenschaften der reellen Zahlen und (B) aus bekannten elementaren

Konvergenzsätzen. Ist A mjn, so ist (C) die Ungleichheit zwischen arithmetischem
und geometrischem Mittel, angewandt auf den aus m Exemplaren xx und n — m
Exemplaren x2 bestehenden Zahlenkomplex. (D) ist für n 1 trivial und für n ;> 2

mit der Beziehung (1 + ljn)n < e < (1 + \\(n - l))n äquivalent.

2) Vergleiche [2], p. 114.
8) Vergleiche [2], p. 119, Aufgabe 2.
*) Vergleiche [3], p. 80.
6) Vergleiche [3], p. 82.
6) Vergleiche etwa das Vorgehen in [2], p. 121-124, oder [5], p. 246.
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2. Äquivalenzsatz

Vorgängig befassen wir uns mit den Folgerungen von (H) allein:

Satz 5: Ist f eine H-Funktion, so gilt:
/(l) 0 (1)

X€P~f(±) -f(x), (2)

xx,x2eP*f(^)==f(x2)-f(xx), (3)

x €P,X rational => f(xK) Xf(x) (4)

Für jedes c e R ist auch cf eine H-Funktion. (5)

Offensichtlich sind (1) und (2) die Spezialfälle von (4) für X 0 und A= — 1.

Zum Beweis bemerken wir nur, dass (1) und (2) durch geeignete Setzungen in (H)
gewonnen werden können; es ergibt sich dann mühelos (3). Für (4) ist ein stufenweises
Fortschreiten über A 1, A natürlich, A ganz, A rational angezeigt, und die Aussage (5)

liegt auf der Hand.
Es entspricht nun durchaus einem axiomatischen Standpunkt, die logischen

Zusammenhänge zwischen gewissen zusätzlichen Eigenschaften von H-Funktionen zu
erörtern. Einige wichtige Zusammenhänge der genannten Art werden durch den
nächsten Satz zum Ausdruck gebracht. An der Normierung f(e) 1 kann im
Hinblick auf (5) festgehalten werden, indem unmittelbar klar ist, wie die durch Multiplikation

von /mit einer Konstanten aus (IJ bis (IXn) entstehenden allgemeingültigen
Bedingungen (I) bis (IX) lauten.

Satz 6 (Äquivalenzsatz): Für H-Funktionen f sind die nachfolgenden
Eigenschaften logisch gleichwertig:

f ist (streng) monoton wachsend; f (e) 1 (IJ

f ist an einer Stelle x0 e P stetig; f(e) 1 (IIJ

fist auf ganz P stetig; f(e) 1 (MJ

f ist (streng) konkav; f(e) 1 (IVJ

Für alle x eP giltf(x) <x-l. (VB)

Für alle xx,x^P gilt *i^* < f(x2) - f(xx) < ^ZIÜL. (VIJ
x2 xx

f ist auf ganz P differenzierbar, und es gilt für alle x0e P:

f erfüllt für jedes a c P über der Menge Pa {x | x ;> a} die Lipschitz-Bedingung

!/(*•) -/(%) I < 11** - *i|; M i ¦ (vm.)

Für jedes a e P ist f über Pa gleichmässig stetig; f(e) 1. (IXJ
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Die Normierungsbedingung braucht bei (VJ, (VIJ, (VIIJ nicht vermerkt zu werden,

da sie dort als Folgerung gewonnen werden kann. Eine H-Funktion/, welche eine
(und damit jede) der Eigenschaften (I) bis (IX) besitzt, heisse für unsere Zwecke fortan
kurz eine L-Funktion; im Falle f(e) 1 nennen wir sie normiert. Offenbar ist für
jedes c e R mit /auch cf eine L-Funktion.

Der Beweis verläuft nach dem folgenden Plan: (IJ => (IIJ => (IIIJ => (I„)streng =>

(IJ) (IJstreng - (IVJstreng => (IVJ * (VJ => (VIJ => (VIIJ => (IIIJ; (VIJ =>

(VIIIJ => (IXJ => (IIJ. Offensichtlich wird der Satz damit vollumfänglich bewiesen
sein. - (In) => (IIn) : Mit (IJ folgt für beliebiges x0 e P die Beschränktheit von/über
dem Intervall [#0/2,3 x0/2] und daher wiederum mit (IJ die Existenz der einseitigen
Grenzwerte/ (x0 + 0) und/ (x0 — 0). Für an x0 elln, bn x0 e~lln gilt an | x0, bn f x0
und nach (H) und (4)/(<*J =f(x0) + 1/n +f(x0),f(bn) =f(x0) - 1/n ->/(*0) [n + oo].
Definitionsgemäss gilt aber auch/(aj ->/(#0 + 0),f(bn) ->f(x0 — 0) [n -> oo], das
heisst insgesamt/^) / (x0 + 0) / (x0 — 0), womit (IIJ feststeht. - (IIn) (IHn) :

Ist x e P beliebig und xn -> x [n -> oo], so folgt xn x0jx -> #0, und mit (H), (IIn) und (3)

ergibt sich f(xn) f(xnx0jx) + /(*/*<>) ->/(*„) + /(*) ~/W /(*) [» ¦> oo]. / ist
also bei # stetig und (IIIJ bewiesen. - (IIIn) => (In)Btreng* Ist 1 < x, dann gibt es eine
rationale Zahl a und eine monoton wachsende Folge positiver rationaler Zahlen Qn mit
eQn -> x) x < ee. Wegen o„ < a existiert / limon [n -> oo], und es ist / > 0.

Andererseits folgt wegen (4) und (IIIJ Qn /(^M) ->/(#) [w -> oo], also gilt /(#)
/ > 0. Aus 1 < x folgt demnach/(#) > 0. Aus 0 < xx < #2 ergibt sich somit 1 < #2/*i
oder/(^2/%) > 0 oder schliesslich mit (3) f(xx) </ (#2), das heisst (IJstreng- - (In)-treng =*

(In) ist trivial. - (In)at_eng => (IVn)8treng: Es seien %, %2 e P, #x 4= *a, 0 < A < 1.
Nach (C) gilt im Hinblick auf (IJstreng> (H) und (4) für rationales A: (a) A/(%) +
(1 — X)f(x2) <f[Xxx + (1 — A) #2], also (IVJstreng. Es sei nun A irrational und

fil € (0,1) rational mit fit -> A [*' -> oo]. Sind weiter a max {#x, #2}, .y*

//.%+ (1 —iul)^a,^==A*1+ (1-A)*2, so gilt \yt-x\ |(^-A)%X+ (A-^J#2| <
2 a |/*£ - X\, also folgt 3/, -> x [i -> 00]. Nach (a) gilt /*,/(%) + (1 - /0/(*a) < /(.yj
und wegen der Stetigkeit, die hier auf Grund von (IJ => (IIJ => (IIIJ => (IJstreng =*

(IJ verbürgt ist, auch (b) Xf(xx) + (1 — X)f(x2) <f(x). Es gilt nun noch, die soeben

aus dem Grenzübergang entstandene Unscharfe zu eliminieren. Ist A0 min {A, 1 — A},
so folgt mit Rücksicht auf die Irrationalität von A: 0 < A0 < 1/2. Setzt man weiter
#3 x - A0 (x2 - xx), %i % + A0 (*a - %), so gilt *3, %4 > 0, (*8xj1'2 < (#, + *4)/2

*, also (c) \J(xz) + /(*4)]/2 </(*). Sei o.E.d.A. X0^X (der Fall A0 1 - A erledigt
sich analog). Dann ergibt sich x3 2Xxx + (1 - 2 X) x2, x4 x2 und mit (b): (d)

2Xf(xx) + (l-2X)f(x2) <f(x3), also insgesamt nach (d) und (c): Xf(xx) +
(1 - X)f(x2) [2 A/(*J + (1 - 2 A)/(*2) + /(*2)]/2 < [/(*3) +/(*4)]/2 </(*), womit
(IVJstreng erwiesen ist. - (IVn)0treng=> (IVn) ist trivial. - (IVn) => (Vn): Für x 1 ist
(VJ im Hinblick auf (1) trivial. Ist 1< x (der Fall 0 < x < 1 wird ähnlich behandelt),
so gibt es eine natürliche Zahl n mit 1 < e1^ < #, und mit A (e1^ - l)\(x - 1) gilt
ev* A * + (1 - A). Aus (IVJ, (1) und (4) folgt Xf(x) < 1/n oder wegen A > 0 auch

f(x) < l/(« A) - (* - 1)/» (e1'« - 1) und im Hinblick auf (D) f(x) < x - 1, also erst
recht (VJ. - (Vn) => (VIn): Ersetzt man in (VJ x durch x2\xx bzw. %/#2, so ergibt
sich mit (3) die Behauptung (VIJ. - (VIn) => (VII„): Für xx xQ < x #2 folgt aus

(VIJ: \\x < [fix) -f(x0)]l(x - x0) < l/x0t für x2 x < xQ xx dagegen 1/* ^ |/(*) ~
f(*J]l{* - xo) ^ l/*o> woraus (VIIJ unmittelbar resultiert. - (VIIn) => (IHn): Mit
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(\IIn)iolgtf(x)~f(x0) {[f(x)-f(x0)]l(x-x0)} (*-jg->(l/*0) 0 0 Folglich ist
/bei #0 stetig Fur*0= 1 folgt aus (VIIJ weiter/[(l + ljn)n] nf(l + 1/n) =/(l +
1/n) 1(1 + 1/n — 1) -> 1, und mit der Stetigkeit von/, die soeben aus (VIIJ gefolgert
wurde, auch/[(l + 1/n)*] ->/(*), woraus sich f(e) 1 ergibt - (VIn) (VIIIn) : Fur
xx, x2 > a folgt aus (VIJ f(x2) - f(xx) < (x2 - xx)\xx < \x2 - xx\\xx < \x2 - xx\fa
und f(xx) — f(x2) < (% — x2)\x2 < \xx — x2\\x2 < \x2 — %|/a und hieraus weiter die
Ungleichung in (VIIIJ Nach den bisherigen Ausfuhrungen ist (VIJ beispielsweise mit
(IIIJ logisch gleichwertig, uudf(e) 1 ist sichergestellt - (VIIIn) => (IXn) : Wählt
man d(e) ae, so folgt aus xx, x2 e Pa, \x2 — xx\ < d(e) stets \f(x2) — f(xx)\ < e -
(IXn) => (IIn) ist tnvial

3. Existenz- und Eindeutigkeitssatz

Em wohlbekanntes Verfahren zum Beweis von Existenz und Eindeutigkeit eines
mathematischen Objektes besteht dann, aus den notwendigen Bedingungen seine
explizite Gestalt zu erschlossen und von dieser nachzuweisen, dass die einschlagigen
Eigenschaften vorhanden smd Der erste Teil hat axiomatischen, der zweite
konstruktiven Charakter So beweisen wir den m der Einleitung erwähnten

Satz 7 (Existenz- und Eindeutigkeitssatz): Es gibt genau eine normierte L-
Funktion l Sie besitzt die Wertmenge R, und fur jede L-Funktion fgilt

x e P => f(x) c l(x) mit c f(e)7) (6)

Obwohl an verschiedenen Orten Beweise der im wesenthchen gleichen Sachlage
gegeben werden8), skizzieren wir hier einen Gedanken, der deshalb lohnend erscheint,
weil er in den verschiedensten mathematischen Theorien - auch auf der elementaren
Stufe - mit Erfolg angewandt werden kann Wir meinen den Gedanken des beidseitigen

Approximierens und Fortsetzens geeigneter Funktionen auf umfassendere

Defmitionsmengen
Beweis 1 Eindeutigkeit der normierten L-Funktion Zu jedem x e P gibt es

rationale Zahlen q, o mit eQ < x < ef, woraus sich q <a und die Existenz der Zahlen

c(x) supg [q rational, ea < x] (7)

c(x) infer [a rational, x < e*] (8)

ergibt Ist / eine normierte L-Funktion, so resultiert mit (IJ und (4)

x € P ^ c(x) < f(x) < ~c(x) (9)

Zu behebigen x e P, e > 0 gibt es eine naturhehe Zahl n mit 1/n < e und weiter eme

ganze Zahl p mit et < xn < e*+1, also e&n < x < e{*n)ln Daraus folgt c(x) ;> p/n,
c(x) < (p + l)/n, also c(x) — c(x) < 1/n < e, das heisst

x c P => ~c(x) c(x) (10)

7) Vergleiche [1], p 48 Der Satz erweist sich auch als Korollar eines zum Beispiel in [4], p 99, formu
lierten Erweiterungssatzes fur monotone Funktionen

») Vergleiche % *), % 7) und [6], [7], [8]
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Aus (9) und (10) folgt nun nicht nur die eindeutige Bestimmtheit von/, sondern auch
eine der expliziten Gestalten:

f(x) l(x) supg inf er [q, a rational] (11)

2. Existenz einer normierten L-Funktion: Es bleibt zu verifizieren, dass l in der Tat
eine normierte L-Funktion ist. Monotonie und Normiertheit ergeben sich unmittelbar
aus (11). Für die Gültigkeit von (H) genügt ein Hinweis auf (10) und die einfach
herleitbare Zeile

xx, x2 e P => c(xx) + c(x2) < c(xx x2) <; c(xx x2) < }(xx) + c(x2) (12)

3. Wertmenge von l: Für ein beliebiges u aus R gilt nach (4) und (IIIJ: l(e[u])

[u] < u < [u] + 1 l(e[u]+1)9). Also muss / nach dem Zwischenwertsatz auf dem durch
elu] und e[u]+1 berandeten Intervall den Wert u annehmen, und es gilt u e f(P) und
schliesslich f(P) R.

4. Nachweis von (6): Sei/eine beliebige L-Funktion. Für f(e) 0 folgt aus (4) die
Tatsache f(e?) 0 (q rational) und hieraus mit (A) und (I) weiter f(x) 0 für alle x
in P. Somit gilt (6) mit c 0 =f(e). Ist dagegen/^) 4= 0, so ist durch g(x) /(#)//(e)
eine normierte L-Funktion g gegeben, und es gilt g l, also wiederum (6) mit c f(e).

Es gelingt jetzt mit einfachsten Schlüssen, die zu Beginn formulierten Sätze 1

bis 4 herzuleiten: Nach dem Äquivalenzsatz ist (VJ für normierte L-Funktionen
charakteristisch, und aus (VIIJ folgt10) die Stetigkeit von /an der Stelle 1, sowie

f(e) 1, womit die Sätze 1 und 2 hergeleitet sind. In den Sätzen 3 und 4 ist von einer

L-Funktion/mit f(a) 1 die Rede (a e P, a 4= 1). Aus (6) folgt für x a: 1 =f(a)
c • l(a) oder c 1 ß(a), insgesamt f(x) l(x)/l(a), das heisst Existenz und Eindeutigkeit
von / Es möge noch das soeben erschienene Resultat

/ ist eine L-Funktion mit f(a) 1 => f(e) — -—~- (13)

speziell erwähnt werden.

Definition: Ist a > 0, a 4= 1, so heisst die (nach Satz 3 und 4 einzige) L-Funktion

f mit f(a) 1 die Logarithmusfunktion zur Basis a. Die Logarithmusfunktion l zur
Basis e heisst die natürliche Logarithmusfunktion.

In dieser Sprechweise besagt Satz 7, dass die in Satz 6 aufgeführten Eigenschaften
(I) bis (IX) die Logarithmusfunktionen unter allen ^-Funktionen charakterisieren;
ferner bilden die Logarithmusfunktionen nach Hinzunahme der identisch verschwindenden

LT-Funktion einen eindimensionalen linearen Raum. Jürg Ratz, Bern
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Axiomatischer Aufbau der sphärisch-elliptischen Geometrie
(Fortsetzung)

2 Teil

Die Winkelsumme im sphärisch-elliptischen Dreieck

Im folgenden soll nach Beweis einiger Hilfssatze gezeigt werden, dass im sphansch-
elhptischen Dreieck die Winkelsumme grosser als 2 R ist Wegen des von der absoluten
Geometrie abweichenden Axiomensystems der sphärisch-elliptischen Geometrie
werden die Geraden wieder krummlinig gezeichnet Sämtliche hier durchgeführten
Überlegungen sind jedoch unabhängig von einem der speziellen Modelle fur die
sphärisch-elliptische Geometrie

Hilfssatz 1 Verbindet man einen Punkt P im Innern eines Dreiecks mit einer
Ecke, so enthalt die Verbindungsgerade einen Punkt der Gegenseite

Unter einem Punkt im Innern eines Dreiecks versteht man dabei einen Punkt, der
im Innern aller drei Dreickswmkel (siehe die Bemerkungen im Anschluss an Axiom
II, 6) hegt

Beweis von Hilfssatz 1

Figur 7

Auf der Strecke AB existiert (Figur 7) nach Axiom II, 2 und Definition 4 em Punkt Q
zwischen A und B derart, dass (A Q B) gilt

Die Gerade QP hat gemäss Axiom II, 6 angewandt auf das Dreieck ABC entweder
mit AC oder BC einen Punkt R gemeinsam, so dass entweder (A R C) oder (B R C)

gilt Geht Q P speziell durch C, ist bereits alles bewiesen
Wir nehmen an, dass R zwischen B und C hegt Fur das Dreieck QBR gilt nun

QB < AB und RB < BC, QB und RB sind daher Strecken gemäss Definition 3

Für QR ist das noch zu beweisen QR muss wegen I, 5 durch den Punkt Q auf der
Geraden durph AB hindurchgehen Da QB die Streckendefinition erfüllt, muss ~Q

ausserhalb der Strecke QB hegen Da AQ ebenfalls die Streckendefinition erfüllt, ist
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