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Axiomatischer Aufbau der sphirisch-elliptischen Geomettie

Unter der sphirisch-elliptischen Geometrie wird hier eine Geometrie verstanden,
die sich auf der Oberfldche der euklidischen Vollkugel und im elliptischen Kreisbiindel
als Modell realisieren ldsst. Den Zusammenhang zwischen der Kugeloberfliche und
dem elliptischen Kreisbiindel erkennt man sofort, wenn man die Kugeloberfliche vom
Punkt N aus stereographisch auf den zu N N’ senkrechten Hauptkreis H der Kugel
projiziert (Figur 1).

oN'

Figur 1

Dabei entspricht ein grésster Kugelkreis immer einem Kreis in der Ebene des
Kreises H, der diesen Hauptkreis H diametral schneidet. Die im folgenden axioma-
tisch aufgebaute sphérisch-elliptische Geometrie unterscheidet sich verschiedentlich
von der in der Literatur als ebene elliptische Geometrie bezeichneten Geometrie, die
am zweckmissigsten durch das rdaumliche Geraden- und Ebenenbiindel durch einen
Punkt M realisiert wird. Die Gesamtheit der Geraden durch M stellt bei diesem Modell
der elliptischen Geometrie die Punkte der elliptischen Ebene, die Gesamtheit der
Ebenen durch M die Gesamtheit der Geraden der elliptischen Ebene dar. Projiziert
man dieses Geraden- und Ebenenbiindel durch M auf die Oberfliche einer Kugel
mit M als Mittelpunkt und deutet die beiden Endpunkte eines Kugeldurchmessers als
einen elliptischen Punkt und ebenso die grossten Kugelkreise als Geraden, so erhilt
man ein weiteres Modell der elliptischen Geometrie. Die elliptische Geometrie ist daher
mit der hier wegen der beiden Realisierungsmoglichkeiten als sphérisch-elliptische
Geometrie bezeichneten Geometrie, die hier axiomatisch begriindet werden soll, ver-
wandt.
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1. Teil

Das Axiomensystem der sphdrisch-elliptischen Geometrie

Genau wie in der euklidischen Geometrie werden in der sphirisch-elliptischen
Geometrie die Grundbegriffe dieser mathematischen Disziplin « Punkt und Gerade»
auf der sphdrisch-elliptischen Ebene implizit definiert. Die Beschreibung der Be-
ziehungen zwischen den Punkten und Geraden der sphirisch-elliptischen Geometrie
erfolgt durch die Axiome dieser Geometrie. Mit Hilfe der Grundbegriffe hier Punkt,
Gegenpunkt und Gerade werde weiter in den Definitionen neue Begriffe (zum Bei-
spiel Strecke, Winkel...) eingefiihrt und diese durch weitere Axiome miteinander in
Beziehung gebracht. Die Grundbegriffe und die aus ihnen abgeleiteten Begriffe werden
durch die Axiomengruppen der Verkniipfung, der Anordnung, der Kongruenz und der
Stetigkeit miteinander verkniipft.

Axiomgruppe I. Die Axiome der Verkniipfung

I, 1. Zu zwei Punkten 4 und B gibt es stets eine Gerade, die durch die beiden Punkte
hindurchgeht.

I, 2. Zu jedem Punkt P gibt es genau einen von P verschiedenen Punkt P, der speziell
dem Punkt P zugeordnet ist. P heisst der Gegenpunkt des Punktes P. Der

Gegenpunkt eines Gegenpunktes ist wieder der urspriingliche Punkt, also P = P.

I, 3. Zu zwei Punkten, die nicht Gegenpunkte sind, gibt es nicht mehr als eine Gerade,
die durch diese Punkte hindurchgeht. Zu zwei Gegenpunkten gibt es mehr als
eine solche Gerade.

I, 4. Auf einer Geraden gibt es wenigstens zwei Punkte, die nicht Gegenpunkte sind.
Es gibt wenigstens drei Punkte, die nicht auf einer Geraden liegen.

I, 5. Zwei Gerade haben stets genau zwei Punkte gemeinsam. (Dieses Axiom besagt,
dass es in der sphdrisch-elliptischen Geometrie keine Parallelen geben kann. Die
beiden gemeinsamen Punkte miissen nach Axiom I, 3 Gegenpunkte sein.)

Im Anschluss an diese Axiome der Verkniipfung wird folgender Satz bewiesen:

Satz 1. Die eindeutig bestimmte Gerade durch zwei Punkte 4 und B, die selbst
nicht Gegenpunkte sind, geht auch durch die Gegenpunkte 4 und B von 4 und B.

——

[ Figur 2

Beweis: Zunichst gibt es nach Axiom I, 3 genau eine Gerade g, durch die Punkte 4
und B. 4 sei nach Axiom I, 2 der Gegenpunkt zu 4. Nach Axiom I, 3 gibt es wenigstens
eine von g, verschiedene Gerade gy, die durch die Punkte 4 und 4 hindurchgeht
(Figur 2). Nach Axiom I, 5 schneiden sich die Geraden g, und g, ausser in 4 nochmals
in einem Punkt C. Nach Axiom I, 3 miissen daher 4 und C Gegenpunkte sein und C
muss mit 4 zusammenfallen. 4 liegt daher auf der Geraden durch die Punkte 4 und B.
Analog zeigt man, dass auch B auf dieser Geraden liegt.
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Satz 1 lasst sich noch anders formulieren. Da er in dieser Form spéter verschiedent-
lich verwendet wird, wird dieselbe als Satz 1a hier noch angegeben.

Satz 1a. 3 Punkte, von denen irgend zwei Gegenpunkte sind, liegen auf einer
Geraden.

Axiomgruppe I1. Axiome der Anordnung

In diesen Axiomen werden iiber die Beziehungen von Punkten zueinander auf
einer Geraden Aussagen gemacht.

IT, 1. Zwei Punkte auf einer Geraden zerlegen dieselbe in genau zwei von diesen
Punkten begrenzte Teile. Die beiden Teile haben keine gemeinsamen Punkte und
bilden zusammen mit den Begrenzungspunkten die Gerade. Im Hinblick auf
dieses Axiom gelangt man zu folgender Definition:

Definition 1: Ein Punkt und ein Gegenpunkt zerlegen jede durch sie hindurchgehende

Gerade in zwei Halbgeraden.

II, 2. Zu zwei Punkten 4 und B einer Geraden gibt es wenigstens zwei Punkte P und
Q so, dass der Punkt P in einem Teil der durch die Punkte A4 und B zerlegten
Geraden und der Punkt Q im anderen Teil der durch die Punkte A und B zer-
legten Geraden liegt.

Definition 2: Liegt Punkt P in einem Teil, Punkt Q aber im anderen Teil einer durch
die Punkte 4 und B bestimmten und nach II, 1 zerlegten Geraden, so werden die
Punkte P und Q durch die Punkte 4 und B getrennt.
I1, 3. Werden zwei Punkte A4 und B einer Geraden durch die Punkte P und Q ge-
trennt, so werden auch die Punkte P und Q durch die Punkte 4 und B getrennt.
I1, 4. Vier Punkte einer Geraden 4, B, P und Q zerfallen stets in zwei Paare etwa 4 B
und P Q so, dass sich die Punkte A B und P Q trennen. Die anderen Punkte-
paare also 4 P, B Q, ebenso A Q, B P trennen sich dann nicht.
IT, 5. Paare von Gegenpunkten auf einer Geraden trennen sich immer.
Unter Beriicksichtigung von Axiom I, 1 und I, 3, sowie Satz 1 kann nunmehr der
Begriff der Strecke definiert werden.

Definition 3: Die Strecke. Zwei Punkte A und B, die nicht Gegenpunkte sind,
bestimmen eine Strecke 4 B, nimlich die Menge der Punkte C auf der durch 4 und
B festgelegten Geraden (nach Axiom I, 1 und I, 3), die so beschaffen sind, dass die
Punkte C 4 und A4 B sich trennen. Alle Punkte C dieser Menge heissen Punkte der
Strecke. A und B sind die Eckpunkte der Strecke. Alle anderen Punkte der Geraden
liegen ausserhalb der Strecke.

Weil (nach Axiom II, 5) die Punkte 4 4 und B B sich trennen, sind (nach Axiom
II, 4) die Punkte 4 B'und A B nicht getrennt. Die Gegenpunkte 4 B liegen also in
demselben Teil der durch 4 und B geteilten Geraden.

Daraus folgt, dass die Punkte C B ebenfalls von A und B getrennt liegen. Zur
Definition der Strecke 4 B kann also entweder der Gegenpunkt von A4 oder aber der
von B verwendet werden.

Zusatz: Diese Definition gilt nicht, wenn A und B Gegenpunkte sind. In diesem
Entartungsfall ist es sinnvoll — so zeigt sich spiter (Fig. 9) -, je nach Bedarf eine der
durch 4 und B festgelegten Halbgeraden als Strecke A B zu wihlen. Wir wollen diese
Halbgeraden auch als entartete Strecken bezeichnen.
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Definition 4: Das «Zwischen». Von allen Punkten C der Strecke A B sagen wir,
dass sie «zwischen» 4 und B liegen. In Zeichen (4 C B).

Die Punkte A und B liegen dabei beziiglich des Punktes C auf verschiedenen
Seiten der Geraden durch 4, B und C.

Als 6. Anordnungsaxiom verwenden wir wortlich das Axiom von PAscH. Zu diesem
Zweck definieren wir hier zunichst das sphérisch-elliptische Dreieck.

Definition 5: Ein Dreieck wird gebildet von drei nicht in einer Geraden liegenden
Punkten 4, B und C mit den zu diesen Punkten gehorigen Strecken als Seiten.

IL, 6. Es seien A B C die Eckpunkte eines Dreiecks und a eine Gerade, die keinen der
Punkte 4, B, C trifft. Wenn dann die Gerade a durch einen Punkt der Strecke
A B geht, so geht sie gewiss auch entweder durch einen Punkt der Strecke AC
oder durch einen Punkt der Strecke BC.

Die Definitionen fiir die Halbebene, den Winkel, den Nebenwinkel, den Scheitel-
winkel und rechten Winkel kénnen nunmehr wortlich aus der absoluten Geometrie
iibernommen werden. Auch die Definition des Innern und Aussern eines Winkels kann
aus der absoluten Geometrie iibernommen werden (siehe HiLBERT, Grundlagen der
Geometrie § 5, 1956). Die in diesen Definitionen vorkommenden Strecken sind dabei
natiirlich wiederum Strecken im Sinn der Definition 3. Im Hinblick auf die Axiom-
gruppe III wird hier noch auf den Begriff der Teilung der Ebene durch eine Gerade
eingegangen.

Definition 6: Gegeben sei eine Gerade @ und zwei Punkte 4 und B. Enthilt dann
die Strecke A B keinen Punkt der Geraden a, so liegen 4 und B auf derselben Seite
der Geraden a. Enthilt A B aber einen Punkt der Geraden 4, so liegen die Punkte 4
und B auf verschiedenen Seiten der Geraden.

Satz 2. Jede Gerade teilt die spharisch-elliptische Ebene in zwei Halbebenen.

6
B4 Figur 3a B Figur 3b

Beweis: Gegeben sei die Gerade 4 und ein Punkt 4 ausserhalb derselben (Axiom
I, 4). P sei ein Punkt der Geraden derart (Axiom I, 4), dass 4 und P nicht Gegen-
punkte sind. Auf der durch 4 P bestimmten Geraden wihlt man B so, dass (4, P, B)
gilt (Axiom II, 2) und 4 und B bzw. B und P nicht Gegenpunkte sind. 4 und B
liegen dann auf verschiedenen Seiten der Geraden a4 (Figur 3a und 3b).

C sel ein weiterer beliebiger Punkt der sphirisch-elliptischen Ebene nur mit der
Einschrankung, dass er nicht Gegenpunkt zu 4 oder B ist. Dann muss nach Axiom
II, 6 die Gerade a entweder die Strecke BC oder die Strecke AC in einem Punkt
innerhalb dieser Strecken treffen. Trifft a die Strecke BC (Fall der Figur 3a), so liegt
C auf der gleichen Seite der Geraden wie der Punkt 4. Trifft a dagegen die Strecke AC
(Fall der Figur 3b), so liegen C und A auf verschiedenen Seiten von a. Es ist jetzt
noch zu zeigen, dass diese Einteilung aller Punkte in zwei Klassen, die Halbebenen,
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unabhingig von der Wahl von 4 ist. Wir wihlen zu diesem Zweck einen Punkt 4,,
der nicht Gegenpunkt zu 4 und C ist (Axiom I, 4 und Satz 1), derart, dass die Strecke
A A, keinen Punkt mit der Geraden a gemein hat. Ein solcher Punkt lidsst sich immer
finden. Wiirde nun die Gerade 4 im Fall der Figur 3a die Strecke 4,C schneiden, so
miisste sie nach Axiom II, 6 auch entweder die Strecke AC oder die Strecke 44,
schneiden. Nun schneidet die Gerade a in diesem Fall weder die Strecke AC noch die
Strecke A 4,. Also kann sie auch die Strecke A4,C nicht schneiden. Die Punkte 4,4
und C liegen daher auf der gleichen Seite der Geraden 4. Man hitte also in diesem Fall
mit dem gleichen Ergebnis statt vom Punkt 4 auch vom Punkt 4, ausgehen kénnen.

Im Fall der Figur 3Db trifft a die Strecke AC. Da die Gerade a die Strecke 44, nicht
treffen kann, muss sie in diesem Fall die Strecke 4,C treffen. 4, und C liegen daher
genau wie 4 und C auf verschiedenen Seiten der Geraden. Man hitte daher wiederum
mit dem gleichen Ergebnis statt vom Punkt 4 auch vom Punkt 4, ausgehen kénnen.

Nunmehr werde angenommen, der Punkt C sei Gegenpunkt zu einem der Punkte
4 oder B, etwa zum Punkt 4. Eine der durch die Punkte 4 und C gehenden Geraden
moge die Gerade 2 in den Punkten S und S (Figur 4), die ja Gegenpunkte sind, treffen
(Axiom I, 3 und I, 5)

Nachdem 4 und C ebenfalls Gegenpunkte sind, miissen sich die Punktepaare ge-
miss Axiom II, 5 trennen. 4 und C liegen in diesem Fall auf verschiedenen Seiten
der Geraden a. Es sei nun 4, wieder ein Punkt derart, dass die Strecke A4 keinen
Punkt mit @ gemein hat. Die durch 4, und 4 bestimmte Gerade geht dann wiederum
durch den Gegenpunkt C von A und schneidet a in den Gegenpunkten U und U,
wobei U derjenige von diesen zwei Punkten sei, fiir welchen (44,U) gilt. Nach der
Streckendefinition fiir die Strecke 4 U miissen sich jetzt die Punktepaare AU und
A,C trennen. 4, und C liegen also wieder auf verschiedenen Seiten der Geraden a.
Man hitte also wieder vom Punkt A, ausgehen kénnen, der auf derselben Seite der
Geraden liegt wie A. Damit ist Satz 2 bewiesen.

Axiomgruppe I11. Axiome der Kongruenz

Die Strecken und Winkel der spharisch-elliptischen Geometrie stehen in gewissen
Beziehungen zueinander, zu deren Beschreibung die Worte «kongruent» oder «gleich»
dienen. Diese Beziehungen werden in den Kongruenzaxiomen festgelegt. Gegeniiber
den Hilbertschen Kongruenzaxiomen ergeben sich einige Abweichungen.

III, 1. Wenn A und B zwei Punkte auf einer Geraden sind, derart, dass sie keine
Gegenpunkte sind und ferner 4’ ein Punkt auf derselben oder einer anderen
Geraden &’ ist, so kann man auf einer gegebenen Seite der Geraden a bzw. a’
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III, 2.

I1I, 3.

I11, 4.

J. MaLr: Axiomatischer Aufbau der sphirisch-elliptischen Geometrie

zu A’ stets einen Punkt B’ finden, so dass die Strecke A B der Strecke A’'B’
kongruent oder gleich ist, in Zeichen

AB=A'B'.
Wenn eine Strecke A’'B’ und eine Strecke A”B” derselben Strecke AB
kongruent sind, so ist auch die Strecke A'B’ der Strecke A”B” kongruent.
(Gegeniiber der Hilbertschen Formulierung ergibt sich hier keine Anderung.)
Es seien A B und BC zwei Strecken ohne gemeinsame Punkte auf der Geraden
a und ferner A’B’, B'C’ zwei Strecken auf derselben oder einer anderen Gera-
den a’ ebenfalls ohne gemeinsame Punkte.
Wenn dann fiir die durch die Punkte 4 B C und 4’ B’ C' bestimmten Strecken
AB, BC und A'B’, B'C' gilt:

AB = A'B'und BC = B'C’, sogiltauch AC=A4'C".
Falls AC und A’C’ die Punkte B und B’ enthalten, gilt auch
AB+ BC=AC bzw. A'B'+ B'C'=A'C'.

Es sei ein Winkel <¢ (% %) und eine Gerade a’, sowie eine bestimmte Seite von
a' gegeben. A’ bedeute eine Halbgerade der Geraden a’, die von A’ ausgeht.

. Dann gibt es einen und nur einen Halbstrahl %’ so, dass der Winkel < (4 &)

III, 5.

kongruent oder gleich dem Winkel < (A’ &) ist und zugleich alle inneren
Punkte des Winkels < (%’ &) auf der gegebenen Seite von 4’ liegen. In Zeichen:

X (k) =< (B F)
Jeder Winkel ist sich selbst gleich, das heisst es ist stets
X (hk) =L (hk).
Wenn fiir zwei Dreiecke A B C und 4’ B’ C’ die Kongruenzen
AB=A'B', AC=A4'C', X BAC=<B AC
gelten, so ist auch stets die Kongruenz <t 4 BC = ¢ 4’ B’ C’ erfiillt.
Mit Hilfe der Kongruenzaxiome IIT lassen sich genau so wie in der absoluten
Geometrie die Begriffe grosser und kleiner bei Strecken und Winkeln definieren.
Hier sei noch die Definition fiir die Begriffe grosser und kleiner bei Strecken
angegeben.

Definition 7: Es seien zwei Strecken 4 B und A’B’ auf einer Geraden 4 und einer
Geraden a’, oder nur auf einer Geraden a gegeben. Trigt man dann von A4 aus auf der
Halbgeraden von a, die B enthilt, die Strecke A’B” = A'B’ ab, so sagt man, 4'B’ ist
kleiner als AB (A’'B’ < AB), wenn B” zwischen 4 und B liegt. Liegt B zwischen 4
und B”, so ist umgekehrt AB < A’'B’. Analog ergibt sich die Definition der Begriffe
grosser und kleiner bei den Winkeln.

IV, 1.

Axiomgruppe IV. Axiome der Stetigkeit

Gegeben ist irgendeine Strecke 4 B,. Es werden an diese Strecke auf der Gera-
den A B, kongruente Strecken B,B,, ByB;... angetragen. Dann existiert stets
eine natiirliche Zahl # derart, dass entweder B, mit dem Gegenpunkt 4 von 4
zusammenfillt oder aber die Punktepaare 4 4 und B, B, sich trennen.
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IV, 2. Cantorsches Axiom. Gegeben ist eine Strecke AB. Es gebe eine Folge von
Strecken 4,B,;, A;B,... derart, dass die Strecke 4,B, innerhalb der Strecke
A, 1B, liegt. Weiter soll es keine Strecke geben, deren Endpunkte innerhalb
aller Strecken A4,B, liegen. Dann existiert genau ein Punkt X, der allen
Strecken A4,B, angehort.

(Das vorliegende Axiomensystem wurde in moglichst enger Anlehnung an
Hilberts Axiomensystem der euklidischen Geometrie entwickelt. Dabei wurde
jedoch nicht darauf geachtet, unbedingt ein unabhingiges Axiomensystem
aufzustellen.

Zweck dieser Arbeit ist es ndmlich, aus einem {iibersichtlichen Axiomensystem
heraus die sphérisch-elliptische Geometrie systematisch zu entwickeln.)

Aus den hier angegebenen Axiomen und Definitionen l4sst sich die sphirisch-
elliptische Geometrie entwickeln. Dabei sei eine Beschrankung auf einige besonders
wichtige Sdtze vorgenommen. Zunichst zeigt man, dass verschiedene Sitze der ab-
soluten Geometrie auch in der sphérisch-elliptischen Geometrie richtig sind. Das ist
immer fiir diejenigen Sétze der Fall, bei denen nur den beiden Geometrien gemeinsame
Axiome bentiitzt werden. Es gilt insbesonders fiir folgende Sitze:

I.  Die Streckeniibertragung ist eindeutig.
II. Kongruente Winkel besitzen kongruente Nebenwinkel.

ITI. Scheitelwinkel sind kongruent.
Geringfiigige Anderungen sind bei den meisten Beweisen der folgenden Sitze
erforderlich.

IV. Zwei Dreiecke sind kongruent, wenn sie in zwei Seiten und dem eingeschlossenen
Winkel tibereinstimmen (Kongruenzsatz I). .

V.  Zwei Dreiecke sind kongruent, wenn sie in einer Seite und den beiden anliegen-
den Winkeln iibereinstimmen (Kongruenzsatz II).

VI. Zwei Dreiecke sind kongruent, wenn sie in den drei Seiten tibereinstimmen
(Kongruenzsatz I1I).

VII. In einem gleichschenkligen Dreieck sind die zugehérigen Winkel gleich gross
und umgekehrt.

VIII. Alle Winkel, auch gestreckte, sind eindeutig halbierbar.
IX. In einem Punkt einer Geraden lisst sich stets ein Lot errichten.
Als Muster sollen die Beweise fiir die Sitze IV und VIII erbracht werden.

1. Bewess fiir Satz IV (Kongruenzsatz I)

Wegen des von der absoluten Geometrie abweichenden Axiomensystems werden
die Geraden hier krummlinig gezeichnet.

o ¢!
CM

B8  Figurs Al
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Bei den Dreiecken A BC und A’ B’ C' gilt nach Voraussetzung etwa (siehe
Figur 5): AB=A'B', AC=AC', 4 BAC=LBAC
Nach Satz la sind keine zwei der Punkte 4, B, C und 4’, B’, C’ Gegenpunkte.

Der weitere Beweis fiir Kongruenzsatz I verlduft genau so wie in der absoluten
Geometrie. Gemiss Axiom III, 5 ist ¢ 4 BC = ¢ 4’ B’ C'. Trigt man dann B'C’
an BC bis C” an und verbindet 4 mit C”, so sind, wieder nach Satz 1a, 4 und C” keine
Gegenpunkte. AC” erfiillt daher die Streckendefinition.

Es gilt nun gemdiss Axiom III, 5

XBAC=XB A C=xBAC".

Wegen Axiom III, 4, das die Eindeutigkeit der Winkelabtragung beinhaltet, miissen
die Punkte C und C” zusammenfallen. Damit ist die Kongruenz der Dreiecke 4 B C
und 4’ B’ C' bewiesen. Analog gestaltet sich der Beweis der Sdtze V und VI. Der
Beweis von Satz VII verlduft wie in der absoluten Geometrie.

Wir wenden uns nunmehr dem Beweis von Satz VIII zu.

2. Bewess fiir Satz VIII

h Figur6

Von S aus werden die Strecken S4 = SA4A’und SB = SB’ auf den Schenkeln g und
h des Winkels « (0 < « < 2 R) abgetragen. Sodann werden die Strecken AB’, BA'
und BB’ gezeichnet. Nach Satz 1a sind keine zwei der Punkte 4 und B’ bzw. Bund 4’
und 4 und 4’ bzw. B und B’ Gegenpunkte (Figur 6). Es gilt dann:

ASAB ~2ASA"B (1. Kongruenzsatz .)
XSBA'=<XSBA.

Gemaiss Axiom II, 6 muss die Gerade durch 4 B’ die Seite BA' des A BA'S in einem
Punkt O schneiden. Der ebenso vorhandene Schnittpunkt der Geraden durch 4A’B mit
der Strecke A B’ kann nicht der Gegenpunkt O sein. Die auf der Geraden durch 4 B’
liegenden Gegenpunkte O und O und die sowohl auf der Geraden durch 4B’ und der
Geraden g liegenden Gegenpunkte 4 und A4 wiirden sich dann nicht trennen, was
Axiom II, 5 widerspricht (O und 4 nicht gezeichnet). Die Strecken 4B’ und A’'B
schneiden sich also in O.
Da A BB’S gleichschenklig ist, gilt auch:

XSBB' =<SBB.
Somit gilt YOBB =20BB.
Daher ist A BB'O gleichschenklig und

BO=PFB0.

Daraus folgt:
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BO und B’O sind Strecken im Sinn unserer Definition 3, weil dies auch fiir BA’ und
B4 gilt. Nun gilt: ASBO~ASB O (KongruenzsatzI)
Daraus fOlgt { B S o= { BI S 0

Gibe es ausser S O noch'eine 2. Winkelhalbierende, so wiirde das zu einem Wider-
spruch mit Axiom III, 4 fithren. Die Halbierung des gestreckten Winkels ergibt sich
aus Satz IX, dessen Beweis genau so wie in der absoluten Geometrie verliuft und
deswegen hier nicht durchgefiithrt wird. (Fortsetzung im nichsten Heft).

J. MarL, Weiden/BRD.

Programmation linéaire et enseignement secondaire

Dans un excellent article de cette revue (EL. Math. 76, 1-12 (1961)) M. H. P. Ktnz1
a exposé les grandes lignes de la programmation linéaire!). Il pense avec raison que
les éléments de cette théorie ont leur place dans les programmes de certaines classes
de l'enseignement secondaire?). Les éléves auraient l'occasion, rare, d’utiliser des
inégalités et celle de résoudre des problémes qui se posent dans la pratique.

Dans un enseignement élémentaire de la programmation linéaire, on résout sou-
vent graphiquement quelques problémes (voir la page 2 de 'article cité) avant d’abor-
der la méthode du simplexe. On choisit des exemples comprenant chacun une fonc-
tion de deux variables et un certain nombre de contraintes (inégalités).

Les valeurs des variables sont portées en abscisses et en ordonnées; les contraintes
peuvent étre aussi nombreuses que 'on veut.

Il serait aussi trés intéressant de résoudre graphiquement des problémes a plus
de deux variables, le nombre des contraintes étant de deux.

Ce dernier cas est bien connu?), pas autant cependant qu’on pourrait le croire.
Un ouvrage aussi réputé, A juste titre, que les «Mathematical Economics» de R.G.D.
ALLEN l'ignore puisqu’on y lit que de tels problémes ne sont pas résolubles graphique-
ment (exercices 6, page 538; 4, page 541; 3, page 544).

Envisageons 1'exemple suivant:

On connait les prix de 3 aliments, 4,, 4,, 4, la teneur en protides et le nombre
de calories fournies par kilogramme.

Les besoins minimaux en calories et en protides par personne et par jour sont
donnés.

A, A4, A, Besoins par personne
par kg et par jour
() Prix (f/kg) 1 4 3
Calories (1000) 2 5 4 3
Protides (50g) 1 7 4 2

1) Conférence donnée le 13 octobre 1960 lors de 'assemblée annuelle de la société suisse des profes-
seurs de mathématiques et de physique.

Voir aussi « Nichtlineare Programmierung», par H. P. Konzi et W, OerTL1, EL Math. 18, 1-8 (1963).
no 1, page 1 4 8, 10 janvier 1963.

2) Cf. «Le r6le des mathématiques dans les écoles de commercer, P. BURGAT, Revue suisse pour I’enseigne-
ment commercial, 6¢ cahier, 56¢ année, juillet 1962, pages 128 a 136.

%) 11 figure dans plusieurs ouvrages destinés aux économistes.
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