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Terminons par un exemple numérique: Soit i résoudre l'équation fonctionnelle
f(16 x) — 9 f(8 x) + 29 f(4 x) — 39 f(2 x) + 18 f(x) = 0. Nous pouvons écrire
(A* — 9 A% + 29 42 — 39 4 + 18 I) f(x) = 0, avec 4 = A(2), ou encore,
(A —-312(A-1) (A — 21) flx) = 0. La solution générale de I'équation est
f(x) = x1m3n2 [, (x, 2) + wy(x, 2) Inx] + wy(x, 2) + w,(x, 2) .

En ce qui concerne 'équation non-homogéne nous remarquons que 'on peut dé-
montrer ici encore que la solution générale de I’équation non-homogeéne est la somme
de la solution générale de 'équation homogeéne augmentée d’une solution particu-
liere quelconque de I'équation non-homogeéne.

SELMO TAUBER, Portland State College, USA.
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Remarque sur 'axonométrie dimétrique

1. En axonométrie orthogonale on sait construire les axes axonométriques selon
PASTERNAK, connaissant les longueurs /, m, » proportionnelles aux rapports de réduction
cosa, cosf, cosy et vérifiant la relation /2 + m?2 + %2 = 2 k2 1). Dans le cas de la dimétrie
1:2:2 (axonométrie des ingénieurs), REHBocK ?), HEss?) et PRAETORIUS*) ont publié pres-
que simultanément une construction trés élégante a l'aide d’un triangle auxiliaire de
cotés 2, 2, 3. Nous montrons qu’un triangle analogue de cotés =, %, k /2 existe pour la
dimétrie en général.

2. Nous utilisons le théoréme: Le triangle orthique X, Y, Z, du triangle axonométrique
XY Z a des c6tés proportionnels aux carrés des rapports de réduction, donc proportionnels
a 2, m? n®%). En vertu des propriétés du triangle orthique et des quadrilatéres inscrits
les demi-angles & et 7 de ce triangle sont les angles de pente des axes 0 X et O Y avec
I'’horizontale. Comme % cosa = I et &k sina = /4% — 72, il vient

. 0Z, _ htgy _ YRR YR
SN = 5X = Jotga — BV = In :
Pour la dimétrie ot m = n et 12 = 2 (k2 — n?) (1)
]/ 2__ ]2
il vient sinf = ——{i———l— et cosé = k .

1) Note sur I'axon. orthog., Enseign. math. 7925, 106-110.

2) Zur Ingenieuraxonometrie, ZAMM 24, 86 (1944).

8) Bemerkungen zur norm. dim. Axon., El. Math, 7, 108-110 (1946).

%) Eine einfache und exakte Konstruktion..., ZAMM, 25/27, 173-174 (1947).
%) Voir p.ex. RossiER, Perspective, p. 76 (Neuchatel 1946).
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En prenant dans le triangle isocéle YO Z les co6tés OY = O Z = », le théoréme des
cosinus donne

YZ?=2n—2n%cos(n — 2&) =4m2cos?é dou YZ=2mcosé=F)2.

La construction des axes est la suivante: On place sur la verticale O Z = #. Les cercles

(O, n) et (Z, k /2) se coupent en Y. L’axe O X se trouve sur la médiatrice de Y Z.
Voici des triangles a cotés entiers:

l n n kY2

1 2 2 3 (axonométrie des ingénieurs)
17 20 20 33
23 24 24 41

3. Les cercles de rayon % dont le plan est parallélea X OY (et & X O Z) ont pour pro-
jections des ellipses dont les demi-diamétres conjugués sont parallélesd O X et 4 OY (ou
a 0 2) et valent resp. ! et ». En appliquant les théorémes d’APoLLONIUS on trouve pour
le rapport a : b des axes des ellipses

ko 1k

nyz Yz

a4+ b2 =014+ n? et ab=lnsin(%——£)=ln

On en déduit, en faisant usage de (1)
@+b)2 PBimr4lkyz  (P4+n2+1k)2)°
@—02 " pim_iryz @Erw)r-zEB’

a+b  PB+nt+lk)2

— = . oh a:b=Fk})2:1.

En choisissant une dimétrie déterminée on peut se faire d’avance une idée de la forme
des ellipses. On sait que pour le systéme 1:2:2 les ellipses sont trop allongées (2:b = 3:1).
Pour les cercles du plan Y O Z un calcul analogue conduit au rapport a:b=k [/2:)/2n2— 2.

L. KIEFFER, Luxembourg
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On Estimating the Perimeter of an Ellipse

Let E be an ellipse with semi-axes g and b, a > b. HADWIGER, in [1], gives an elemen-
tary proof that the perimeter L of E satisfies

L>ax(a+b). (1)

It is of interest to note that (1) is a consequence of an elegant «cutting and rearrange-
ment» operation (see [2], page 158) and the isoperimetric inequality. One cuts the ellipse
along its axes into four congruent pieces and rearranges these pieces into the figure E’
(Figure). Then E’ has perimeter L, and area A + (a — b)2, where A4 is the area of E.
The isoperimetric inequality, applied to E’, yields L? > 4 n (4 + (a — b)?), or

L2 — 474 > 47 (a— b2 (2)
Using 4 = na b, we have

L*> 472ab+ 47 (a — b)2 > a2 (a + b)Y, (3)

~
N

G. D. CHAKERIAN, University of California, Davis/Calif.

from which (1) follows.
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Aufgaben

Aufgabe 481. In einem Dreieck A seien a; die Seiten, 4; die Héhen und #»; die Ankreis-
radien (¢ = 1, 2, 3). Ist F die Fldche, R der Umkreisradius und » der Inkreisradius von A,
so beweise man die Giiltigkeit der Ungleichungskette

42k,k, 12F /3 <54Rv < 32a,a s427,r,
t<7 1r<7 1«<1

Die aus dem Anfangs- und Endglied der Kette bestehende Ungleichung hat kiirzlich

A. MakowsKI angegeben: Problem E 1675, Amer. Math. Monthly 77, 317 (1964).
F. LEUENBERGER, Feldmeilen

Solution:

1) Since 427,- ;o= (2 a;) >and 32a, a; < 2“‘ we get 32:&,- a; < 427,- 7.

1<y 1<y 1<g <]
(2) The inequality 18 R SZ a; a; was proved by the proposer in his paper Einige Drei-

ecksungleichungen, El. Math 73, 121-126 (1958).

. a,a,a
(3) We have a,a,ay = 167 R”Hcos%— < 6 /37 R%. Further, F = ——12—%%, so that

2F < 3)37R.



	Kleine Mitteilungen

