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Pareillement on obtient que ¢|M, M, — 1. On a donc p¢|M, M, — 1. Or,on a

(26 -1)(22—1)—1=29—-2 (mod ),
donc
pl20—-12. (2)
Pareillement on trouve
gl20—2. 3)

Il n’est pas p = 2, puisqu’alors: d’aprés (3), on aurait g = 2, contrairement 4 I’hypo-
theése que ¢ > p. Les formules (2) et (3) donnent donc p |29-1 — 1 et ¢g|2¢-1 — 1 et,
vue que (d’aprés le théoréme de FERMAT) p | 26-1 — 1 et ¢|29-1 — 1 et que ¢ > 2,
on trouve

pgl20-1—1 et pg|2¢-1—1. (4)
Vu I'égalité

200-1_ 1 = 20@-D+p-1_ 1 = (206=1 — 1) 26~1 4 (26-1 _ 1)

on obtient de (4) p ¢ | 2¢7—1 — 1| 2#2 — 2, ce qui prouve que le nombre p ¢ est pseudo-
premier. Le théoréme 1 est ainsi démontré.

Démonstration du théoréme 2. Pour tout nombre premier p, tel que 7 < p + 13
il existe un nombre premier ¢ > p, tel que le nombre p ¢ est pseudopremier (voir [1])
et, en vertu du théoréme 1, le nombre M, M, est pseudopremier. Si p =2, 3, 5, 7 ou
13, il n’existe aucun nombre premier g pour lequel le nombre p g soit pseudopremier
et, en vertu du théoréme 1 il n’existe aucun nombre premier ¢ pour lequel le nombre
M, M, soit pseudopremier. A. RotkiEwicz (Varsovie)

TRAVAIL CITE

[1] A. ROTKIEWICZ, Sur les mombres premiers p et q tels que p q |27 — 2. Rendiconti del
Circolo Matematico di Palermo 77, 280-282 (1962).
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Dreiblatt und Brocardsche Punkte

Trifolium, also Dreiblatt, heisst nach einem Vorschlag von Jos. E. HormaNN die Figur
von 3 Kreisen durch einen Punkt S, den Pol des Dreiblatts. Die Punkte 4,, 4,, 45, in
denen sich je 2 der 3 Kreise schneiden, heissen Ecken des Dreiblatts. Herr W. K. B. HoLz,
Ing. fiir Vermessungstechnik und Stadtarchivar in Hagen (Westfalen) hat zuerst die Frage
nach den euklidischen Eigenschaften des Dreiblatts gestellt. In Math. Ann. 730, 46-86
(1955) habe ich unter anderem die von Horz vermuteten Kongruenzsitze des Dreiblatts
bewiesen. Ich nannte in dieser Arbeit die Dreibkitter Inversdreiecke, weil ein Dreiblatt
durch Inversion aus einem geradlinigen Dreiseit hervorgeht. Nimmt man in der Tat den
Einheitskreis |z| = 1 einer Gausschen z-Ebene als Umkreis des Dreiblatts — das ist der
Kreis durch die 3 Ecken - so fithrt _

, Sz-—
Y=75"3 (1)
ein Dreiseit mit den Ecken 2/ = A4}, A}, Aj in ein Dreiblatt mit den Ecken z = 4,, 4,, 4,4
iiber. Dabei geht |z| = 1 in |#/| = 1 iiber und stimmt die Abbildung (1) auf |z]| = 1 mit
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der Zentralprojektion aus S iiberein. Fiir |S| < 1 geht |z| < 1 in |Z’| > 1 iiber. Die
Dreiecke 43, Ay, A3 und 4,, 4,, A,, deren Ecken sich bei dieser Abbildung entsprechen,
heissen Gegendreiecke. Da beide — bei |S| < 1 — gleichsinnig orientiert sind, kann man
fragen, fiir welche Lagen von S beide Dreiecke gleichsinnig kongruent sind. In einer nicht
zur Verdffentlichung bestimmten Niederschrift hat Hr. HoLz festgestellt, dass dies genau
dann der Fall ist, wenn entweder S der Mittelpunkt des Umkreises ist oder wenn S mit
einem der beiden gemeinsamen Brocardschen Punkte von Dreieck und Gegendreieck zu-
sammenfillt. In der Tat gibt es drei Fille gleichsinniger Kongruenz beider Dreiecke,
je nachdem wie die beiden Eckentripel bei der Deckbewegung aufeinander fallen. Da
iiberdies die beiden Dreiecke den Umkreis gemein haben, ist die Deckbewegung stets eine
Drehung um den Mittelpunkt des Umkreises, das heisst um z = 0. Kommt zum Beispiel

ymit 4,, 4; mit 4,, A; mit A, nach der Drehung zur Deckung, so handelt es sich um die
Spiegelung an z = 0. Das sieht man aus (1), wenn man die Bedingung A3/4, = A3/4, =
A3/A g anschreibt und diskutiert. Das fiihrt nach kurzer Rechnung zu S = 0 als notwendiger
und hinreichender Bedingung fiir diese erste Art gleichsinniger Kongruenz von Dreieck
und Gegendreieck. Analog kann man auch verfahren, wenn bei der Drehung 47 in 4,,
Ajin Agund 4jin 4, iibergeht. Es ist aber bequemer, auf die folgende Figur 1 zu verweisen.
Eine analoge Figur gibt auch im dritten, noch iibrigen Fall gleichsinniger Kongruenz
beider Dreiecke Auskunft. Zum Verstindnis sei noch an folgende bekannten Tatsachen
iiber Brocardsche Punkte erinnert. Man kann die beiden Brocardschen Punkte den beiden
moglichen Orientierungen eines Dreiecks zuordnen. Ist es zum Beispiel durch die Ecken-
folge A,, A,, A positiv orientiert — Inneres zur Linken des Umlaufs —, so erhdlt man den
positiven Brocardschen Punkt, indem man die von den Ecken je im Sinn der Orientierung
auslaufenden Seiten um den durch ctgw = ctge, + ctga, + ctga, bestimmten Brocard-
schen Winkel w im positiven Sinn dreht. Die gedrehten Seiten gehen dann durch den posi-
tiven Brocardschen Punkt. In ihm schneiden sich auch die 3 Kreise, die je durch 2 Ecken
A, und 4, ., gehen und zudem in 4, die Seite a, beriihren. (Dabei ist 4;,4 = A4; gesetzt.)
Beachtet man dies, so liest man die Behauptung iiber die Rolle der Brocardschen Punkte
fiir die gleichsinnige Kongruenz von Dreieck und Gegendreieck aus dieser Figur 1 und der
der anderen Orientierung entsprechenden Figur ohne Miihe ab.

Figur 1

Hr. Hovz hat in seiner erwihnten Niederschrift die Inversion (1) nicht benutzt, sondern
sich ausschliesslich planimetrischer Schliisse bedient. Dabei ist er noch zu einigen anderen
Beziehungen zwischen Dreieck, Gegendreieck und Dreiblatt gelangt. Insbesondere ergibt
sich aus der Tatsache, dass Dreiblatt und Gegendreieck nach (1) an entsprechenden
Ecken — bis auf den Drehsinn ~ gleiche Winkel haben, durch mehrmalige Anwendung des
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Peripheriewinkelsatzes der folgende schéne Satz von Horz: Alle diejenigen Dreiblitter
haben an der Ecke 4, den gleichen Winkel, die in den Ecken 4,, 4, iibereinstimmen, die
den gleichen Umkreis haben, und deren Pol auf dem gleichen Kreis durch die Ecken 4,
und 4, liegt.

Figur 2 Az Figur 3

Laut Figur 2 (| S| < 1), bzw. Figur 3 (] S| > 1), gilt fiir diesen Dreiblattwinkel bei 4,:
Yo =ag —a, bzw. Ya=oa—ag.

Hr. Hoirz nennt diesen Satz Polrandwinkelsatz. Man koénnte auch sagen Polperipherie-
winkelsatz. Diese Benennung soll die Analogie zum Peripheriewinkelsatz der Planimetrie
betonen. Letzterer erscheint, wenn S ins Unendliche riickt. Beim Holzschen Polrand-
winkelsatz wird 4, mit 4, und 4, iiber den Pol S mit Kreisbogen verbunden. Die Winkel-
gleichheit bei 4, erscheint aber nicht nur wie beim Peripheriewinkelsatz fiir alle Lagen von
Ag auf einem Kreis durch 4, und A4, sondern auch fiir alle Lagen des Pols S auf einem
weiteren Kreis durch 4, und 4,.

Ist |S| > 1, so sind Dreieck und Gegendreieck spiegelbildlich kongruent fiir zwei
nach einem oben angedeuteten rechnerischen Verfahren sich ergebende Lagen von S.
Ein Zusammenhang dieser Punkte mit anderweit bekannten merkwiirdigen Punkten des
Dreiecks hat sich bisher nicht ergeben.

Hr. Holz fragt aber in seiner erwdhnten Niederschrift weiter nach Verallgemeinerungen
der Brocardschen Punkte. Man erhilt seine Punkte, die ich im folgenden kurz Holzsche
Punkte nennen will, wenn man um alle Ecken eines orientierten Dreiecks die jeweils im
Sinn der Orientierung auslaufenden Seiten um absolut gleiche Winkel dreht, jedoch so,
dass man um zwei Ecken im positiven Sinn, um die dritte (ausgezeichnete) Einzelecke aber
im negativen Sinn dreht. Es wird gefragt, fiir welche Winkel die 3 gedrehten Seiten durch
einen Punkt laufen. Hr. Horz hat durch eine elementargeometrische Stetigkeitsbetrach-
tung sich von der Existenz solcher Winkel iiberzeugt. Es leuchtet indessen ein, dass die
Bestimmung der Holzschen Punkte eine Aufgabe dritten Grades ist. Hat man ndmlich
iiber die Orientierung und die Einzelecke verfiigt, so ergeben sich die Holzschen Punkte
als Schnitt eines Kreises mit einer gleichseitigen Hyperbel, wobei diese Kurven bereits
eine Ecke des Dreiecks als Schnittpunkt gemein haben. Zur Ermittlung der Gleichung
dritten Grades fiir die Drehwinkel der Holzschen Aufgabe gelangt man bequemer durch
eine Betrachtung der analytischen Geometrie in der Gausschen Ebene. Ich schreibe statt
der Ecken Ay, Ay, Aryg kurz 4, B, C und bezeichne mit diesen Buchstaben gleich auch
die komplexen Koordinaten der 3 Ecken. Es wird nach Winkeln 7 gefragt, fiir die die
3 Geraden

z=A+4+ent(B—A), z=B+emt(C—B), z=C+et1t(4d—C)

durch einen Punkt gehen. Hier bedeutet jedes ¢ einen reellen Parameter. Elimination der ¢
fiihrt zu 3 linearen Gleichungen fiir z und 7 (Uberstreichen kennzeichnet den konjugiert
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komplexen Wert.) Man wird so auf das Verschwinden einer Determinante gefiihrt, als
Bedingung dafiir, dass die 3 Geraden durch einen Punkt gehen. Ausrechnen der Deter-
minante fithrt zu einer Gleichung

a et + e~ 4 Ledi1 L o3 =0 mit x=sinae %+ sinfe-iF, A= —sinyeiv.

Geht man durch e2%% = (v + 4)/(t — ) zu dem ctgxn = 7 iiber, so erhilt man eine Gleichung
dritten Grades ‘

73 2sina sinf siny + 7* (sinta + sin?f — 3 sin?y)
+ T (sina cosa + sinf cosf — 3 siny cosy) + sin?a + sin?f + sin?y = 0

fiir den ctg der Winkel, die zu Holzschen Punkten fiihren. Bei dieser Uberlégung wurde
um A4 und B im positiven, um C im negativen Sinn gedreht. Da jede Ecke die Rolle von C
iibernehmen kann, so erhdlt man zwei weitere Gleichungen dritten Grades, immer bei
Beibehaltung der Orientierung des Dreiecks. Die Zahl der reellen Ldsungen kann sich mit
Dreieck und ausgezeichneter Ecke dndern. Anderung der Orientierung des Dreiecks fiihrt
nochmals zu den gleichen Winkeln. Alles in allem erkennt man, dass die Zah! der (reellen)
Holzschen Punkte bei gegebener Orientierung des Dreiecks zwischen 3 und 9 liegt. Diese
Punkte verteilen sich auf 3 Kreise, die durch den der betr. Orientierung zugehorigen
Brocardschen Punkt gehen. Die Minimalzahl der Holzschen Punkte tritt zum Beispiel
beim gleichseitigen Dreieck auf, die Maximalzahl beim gleichschenkligen Dreieck mit dem
Basiswinkel z/24. Hr. HorLz hat hier wohl einen interessanten Fragenkreis der Elementar-
geometrie in Angriff genommen. Weitere Untersuchungen sind im Gang.

L. BieBersacH, (D 8183) Rottach-Egern

Uber den Wilsonschen Satz

Dieser wohlbekannte Satz lautet: Fiir jede Primzahl p ist (p — 1)! + 1 durch p teilbar.
Er wurde zuerst von LAGRANGE bewiesen, im Jahre 1771, und nachher sind viele verschie-
dene Beweise gegeben worden. In keinem von diesen ist jedoch, scheint es, die folgende
Formel verwendet:
n!

k
nhr hyl ook

| =
7! 2 T
nt ngt ...

(1)

Die Summation ist iiber alle Partitionen
n=kn++Rn, 0<n<n<-<n,

zu erstrecken. Diese Formel, die man CaucHY verdankt, hat in der Theorie der Permuta-
tionsgruppen ihre natiirliche Bedeutung. Der Leser mag jedoch von dieser Bedeutung
absehen und selbst die Formel mit Induktion nach » beweisen. Jedes Glied in (1) zerfillt
in » Glieder, von denen das s-te

(n — ny)!

=D k=2 = ) T Bl (ke )1 Ryl

r

ist. Das Induktionsverfahren ergibt sich sofort, und es folgt auch, dass die Summanden in
(1) ganze Zahlen sind.

Sei nun # eine Primzahl. Dann siecht man ohne weiteres ein, dass # nur in zwei Gliedern
der Summe (1) als Faktor im Nenner vorkommt. Alle iibrigen Glieder sind also ganze,
durch #» teilbare Zahlen. Daher muss auch die Summe dieser zwei ausgezeichneten Glieder
durch # teilbar sein, und man bekommt

n! n!
nt 1] 17 n!

=(r—-1)!4+1=0 (mod n).

H. TvERBERG (Bergen)
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Ein Beweis des Wilsonschen Satzes

Sei p eine ungerade Primzahl. Die Vandermondesche Determinante

1 1 1 1
D — 1 2 4 2p—-2
Lp—1(p—1)...(p— 12

ist nicht durch p teilbar. Multipliziert man die Zeilen der Reihe nach mit 1, 2, ..., p — 1,
so bekommt man nach dem Fermatschen Satz

1 1 1 .1 1 1 1 ... 1 1
(p—1)1D—| 2 4 8 ... ot | _| 2 4 8 ... 202 1
p—1 (-1 @—-1)°...6-1)7Y [p—1(p—-1)2(p—13...(p—-1)721

= (=1)»~2D = —D (mod p), also (p—1)! = —1 (mod p).

JAnos SurAnyi1, Edtvés-Lordnd Universitdt, Budapest

Aufgaben

Aufgabe 485. Die Treffwahrscheinlichkeit eines Schusses sei w und w, bedeute die
Wahrscheinlichkeit, dass von total # unter gleichbleibenden Bedingungen abgegebenen
Schiissen mindestens s Treffer sind. Man beweise die Beziehung

dw

w dws =s (w0, — ws+1) .

H. BrAnNDLI, Ziirich
Losung: Es gibt ( :‘) verschiedene Moglichkeiten, dass in einer Serie von n Schiissen s

Treffer und #» — s Nichttreffer auftreten, da sich die moglichen Ausfélle in der Reihenfolge
des Auftretens von Treffern und Nichttreffern unterscheiden. Demnach ist die Wahr-
scheinlichkeit, in einer Serie von % Schiissen genau s Treffer zu erzielen

zsz(?)w’(l——w)"-’ (s=0,1,...,n),

und somit die Wahrscheinlichkeit, in einer Serie von # Schiissen mindestens s Treffer zu
erzielen -

7 "
n

-

Aus dieser Darstellung von w, folgt

” n—1
w Zzs _ wék (Z) wk—1 (1 _ w)n—-k__ wk_Z: (n _.k) (Z)wk (1 — w)n—k-l
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