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108 A. Rotkiewicz: Sur les nombres pseudopremiers de la forme Mp Mq

La Solution (optimale) est donc xx 11/9, x2 1/9, xB 0.

La resolution «graphique» de ce probleme constitue une application interessante
des eiements de calcul vectoriel. Elle se generalise immediatement k plus de 3 variables
et se prete ä des discussions. Enfin, eile a le merite de montrer ä l'eieve que des

moyens tres simples quoique legerement «detournes» permettent parfois d'obtenir
un resultat inaccessible par un procede direct, celui de la resolution graphique
habituelle en l'occurrence; eile peut inciter l'eieve ä faire preuve d'ingeniosite.

P. Burgat, Neuchätel

Sur les nombres pseudopremiers de la forme Mp Mq

Je demontrerai ici les deux theoremes suivants:

Thdoreme 1. Le nombre pq, oüp et q> p sont des nombres premiers, est un nombre

pseudopremier1) dans ce et seulement dans ce cas si le nombre MpMq= (2P — 1) (2q — 1)
est pseudopremier.

Theoreme 2. Pour tout nombre premier p, oü 7 < p 4= 13, il existe un nombre
premier q tel que le nombre Mp Mq est pseudopremier. Pour p 2, 3, 5, 7 et 13 il n'existe

aucun nombre premier q pour lequel le nombre Mp Mq soit pseudopremier.

Demonstration du theoreme 1. Supposons que le nombre p q, oü p et q > p sont
des nombres premiers, est pseudopremier. On a alors p > 2. En effet, s'il etait
2 q 122q — 2, on aurait q \ 22q~1 — 1, ce qui est impossible, vu que

2*«-i - 1 2a<«-1> 2-1 1 (mod q)

(d'apres le theoreme de Fermat). Vu que q> p, les nombres p et q sont tous les deux
impairs et la formule pq\2pq—2 (puisque le nombre pq est pseudopremier) donne

pq\2pq~1- 1. Or, on a

2*«-i - 1 2<*-1>« 2*-1 - 1 2q~x - 1 (mod p)

On a donc p 12q~1 — 1 et, vu que q \ 2q~1 — 1 et q > p, on en trouve que

Pq\2q-1-l\2q-2.
Pareillement on demontre que p q \ 2p — 2. On a donc 2p — 1 1 (mod p q) et
2q ~ 1 3= 1 (mod pq), d'oü MpMq~l (mod pq) et, comme (2* - 1, 2« - 1)
2(P>q) — 1 1, on trouve

Mp Mq (2p - 1) (2* - 1) 12pq - 112MpMq~1 - 112MpMq - 2

et le nombre Mp Mq est pseudopremier.
Supposons maintenant que le nombre Mp Mq est pseudopremier. On a donc

(2p - 1) (2* - 1) 12MPM*-X - 1. (1)

Le nombre 2 appartenant k l'exposant p modulo 2^-1, il resulte de (1) que^> | Mp Mq-1.

*) C'est-ä-dire un nombre composö n qui divise 2» — 2.
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Pareillement on obtient que q \ Mp Mq — 1. On a donc p q \ Mp Mq — 1. Or, on a

(2p - 1) (2q - 1) - 1 ee 2q - 2 (modp)
donc

_> I 2« - 2 (2)
Pareillement on trouve

.12*-2. (3)

II n'est pas p 2, puisqu'alors, d'apres (3), on aurait # 2, contrairement ä l'hypothese

que q> p Les formules (2) et (3) donnent donc p\2q~1 — 1 et # | 2^-1 — 1 et,
vue que (d'apres le theoreme de Fermat) p \ 2p~1 — 1 et q\2q~1 — 1 et que q>p,
on trouve

^^|2^-1-1 et pq\2q~1- 1. (4)
Vu regahte

2/><?-i - l 2K<7-1>+/'-1 — 1 (2p(q-1) - 1) 2^~1 + (2p~1 - 1)

on obtient de (4) p q \ 2pq~1 — 11 2pq — 2, ce qui prouve que le nombre p q est
pseudopremier. Le theoreme 1 est ainsi demontre

Demonstration du theoreme 2 Pour tout nombre premier p, tel que 7 < p 4= 13

il existe un nombre premier q > p, tel que le nombre ^> # est pseudopremier (voir [1])
et, en vertu du theoreme 1, le nombre Mp Mq est pseudopremier. Si p 2, 3, 5, 7 ou
13, il n'existe aucun nombre premier q pour lequel le nombre p q soit pseudopremier
et, en vertu du theoreme 1 il n'existe aucun nombre premier q pour lequel le nombre
Mp Mq soit pseudopremier. A. Rotkiewicz (Varsovie)
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Dreiblatt und Brocardsche Punkte

Trifolium, also Dreiblatt, heisst nach einem Vorschlag von Jos. E. Hofmann die Figur
von 3 Kreisen durch einen Punkt S, den Pol des Dreiblatts Die Punkte Ax, A2, Az, m
denen sich je 2 der 3 Kreise schneiden, heissen Ecken des Dreiblatts. Herr W. K. B. Holz,
Ing. fur Vermessungstechnik und Stadtarchivar in Hagen (Westfalen) hat zuerst die Frage
nach den euklidischen Eigenschaften des Dreiblatts gestellt. In Math Ann. 130, 46-86
(1955) habe ich unter anderem die von Holz vermuteten Kongruenzsätze des Dreiblatts
bewiesen. Ich nannte in dieser Arbeit die Dreiblatter Inversdreiecke, weil em Dreiblatt
durch Inversion aus einem geradlinigen Dreiseit hervorgeht. Nimmt man m der Tat den
Einheitskreis \z\ 1 einer Gausschen z-Ebene als Umkreis des Dreiblatts - das ist der
Kreis durch die 3 Ecken - so fuhrt

z — S

em Dreiseit mit den Ecken / A [, A '2, A 'z in em Dreiblatt mit den Ecken z « A x, A 2, A 8

uber. Dabei geht |*| 1 in \z'\ 1 uber und stimmt die Abbildung (1) auf \z\ 1 mit
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