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Pareillement on obtient que q \ Mp Mq — 1. On a donc p q \ Mp Mq — 1. Or, on a

(2p - 1) (2q - 1) - 1 ee 2q - 2 (modp)
donc

_> I 2« - 2 (2)
Pareillement on trouve

.12*-2. (3)

II n'est pas p 2, puisqu'alors, d'apres (3), on aurait # 2, contrairement ä l'hypothese

que q> p Les formules (2) et (3) donnent donc p\2q~1 — 1 et # | 2^-1 — 1 et,
vue que (d'apres le theoreme de Fermat) p \ 2p~1 — 1 et q\2q~1 — 1 et que q>p,
on trouve

^^|2^-1-1 et pq\2q~1- 1. (4)
Vu regahte

2/><?-i - l 2K<7-1>+/'-1 — 1 (2p(q-1) - 1) 2^~1 + (2p~1 - 1)

on obtient de (4) p q \ 2pq~1 — 11 2pq — 2, ce qui prouve que le nombre p q est
pseudopremier. Le theoreme 1 est ainsi demontre

Demonstration du theoreme 2 Pour tout nombre premier p, tel que 7 < p 4= 13

il existe un nombre premier q > p, tel que le nombre ^> # est pseudopremier (voir [1])
et, en vertu du theoreme 1, le nombre Mp Mq est pseudopremier. Si p 2, 3, 5, 7 ou
13, il n'existe aucun nombre premier q pour lequel le nombre p q soit pseudopremier
et, en vertu du theoreme 1 il n'existe aucun nombre premier q pour lequel le nombre
Mp Mq soit pseudopremier. A. Rotkiewicz (Varsovie)

TRAVAIL CITlt

[1] A Rotkiewicz, Sur les nombres premiers p et q tels que pq\2pq— 2. Rendiconti del
Circolo Matematico di Palermo 11, 280-282 (1962).
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Dreiblatt und Brocardsche Punkte

Trifolium, also Dreiblatt, heisst nach einem Vorschlag von Jos. E. Hofmann die Figur
von 3 Kreisen durch einen Punkt S, den Pol des Dreiblatts Die Punkte Ax, A2, Az, m
denen sich je 2 der 3 Kreise schneiden, heissen Ecken des Dreiblatts. Herr W. K. B. Holz,
Ing. fur Vermessungstechnik und Stadtarchivar in Hagen (Westfalen) hat zuerst die Frage
nach den euklidischen Eigenschaften des Dreiblatts gestellt. In Math Ann. 130, 46-86
(1955) habe ich unter anderem die von Holz vermuteten Kongruenzsätze des Dreiblatts
bewiesen. Ich nannte in dieser Arbeit die Dreiblatter Inversdreiecke, weil em Dreiblatt
durch Inversion aus einem geradlinigen Dreiseit hervorgeht. Nimmt man m der Tat den
Einheitskreis \z\ 1 einer Gausschen z-Ebene als Umkreis des Dreiblatts - das ist der
Kreis durch die 3 Ecken - so fuhrt

z — S

em Dreiseit mit den Ecken / A [, A '2, A 'z in em Dreiblatt mit den Ecken z « A x, A 2, A 8

uber. Dabei geht |*| 1 in \z'\ 1 uber und stimmt die Abbildung (1) auf \z\ 1 mit
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der Zentralprojektion aus S uberem Fur \S\ < 1 geht \z\ < 1 m \z'\ > 1 uber Die
Dreiecke AX,A'2,A'Z und Ax, A2, _43, deren Ecken sich bei dieser Abbildung entsprechen,
heissen Gegendreiecke Da beide - bei \S\ < 1 - gleichsinnig orientiert smd, kann man
fragen, fur welche Lagen von 5 beide Dreiecke gleichsinnig kongruent smd In einer nicht
zur Veröffentlichung bestimmten Niederschrift hat Hr Holz festgestellt, dass dies genau
dann der Fall ist, wenn entweder 5 der Mittelpunkt des Umkreises ist oder wenn S mit
einem der beiden gemeinsamen Brocardschen Punkte von Dreieck und Gegendreieck
zusammenfallt In der Tat gibt es drei Falle gleichsinniger Kongruenz beider Dreiecke,
je nachdem wie die beiden Eckentripel bei der Deckbewegung aufeinander fallen Da
überdies die beiden Dreiecke den Umkreis gemein haben, ist die Deckbewegung stets eme
Drehung um den Mittelpunkt des Umkreises, das heisst um z — 0 Kommt zum Beispiel
A[ mit Ax, A2 mit- A%,A'Z mit A3 nach der Drehung zur Deckung, so handelt es sich um die
Spiegelung an z — 0 Das sieht man aus (1), wenn man die Bedingung A[/A1 A2/A2
A'Z\AZ anschreibt und diskutiert Das fuhrt nach kurzer Rechnung zu S 0 als notwendiger
und hinreichender Bedingung fur diese erste Art gleichsinniger Kongruenz von Dreieck
und Gegendreieck Analog kann man auch verfahren, wenn bei der Drehung A[ m A2,
A'2mA3 und _43 m A x übergeht Es ist aber bequemer, auf die folgende Figur 1 zu verweisen
Eme analoge Figur gibt auch im dritten, noch übrigen Fall gleichsinniger Kongruenz
beider Dreiecke Auskunft Zum Verständnis sei noch an folgende bekannten Tatsachen
uber Brocardsche Punkte erinnert Man kann die beiden Brocardschen Punkte den beiden
möglichen Orientierungen eines Dreiecks zuordnen Ist es zum Beispiel durch die Eckenfolge

Ax, A2, _43 positiv orientiert - Inneres zur Linken des Umlaufs -, so erhalt man den
positiven Brocardschen Punkt, indem man die von den Ecken je im Sinn der Orientierung
auslaufenden Seiten um den durch ctgct) ctgo^ + ctga2 + ctga3 bestimmten Brocardschen

Winkel co im positiven Sinn dreht Die gedrehten Seiten gehen dann durch den
positiven Brocardschen Punkt In ihm schneiden sich auch die 3 Kreise, die je durch 2 Ecken
Ak und Ak+X gehen und zudem m _4Ä+1 die Seite ak berühren (Dabei ist AJ+5 A3 gesetzt)
Beachtet man dies, so liest man die Behauptung uber die Rolle der Brocardschen Punkte
fur die gleichsinnige Kongruenz von Dreieck und Gegendreieck aus dieser Figur 1 und der
der anderen Orientierung entsprechenden Figur ohne Muhe ab

Ä3

Figur 1

Hr Holz hat m seiner erwähnten Niederschrift die Inversion (1) nicht benutzt, sondern
sich ausschliesslich planimetnscher Schlüsse bedient Dabei ist er noch zu einigen anderen
Beziehungen zwischen Dreieck, Gegendreieck und Dreiblatt gelangt Insbesondere ergibt
sich aus der Tatsache, dass Dreiblatt und Gegendreieck nach (1) an entsprechenden
Ecken - bis auf den Drehsinn - gleiche Winkel haben, durch mehrmalige Anwendung des
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Peripheriewinkelsatzes der folgende schöne Satz von Holz: Alle diejenigen Dreiblätter
haben an der Ecke _43 den gleichen Winkel, die in den Ecken Ax, A2 übereinstimmen, die
den gleichen Umkreis haben, und deren Pol auf dem gleichen Kreis durch die Ecken Ax
und A2 liegt.

oc/

**£

ä3 A-

Figur 2

<*.

%

Figur 3

Laut Figur 2 (|51 < 1), bzw. Figur 3 (|51 > 1), gilt für diesen Dreiblattwinkel bei A„

a, bzw. va a __ a

Hr. Holz nennt diesen Satz Polrandwinkelsatz. Man könnte auch sagen Polperipheriewinkelsatz.

Diese Benennung soll die Analogie zum Peripheriewinkelsatz der Planimetrie
betonen. Letzterer erscheint, wenn S ins Unendliche rückt. Beim Holzschen
Polrandwinkelsatz wird A3 mit Ax und A2 über den Pol S mit Kreisbogen verbunden. Die
Winkelgleichheit bei A 3 erscheint aber nicht nur wie beim Peripheriewinkelsatz für alle Lagen von
Az auf einem Kreis durch Ax und A2 sondern auch für alle Lagen des Pols 5 auf einem
weiteren Kreis durch A x und A 2.

Ist \S\ > 1, so sind Dreieck und Gegendreieck spiegelbildlich kongruent für zwei
nach einem oben angedeuteten rechnerischen Verfahren sich ergebende Lagen von 5.
Ein Zusammenhang dieser Punkte mit anderweit bekannten merkwürdigen Punkten des
Dreiecks hat sich bisher nicht ergeben.

Hr. Holz fragt aber in seiner erwähnten Niederschrift weiter nach Verallgemeinerungen
der Brocardschen Punkte. Man erhält seine Punkte, die ich im folgenden kurz Holzsche
Punkte nennen will, wenn man um alle Ecken eines orientierten Dreiecks die jeweils im
Sinn der Orientierung auslaufenden Seiten um absolut gleiche Winkel dreht, jedoch so,
dass man um zwei Ecken im positiven Sinn, um die dritte (ausgezeichnete) Einzelecke aber
im negativen Sinn dreht. Es wird gefragt, für welche Winkel die 3 gedrehten Seiten durch
einen Punkt laufen. Hr. Holz hat durch eine elementargeometrische Stetigkeitsbetrachtung

sich von der Existenz solcher Winkel überzeugt. Es leuchtet indessen ein, dass die
Bestimmung der Holzschen Punkte eine Aufgabe dritten Grades ist. Hat man nämlich
über die Orientierung und die Einzelecke verfügt, so ergeben sich die Holzschen Punkte
als Schnitt eines Kreises mit einer gleichseitigen Hyperbel, wobei diese Kurven bereits
eine Ecke des Dreiecks als Schnittpunkt gemein haben. Zur Ermittlung der Gleichung
dritten Grades für die Drehwinkel der Holzschen Aufgabe gelangt man bequemer durch
eine Betrachtung der analytischen Geometrie in der Gausschen Ebene. Ich schreibe statt
der Ecken Ak, Ak+X, Ak+2 kurz A, B, C und bezeichne mit diesen Buchstaben gleich auch
die komplexen Koordinaten der 3 Ecken. Es wird nach Winkeln n gefragt, für die die
3 Geraden

z A + et* t (B - A) z= B + eirit(C- B) z^C + e~iri t (A - C)

durch einen Punkt gehen. Hier bedeutet jedes / einen reellen Parameter. Elimination der t
führt zu 3 linearen Gleichungen für z und 1 (Überstreichen kennzeichnet den konjugiert
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komplexen Wert.) Man wird so auf das Verschwinden einer Determinante gefuhrt, als
Bedingung dafür, dass die 3 Geraden durch einen Punkt gehen. Ausrechnen der
Determinante fuhrt zu einer Gleichung

xext* + ~üe-tri + lezin -\. Je~3tv 0 mit h sinarlct+ smß e~lß, X -smy e~lv

Geht man durch ettri (r + i)/(r — i) zu dem ctg?; t uber, so erhalt man eme Gleichung
dritten Grades

T8 2 sma sm/? siny -f rf (sm8a + sm8/? — 3 sm8y)

+ t (sina cosa 4- sinj. cos/? — 3 smy cosy) + sm2a 4- sm2/? + sm2y 0

fur den ctg der Winkel, die zu Holzschen Punkten fuhren Bei dieser Überlegung wurde
um A und B im positiven, um C im negativen Sinn gedreht Da jede Ecke die Rolle von C
übernehmen kann, so erhalt man zwei weitere Gleichungen dritten Grades, immer bei
Beibehaltung der Orientierung des Dreiecks. Die Zahl der reellen Losungen kann sich mit
Dreieck und ausgezeichneter Ecke andern. Änderung der Orientierung des Dreiecks fuhrt
nochmals zu den gleichen Winkeln. Alles m allem erkennt man, dass die Zahl der (reellen)
Holzschen Punkte bei gegebener Orientierung des Dreiecks zwischen 3 und 9 hegt Diese
Punkte verteilen sich auf 3 Kreise, die durch den der betr. Orientierung zugehörigen
Brocardschen Punkt gehen. Die Minimalzahl der Holzschen Punkte tritt zum Beispiel
beim gleichseitigen Dreieck auf, die Maximalzahl beim gleichschenkligen Dreieck mit dem
Basiswinkel tt/24. Hr. Holz hat hier wohl einen interessanten Fragenkreis der Elementargeometrie

in Angriff genommen. Weitere Untersuchungen sind im Gang
L. Bieberbach, (D8183) Rottach-Egern

Über den Wilsonschen Satz

Dieser wohlbekannte Satz lautet Fur jede Primzahl p ist (p — 1)' 4- 1 durch p teilbar.
Er wurde zuerst von Lagrange bewiesen, im Jahre 1771, und nachher smd viele verschiedene

Beweise gegeben worden. In keinem von diesen ist jedoch, scheint es, die folgende
Formel verwendet:

n'^ E-~r-i n. (i)

Die Summation ist uber alle Partitionen

n kxnx 4- h krnr, 0 < nx < n2 < ••• < nr,
zu erstrecken. Diese Formel, die man Cauchy verdankt, hat in der Theorie der
Permutationsgruppen ihre natürliche Bedeutung. Der Leser mag jedoch von dieser Bedeutung
absehen und selbst die Formel mit Induktion nach n beweisen. Jedes Glied in (1) zerfallt
in r Glieder, von denen das s-te

(—IM—*>-(—*+D ^...^.-i,..^,^.- _),. V
ist. Das Induktionsverfahren ergibt sich sofort, und es folgt auch, dass die Summanden in
(1) ganze Zahlen smd.

Sei nun n eine Primzahl. Dann sieht man ohne weiteres em, dass n nur m zwei Gliedern
der Summe (1) als Faktor im Nenner vorkommt. Alle übrigen Glieder smd also ganze,
durch n teilbare Zahlen. Daher muss auch die Summe dieser zwei ausgezeichneten Glieder
durch n teilbar sein, und man bekommt

7?n + T^ (w-1), + 1^0(modM)-
H. Tverberg (Bergen)



Aufgaben

Ein Beweis des Wilsonschen Satzes

Sei p eme ungerade Primzahl. Die Vandermondesche Determinante

11 1 1

12 4 2P~2

113

D

1 p-1 [p- l)2. (p- 1)p~'

ist nicht durch p teilbar Multipliziert man die Zeilen der Reihe nach mit 1, 2, ,p — 1,
so bekommt man nach dem Fermatschen Satz

{p-iyD

1

2_>-i

p-i (p-i)*(p-iy ,(£-i)p-i

l
2_?-2

p-i(p-iY(p-i)*.. (p-i)»-*i
-= (-l)p-a d -D (mod p) also {p - 1)» -1 (mod £)

Jänos Suränyi, Eotvos-Lordnd Universität, Budapest

Aufgaben

Aufgabe 485. Die Treffwahrschemhchkeit eines Schusses sei w und ws bedeute die
Wahrscheinlichkeit, dass von total n unter gleichbleibenden Bedingungen abgegebenen
Schüssen mindestens s Treffer sind. Man beweise die Beziehung

H. Brändli, Zürich

Losung Es gibt i ] verschiedene Möglichkeiten, dass in einer Serie von n Schüssen 5

Treffer und n — s Nichttreffer auftreten, da sich die möglichen Ausfalle in der Reihenfolge
des Auftretens von Treffern und Nichttreffern unterscheiden Demnach ist die
Wahrscheinlichkeit, in einer Serie von n Schüssen genau 5 Treffer zu erzielen

zs {ns)wS^-w) (s 0, 1, n)

und somit die Wahrscheinlichkeit, m einer Serie von n Schüssen mindestens 5 Treffer zu
erzielen

¦¦£*t=Z(k)">k(i-">)n (s 0, 1,

Aus dieser Darstellung von ws folgt

w -*5l
___ wgki") w*-* (1 - «,)«-*- wJJ (n - k) J) w* (1 - a,)»-*-!

s(*)a;*(l-«/)»-' + ]T k{^\wk(l~w)»-k

- £(n-k+l)L"1\wk(l--w)»-k
k~s+l


	Kleine Mitteilungen

