
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 20 (1965)

Heft: 5

Artikel: Axiomatischer Aufbau der sphärisch-elliptischen Geometrie

Autor: Mall, J.

DOI: https://doi.org/10.5169/seals-23930

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-23930
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Organ fur den Verein Schweizerischer Mathematik- und Physiklehrer

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El Math Band XX Heft 5 Seiten 97-120 10 September 1965

Axiomatischer Aufbau der sphärisch-elliptischen Geometrie

Unter der sphärisch-elliptischen Geometrie wird hier eine Geometrie verstanden,
die sich auf der Oberflache der euklidischen Vollkugel und im elliptischen Kreisbundel
als Modell realisieren lasst Den Zusammenhang zwischen der Kugeloberflache und
dem elliptischen Kreisbundel erkennt man sofort, wenn man die Kugeloberflache vom
Punkt N aus stereographisch auf den zu N N' senkrechten Hauptkreis H der Kugel
projiziert (Figur 1)

Figur 1

Dabei entspricht em grosster Kugelkreis immer einem Kreis m der Ebene des

Kreises H, der diesen Hauptkreis H diametral schneidet Die im folgenden axioma-
tisch aufgebaute sphärisch-elliptische Geometrie unterscheidet sich verschiedentlich
von der m der Literatur als ebene elliptische Geometrie bezeichneten Geometrie, die

am zweckmassigsten durch das raumliche Geraden- und Ebenenbundel durch einen
Punkt M realisiert wird Die Gesamtheit der Geraden durch M stellt bei diesem Modell
der elliptischen Geometrie die Punkte der elliptischen Ebene, die Gesamtheit der
Ebenen durch M die Gesamtheit der Geraden der elliptischen Ebene dar Projiziert
man dieses Geraden- und Ebenenbundel durch M auf die Oberflache einer Kugel
mit M als Mittelpunkt und deutet die beiden Endpunkte eines Kugeldurchmessers als

einen elliptischen Punkt und ebenso die grossten Kugelkreise als Geraden, so erhalt
man em weiteres Modell der elliptischen Geometrie Die elliptische Geometrie ist daher

mit der hier wegen der beiden Reahsierungsmoghchkeiten als sphärisch-elliptische
Geometrie bezeichneten Geometrie, die hier axiomatisch begründet werden soll,
verwandt
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/. Teil

Das Axiomensystem der sphärisch-elliptischen Geometrie

Genau wie in der euklidischen Geometrie werden in der sphärisch-elliptischen
Geometrie die Grundbegriffe dieser mathematischen Disziplin «Punkt und Gerade»
auf der sphärisch-elliptischen Ebene implizit definiert. Die Beschreibung der
Beziehungen zwischen den Punkten und Geraden der sphärisch-elliptischen Geometrie
erfolgt durch die Axiome dieser Geometrie. Mit Hilfe der Grundbegriffe hier Punkt,
Gegenpunkt und Gerade werde weiter in den Definitionen neue Begriffe (zum
Beispiel Strecke, Winkel...) eingeführt und diese durch weitere Axiome miteinander in
Beziehung gebracht. Die Grundbegriffe und die aus ihnen abgeleiteten Begriffe werden
durch die Axiomengruppen der Verknüpfung, der Anordnung, der Kongruenz und der
Stetigkeit miteinander verknüpft.

Axiomgruppe I. Die Axiome der Verknüpfung

I, 1. Zu zwei Punkten A und B gibt es stets eine Gerade, die durch die beiden Punkte
hindurchgeht.

I, 2. Zu jedem Punkt P gibt es genau einen von P verschiedenen Punkt F, der speziell
dem Punkt P zugeordnet ist. P heisst der Gegenpunkt des Punktes P. Der

Gegenpunkt eines Gegenpunktes ist wieder der ursprüngliche Punkt, also P P.
I, 3. Zu zwei Punkten, die nicht Gegenpunkte sind, gibt es nicht mehr als eine Gerade,

die durch diese Punkte hindurchgeht. Zu zwei Gegenpunkten gibt es mehr als
eine solche Gerade.

I, 4. Auf einer Geraden gibt es wenigstens zwei Punkte, die nicht Gegenpunkte sind.
Es gibt wenigstens drei Punkte, die nicht auf einer Geraden liegen.

I, 5. Zwei Gerade haben stets genau zwei Punkte gemeinsam. (Dieses Axiom besagt,
dass es in der sphärisch-elliptischen Geometrie keine Parallelen geben kann. Die
beiden gemeinsamen Punkte müssen nach Axiom I, 3 Gegenpunkte sein.)

Im Anschluss an diese Axiome der Verknüpfung wird folgender Satz bewiesen:

Satz 1. Die eindeutig bestimmte Gerade durch zwei Punkte A und B, die selbst
nicht Gegenpunkte sind, geht auch durch die Gegenpunkte Ä und B von A und B.

Figur 2

Beweis: Zunächst gibt es nach Axiom I, 3 genau eine Gerade gx durch die Punkte A
und B. "Ä sei nach Axiom I, 2 der Gegenpunkt zu A. Nach Axiom 1,3 gibt es wenigstens
eine von gx verschiedene Gerade g%, die durch che Punkte A und Z hindurchgeht
(Figur 2). Nach Axiom I, 5 schneiden sich die Geraden gx und g2 ausser in A nochmals
in einem Punkt C. Nach Axiom 1,3 müssen daher A und C Gegenpunkte sein und C

muss mit Ä zusammenfallen. Z liegt daher auf der Geraden durch die Punkte A und B.
Analog zeigt man, dass auch B auf dieser Geraden Hegt.
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Satz 1 lässt sich noch anders formulieren. Da er in dieser Form später verschiedentlich

verwendet wird, wird dieselbe als Satz la hier noch angegeben.

Satz la. 3 Punkte, von denen irgend zwei Gegenpunkte sind, liegen auf einer
Geraden.

Axiomgruppe II. Axiome der Anordnung

In diesen Axiomen werden über die Beziehungen von Punkten zueinander auf
einer Geraden Aussagen gemacht.
II, 1. Zwei Punkte auf einer Geraden zerlegen dieselbe in genau zwei von diesen

Punkten begrenzte Teile. Die beiden Teile haben keine gemeinsamen Punkte und
bilden zusammen mit den Begrenzungspunkten die Gerade. Im Hinblick auf
dieses Axiom gelangt man zu folgender Definition:

Definition 1: Ein Punkt und ein Gegenpunkt zerlegen jede durch sie hindurchgehende
Gerade in zwei Halbgeraden.
11,2. Zu zwei Punkten A und B einer Geraden gibt es wenigstens zwei Punkte P und

Q so, dass der Punkt P in einem Teil der durch die Punkte A und B zerlegten
Geraden und der Punkt Q im anderen Teil der durch die Punkte A und B
zerlegten Geraden liegt.

Definition 2: Liegt Punkt P in einem Teil, Punkt Q aber im anderen Teil einer durch
die Punkte A und B bestimmten und nach II, 1 zerlegten Geraden, so werden die
Punkte P und Q durch die Punkte A und B getrennt.
II, 3. Werden zwei Punkte A und B einer Geraden durch die Punkte P und Q ge¬

trennt, so werden auch die Punkte P und Q durch die Punkte A und B getrennt.
II, 4. Vier Punkte einer Geraden A, B, P und Q zerfallen stets in zwei Paare etwa A B

und P Q so, dass sich die Punkte A B und P Q trennen. Die anderen Punktepaare

also A P, B Q, ebenso AQ, B P trennen sich dann nicht.
II, 5. Paare von Gegenpunkten auf einer Geraden trennen sich immer.

Unter Berücksichtigung von Axiom 1,1 und I, 3, sowie Satz 1 kann nunmehr der

Begriff der Strecke definiert werden.

Definition 3: Die Strecke. Zwei Punkte A und B, die nicht Gegenpunkte sind,
bestimmen eine Strecke AB, nämlich die Menge der Punkte C auf der durch A und
B festgelegten Geraden (nach Axiom 1,1 und I, 3), die so beschaffen sind, dass die
Punkte C A und A B sich trennen. Alle Punkte C dieser Menge heissen Punkte der
Strecke. A und B sind die Eckpunkte der Strecke. Alle anderen Punkte der Geraden

liegen ausserhalb der Strecke.
Weil (nach Axiom II, 5) die Punkte A Ä und B _5 sich trennen, sind (nach Axiom

II, 4) die Punkte Ä _5 und A B nicht getrennt. Die Gegenpunkte _¥ 5 liegen also in
demselben Teil der durch A und B geteilten Geraden.

Daraus folgt, dass die Punkte C B ebenfalls von A und B getrennt hegen. Zur
Definition der Strecke AB kann also entweder der Gegenpunkt von A oder aber der

von B verwendet werden.

Zusatz: Diese Definition gilt nicht, wenn A und B Gegenpunkte sind. In diesem

Entartungsfall ist es sinnvoll - so zeigt sich später (Fig. 9) -, je nach Bedarf eine der
durch A und JE? festgelegten Halbgeraden als Strecke AB zu wählen. Wir wollen diese

Halbgeraden auch als entartete Strecken bezeichnen.
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Definition 4: Das «Zwischen». Von allen Punkten C der Strecke AB sagen wir,
dass sie «zwischen» A und B liegen. In Zeichen (ACB).

Die Punkte A und B liegen dabei bezüglich des Punktes C auf verschiedenen
Seiten der Geraden durch A, B und C.

Als 6. Anordnungsaxiom verwenden wir wörtlich das Axiom von Pasch. Zu diesem
Zweck definieren wir hier zunächst das sphärisch-elliptische Dreieck.

Definition 5: Ein Dreieck wird gebildet von drei nicht in einer Geraden liegenden
Punkten A, B und C mit den zu diesen Punkten gehörigen Strecken als Seiten.

II, 6. Es seien A B C die Eckpunkte eines Dreiecks und a eine Gerade, die keinen der
Punkte A, B, C trifft. Wenn dann die Gerade a durch einen Punkt der Strecke
AB geht, so geht sie gewiss auch entweder durch einen Punkt der Strecke AC
oder durch einen Punkt der Strecke BC.

Die Definitionen für die Halbebene, den Winkel, den Nebenwinkel, den Scheitelwinkel

und rechten Winkel können nunmehr wörtlich aus der absoluten Geometrie
übernommen werden. Auch die Definition des Innern und Äussern eines Winkels kann
aus der absoluten Geometrie übernommen werden (siehe Hilbert, Grundlagen der
Geometrie § 5, 1956). Die in diesen Definitionen vorkommenden Strecken sind dabei
natürlich wiederum Strecken im Sinn der Definition 3. Im Hinblick auf die Axiomgruppe

III wird hier noch auf den Begriff der Teilung der Ebene durch eine Gerade
eingegangen.

Definition 6: Gegeben sei eine Gerade a und zwei Punkte A und B. Enthält dann
die Strecke AB keinen Punkt der Geraden a, so liegen A und B auf derselben Seite
der Geraden a. Enthält AB aber einen Punkt der Geraden a, so liegen die Punkte A
und B auf verschiedenen Seiten der Geraden.

Satz 2. Jede Gerade teilt die sphärisch-elliptische Ebene in zwei Halbebenen.

?C

n7 i \ \

Figur 3 bFigur 3 a

Beweis: Gegeben sei die Gerade a und ein Punkt A ausserhalb derselben (Axiom
I, 4). P sei ein Punkt der Geraden derart (Axiom I, 4), dass A und P nicht
Gegenpunkte sind. Auf der durch A P bestimmten Geraden wählt man B so, dass (A, P, B)
gilt (Axiom II, 2) und A und B bzw. B und P nicht Gegenpunkte sind. A und B
liegen dann auf verschiedenen Seiten der Geraden a (Figur 3a und 3b).

C sei ein weiterer behebiger Punkt der sphärisch-elliptischen Ebene nur mit der
Einschränkung, dass er nicht Gegenpunkt zu A oder B ist. Dann muss nach Axiom
II, 6 die Gerade a entweder die Strecke BC oder die Strecke AC in einem Punkt
innerhalb dieser Strecken treffen. Trifft a die Strecke BC (Fall der Figur 3a), so liegt
C auf der gleichen Seite der Geraden wie der Punkt A. Trifft a dagegen die Strecke AC
(Fall der Figur 3b), so hegen C und A auf verschiedenen Seiten von a. Es ist jetzt
noch zu zeigen, dass diese Einteilung aller Punkte in zwei Klassen, die Halbebenen,
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unabhängig von der Wahl von A ist Wir wählen zu diesem Zweck einen Punkt Ax,
der nicht Gegenpunkt zu A und C ist (Axiom I, 4 und Satz 1), derart, dass die Strecke
AAX keinen Punkt mit der Geraden a gemein hat Em solcher Punkt lasst sich immer
finden Wurde nun die Gerade a im Fall der Figur 3a die Strecke AXC schneiden, so
musste sie nach Axiom II, 6 auch entweder die Strecke AC oder die Strecke AAX
schneiden Nun schneidet die Gerade a m diesem Fall weder die Strecke AC noch die
Strecke AAX Also kann sie auch die Strecke AXC nicht schneiden Die Punkte AXA
und C liegen daher auf der gleicKen Seite der Geraden a Man hatte also in diesem Fall
mit dem gleichen Ergebnis statt vom Punkt A auch vom Punkt Ax ausgehen können

Im Fall der Figur 3b trifft a die Strecke AC Da die Gerade a die Strecke AAX nicht
treffen kann, muss sie in diesem Fall die Strecke AXC treffen Ax und C hegen daher

genau wie A und C auf verschiedenen Seiten der Geraden Man hatte daher wiederum
mit dem gleichen Ergebnis statt vom Punkt A auch vom Punkt Ax ausgehen können

Nunmehr werde angenommen, der Punkt C sei Gegenpunkt zu einem der Punkte
A oder B, etwa, zum Punkt A Eme der durch die Punkte A und C gehenden Geraden

möge die Gerade a in den Punkten 5 und 5 (Figur 4), die ja Gegenpunkte sind, treffen
(Axiom I, 3 und 1,5)

Figur 4

Nachdem A und C ebenfalls Gegenpunkte smd, müssen sich die Punktepaare
gemäss Axiom II, 5 trennen A und C hegen m diesem Fall auf verschiedenen Seiten

der Geraden a Es sei nun Ax wieder em Punkt derart, dass die Strecke AAX keinen

Punkt mit a gemein hat Die durch Ax und A bestimmte Gerade geht dann wiederum
durch den Gegenpunkt C von A und schneidet a in den Gegenpunkten U und U,
wobei U derjenige von diesen zwei Punkten sei, fur welchen (AAXU) gilt Nach der

Streckendefinition fur die Strecke AU müssen sich jetzt die Punktepaare AU und
AXC trennen Ax und C hegen also wieder auf verschiedenen Seiten der Geraden a

Man hatte also wieder vom Punkt Ax ausgehen können, der auf derselben Seite der

Geraden hegt wie A Damit ist Satz 2 bewiesen

Axiomgruppe III Axiome der Kongruenz

Die Strecken und Winkel der sphansch-elhptischen Geometrie stehen in gewissen

Beziehungen zueinander, zu deren Beschreibung die Worte «kongruent» oder «gleich»

dienen Diese Beziehungen werden in den Kongruenzaxiomen festgelegt Gegenüber

den Hilbertschen Kongruenzaxiomen ergeben sich einige Abweichungen

III, 1 Wenn A und B zwei Punkte auf einer Geraden smd, derart, dass sie keine

Gegenpunkte smd und ferner A' em Punkt auf derselben oder einer anderen

Geraden a' ist, so kann man auf einer gegebenen Seite der Geraden a bzw a!
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zu A' stets einen Punkt B' finden, so dass die Strecke AB der Strecke A'B'
kongruent oder gleich ist, in Zeichen

AB A'B'.
III, 2. Wenn eine Strecke A'B' und eine Strecke A"B" derselben Strecke AB

kongruent sind, so ist auch die Strecke A'B' der Strecke A"B" kongruent.
(Gegenüber der Hilbertschen Formulierung ergibt sich hier keine Änderung.)

III, 3. Es seien AB und BC zwei Strecken ohne gemeinsame Punkte auf der Geraden
a und ferner A'B', B'C zwei Strecken auf derselben oder einer anderen Geraden

a' ebenfalls ohne gemeinsame Punkte.
Wenn dann für die durch die Punkte ABC und A' B' C bestimmten Strecken
AB, BC und A'B', B'C gilt:

AB A'B' und BC B'C, so gilt auch AC A'C
Falls AC und A'C die Punkte B und B' enthalten, gilt auch

AB+BC AC bzw. A'B' + B'C A'C
III, 4. Es sei ein Winkel <£ (h k) und eine Gerade a', sowie eine bestimmte Seite von

a' gegeben, h' bedeute eine Halbgerade der Geraden a!', die von A' ausgeht.
Dann gibt es einen und nur einen Halbstrahl k' so, dass der Winkel <£ (h k)
kongruent oder gleich dem Winkel <£ (h' k') ist und zugleich alle inneren
Punkte des Winkels <£ (h' k') auf der gegebenen Seite von a' liegen. In Zeichen:

Jeder Winkel ist sich selbst gleich, das heisst es ist stets

< (h k) <£ (h k)

III, 5. Wenn für zwei Dreiecke ABC und A' B' C die Kongruenzen

AB A'B', AC A'C <£ B A C <£ B' A' C
gelten, so ist auch stets die Kongruenz ^ A B C ^ A' B' C erfüllt.
Mit Hilfe der Kongruenzaxiome III lassen sich genau so wie in der absoluten
Geometrie die Begriffe grösser und kleiner bei Strecken und Winkeln definieren.
Hier sei noch die Definition für die Begriffe grösser und kleiner bei Strecken
angegeben.

Definition 7: Es seien zwei Strecken AB und A'B' auf einer Geraden a und einer
Geraden a\ oder nur auf einer Geraden a gegeben. Trägt man dann von A aus auf der
Halbgeraden von a, die B enthält, die Strecke A'B" A'B' ab, so sagt man, A'B' ist
kleiner als AB (A'B' < AB), wenn B" zwischen A und JE? liegt. Liegt B zwischen A
und B", so ist umgekehrt AB < A'B'. Analog ergibt sich die Definition der Begriffe
grösser und kleiner bei den Winkeln.

Axiomgruppe IV. Axiome der Stetigkeit

IV, 1. Gegeben ist irgendeine Strecke ABX. Es werden an diese Strecke auf der Gera¬

den ABt kongruente Strecken BxB%t B%B3... angetragen. Dann existiert stets
eine natürliche Zahl n derart, dass entweder Bn mit dem Gegenpunkt Ä von A
zusammenfällt oder aber die Punktepaare A % und Bx Bn sich trennen.
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IV, 2. Cantorsches Axiom. Gegeben ist eine Strecke AB. Es gebe eine Folge Von
Strecken AXBX, _42ß2... derart, dass die Strecke AnBn innerhalb der Strecke
An_xBn_x liegt. Weiter soll es keine Strecke geben, deren Endpunkte innerhalb
aller Strecken AnBn liegen. Dann existiert genau ein Punkt X, der allen
Strecken AnBn angehört.
(Das vorhegende Axiomensystem wurde in möglichst enger Anlehnung an
Huberts Axiomensystem der euklidischen Geometrie entwickelt. Dabei wurde
jedoch nicht darauf geachtet, unbedingt ein unabhängiges Axiomensystem
aufzustellen.
Zweck dieser Arbeit ist es nämlich, aus einem übersichtlichen Axiomensystem
heraus die sphärisch-elliptische Geometrie systematisch zu entwickeln.)

Aus den hier angegebenen Axiomen und Definitionen lässt sich die sphärischelliptische

Geometrie entwickeln. Dabei sei eine Beschränkung auf einige besonders
wichtige Sätze vorgenommen. Zunächst zeigt man, dass verschiedene Sätze der
absoluten Geometrie auch in der sphärisch-elliptischen Geometrie richtig sind. Das ist
immer für diejenigen Sätze der Fall, bei denen nur den beiden Geometrien gemeinsame
Axiome benützt werden. Es gilt insbesonders für folgende Sätze:

I. Die Streckenübertragung ist eindeutig.
II. Kongruente Winkel besitzen kongruente Nebenwinkel.

III. Scheitelwinkel sind kongruent.
Geringfügige Änderungen sind bei den meisten Beweisen der folgenden Sätze
erforderlich.

IV. Zwei Dreiecke sind kongruent, wenn sie in zwei Seiten und dem eingeschlossenen
Winkel übereinstimmen (Kongruenzsatz I).

V. Zwei Dreiecke sind kongruent, wenn sie in einer Seite und den beiden anliegen¬
den Winkeln übereinstimmen (Kongruenzsatz II).

VI. Zwei Dreiecke sind kongruent, wenn sie in den drei Seiten übereinstimmen
(Kongruenzsatz III).

VII. In einem gleichschenkligen Dreieck sind die zugehörigen Winkel gleich gross
und umgekehrt.

VIII. Alle Winkel, auch gestreckte, sind eindeutig halbierbar.

IX. In einem Punkt einer Geraden lässt sich stets ein Lot errichten.

Als Muster sollen die Beweise für die Sätze IV und VIII erbracht werden.

/. Beweis für Satz IV (Kongruenzsatz I)

Wegen des von der absoluten Geometrie abweichenden Axiomensystems werden
die Geraden hier krummlinig gezeichnet.

aC

B Figur 5
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Bei den Dreiecken ABC und A' B' C gilt nach Voraussetzung etwa (siehe
Figur 5): AB ^ A'B', AC - A'C, <£ B A C <£ B' A' C
Nach Satz la sind keine zwei der Punkte A, B, C und A', B', C Gegenpunkte.

Der weitere Beweis für Kongruenzsatz I verläuft genau so wie in der absoluten
Geometrie. Gemäss Axiom III, 5 ist <£ A B C <£ A' B' C. Trägt man dann B'C
an BC bis C" an und verbindet A mit C", so sind, wieder nach Satz la, A und C" keine
Gegenpunkte. AC" erfüllt daher die Streckendefinition.

Es gilt nun gemäss Axiom III, 5

<£ B A C <£ B' A' C <£ B A C"

Wegen Axiom III, 4, das die Eindeutigkeit der Winkelabtragung beinhaltet, müssen
die Punkte C und C" zusammenfallen. Damit ist die Kongruenz der Dreiecke ABC
und A' B' C bewiesen. Analog gestaltet sich der Beweis der Sätze V und VI. Der
Beweis von Satz VII verläuft wie in der absoluten Geometrie.

Wir wenden uns nunmehr dem Beweis von Satz VIII zu.

2. Beweis für Satz VIII

Figur 6

Von S aus werden die Strecken SA SA' und SJE? SB' auf den Schenkeln g und
h des Winkels a (0 < a < 2 R) abgetragen. Sodann werden die Strecken AB', BA'
und BB' gezeichnet. Nach Satz la sind keine zwei der Punkte A und B' bzw. B und A'
und A und A' bzw. B und B' Gegenpunkte (Figur 6). Es gilt dann:

ASAB'^ASA'B (1. Kongruenzsatz
Darausfolgt: * S B A> * S B'A
Gemäss Axiom II, 6 muss die Gerade durch AB' die Seite BA' des A BA'S in einem
Punkt 0 schneiden. Der ebenso vorhandene Schnittpunkt der Geraden durch A'B mit
der Strecke AB' kann nicht der Gegenpunkt Ü sein. Die auf der Geraden durch AB'
hegenden Gegenpunkte 0 und Ü und die sowohl auf der Geraden durch AB' und der
Geraden g hegenden Gegenpunkte A und Ä würden sich dann nicht trennen, was
Axiom II, 5 widerspricht (Ü und Ä nicht gezeichnet). Die Strecken AB' und A'B
schneiden sich also in 0.

Da A BB'S gleichschenklig ist, gilt auch:

^SBB'^^SB'B.
Somit gilt ^OBB'^^OB'B.
Daher ist A BB'O gleichschenklig und

BO B'O.
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BO und B'O sind Strecken im Sinn unserer Definition 3, weil dies auch für BA' und
B'A gilt. Nun gilt: ASBO^ASB'0 (Kongruenzsatz I)
Daraus folgt: <^BSO=^B'SO.
Gäbe es ausser S 0 noch eine 2. Winkelhalbierende, so würde das zu einem Widerspruch

mit Axiom III, 4 führen. Die Halbierung des gestreckten Winkels ergibt sich
aus Satz IX, dessen Beweis genau so wie in der absoluten Geometrie verläuft und
deswegen hier nicht durchgeführt wird. (Fortsetzung im nächsten Heft).

J. Mall, Weiden/BRD.

Programmation lineaire et enseignement secondaire

Dans un excellent article de cette revue (El. Math. 16,1-12 (1961)) M. H. P. Künzi
a expose* les grandes lignes de la programmation lineaire1). II pense avec raison que
les emments de cette thdorie ont leur place dans les programmes de certaines classes
de l'enseignement secondaire2). Les Kleves auraient l'occasion, rare, d'utiliser des

in£galit£s et celle de resoudre des problemes qui se posent dans la pratique.
Dans un enseignement Elementaire de la programmation lineaire, on r^sout

souvent graphiquement quelques problemes (voir la page 2 de l'article cit6) avant d'abor-
der la methode du simplexe. On choisit des exemples comprenant chacun une fonction

de deux variables et un certain nombre de contraintes (in6galit£s).
Les valeurs des variables sont port^es en abscisses et en ordonnees; les contraintes

peuvent etre aussi nombreuses que Ton veut.
II serait aussi tr&s interessant de resoudre graphiquement des problemes ä plus

de deux variables, le nombre des contraintes Etant de deux.
Ce dernier cas est bien connu8), pas autant cependant qu'on pourrait le croire.

Un ouvrage aussi rEputE, k juste titre, que les «Mathematicai Economics» de R.G.D.
Allen Tignore puisqu'on y lit que de tels problemes ne sont pas rEsolubles graphiquement

(exercices 6, page 538; 4, page 541; 3, page 544).
Envisageons Texemple suivant:
On connait les prix de 3 aliments, Ax, A2, _43, la teneur en protides et le nombre

de calories fournies par kilogramme.
Les besoins minimaux en calories et en protides par personne et par jour sont

donn6s.

(i)

Ax A2 Az Besoins par personne
par kg et par jour

Prix (f/kg) 14 3

Calories (1000) 2 5 4 3

Protides (50 g) 1 7 4 2

x) Conference donnee le 13 octobre 1960 lors de Tassembl^e annuelle de la soci£t<§ suisse des professeurs

de mathematiques et de physique.
Voir aussi «Nichtlineare Programmierung», par H. P. Künzi et W. Oettli, El. Math. 18,1-8 (1963).

n° 1, page 1 ä 8, 10 janvier 1963.
*) Cf. «Le röle des mathematiques dans les icoles de commerce», P. Burgat Revue suisse pour l'enseignement

commercial, 6e cahier, 566 ann£e, juillet 1962, pages 128 ä 136.

8) 11 figure dans plusieurs ouvrages destin6s aux economistes.
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