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Or, la solution de 1'équation (2) en nombres naturels les plus petits est, comme on
le trouve sans peine:

Notre procédé ne donne pas donc toutes les solutions de I’équation (2) en nombres
naturels m, n, r et s. W. SIERPINSKI (Varsovie)

Sur les opérateurs A et B

Introduction

Le calcul des g¢-différences est considéré généralement comme une branche du cal-
cul des différences finies. Pour les origines et les développements de ce calcul et des
équations fonctionnelles auxquelles il conduit nous référons a [1]1), [2]. Dans [3],
[4], [5] et [6] on trouvera une bibliographie a peu prés compléte jusqu’en 1931. Le
poids principal des recherches allait surtout vers la solution d’équations aux g-diffé-
rences linéaires.

La présente étude donne d’abord quelques aspects essentiels des bases du calcul
des g-différences. Nous approchons le probléme du point de vue opérationnel. Nous
donnons ensuite la démonstration des théorémes d’existence et d'unicité des solu-
tions des équations et systémes d’équations simultanées aux g¢-différences, théorémes
qui, & notre connaissance, n’ont jamais été démontrés.

1. L’opérateur A(q)

Cet opérateur est défini, pour un nombre donné ¢, par la relation

A(q) f(x) = flg %) - (1)
Nous observons immédiatement que

(i) pour g =0, A(0) f(x) = f(0) = constante,

(i) pourg=1, A(1) f(x) = f(x), si bien que, A(1) = I, 'opérateur identique,

(i) A(q) est un opérateur linéaire puisque pour des constantes « et 8, nous aurons,
Alg) [0 /(0) + Bg(0)] = a flg 2) + Belg %) = a Alg) 0) + f A(q) &),

(iv) dapres (1), A(p) Alg) fx) = f(p %) = flg p %) = Alq) A(p) f),
si bien que, A(p) Ag) = A(g) A(p), et, A(p) [Al) A()] = [A(p) A(g)] A(r). Tl
s’ensuit que les opérateurs A pour différents ¢ ont des produits commutatifs
et associatifs,

(v) pourgq =+ 0, A(q) A(1/q) = I, si bien que A(1/q) = A(g)7?,

(vi) pour g #+ 0, si 4(g) f(x) =0, f(x) =0,

(vii) A(q) x* = ¢*x*, donc x* est une fonction propre de I'opérateur A(g) avec valeur
propre g%,

(viii) si , ;, 7=1, 2, ..., n sont les » racines n-iémes de 'unité, alors 4(w, ;)" =
A(wp ;) = I, donc, A(w, ;) = IV~

1) Les chiffres entre crochets renvoient 3 la bibliographie, page 87.
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2. L’opérateur B(q)
Cet opérateur est défini par la relation

B(g) =A(q) - I. (2)
L’opérateur B(g) est appelé opérateur de g¢-différence. D’apres (2), B(g) f(x) =

flgx) — f(x). Nous observons immédiatement que

(ix) pour ¢ =1, B(l) = A(1) — I = 0, V'opérateur zéro, si bien que B(1) f(x) =0,
pour toute fonction f,

(x) d’aprés (2) il est facile d’étendre (iv) aux produits d’opérateurs 4 et B,

(xi) soit C une constante arbitraire, on aura, B(g) C = 0, mais B(q) f(x) = 0 n’en-
traine pas que f(x) = C, mais que f(x) = w(x, ¢), ol w(x, ¢q) est une fonction
g-périodique (nous étudierons de telles fonctions dans le paragraphe suivant),

(xii) [B(q) k—z () (g)k—*,

(xiii) pour ¢ = 1, [B(q)]"! = B(g)™! est défini par la relation B(q) B(g)™1=1I; il

s’ensuit que si B(g) f(x) = @(x), alors B(g) ¢(x) = f(x) + w(x, g), o(x, g) étant
- une fonction g-périodique arbitraire; donc B(g)~* B(g) + I.

3. Fonctions q-périodiques

Nous supposerons que ¢ est un nombre réel et que ¢ > 1. On appellera fonction .
g-périodique une fonction définie par

.......................

plgx), ¢1<zx<1, -1 <x< —q1,
%), 1<x<yqg, —g < x< -1,
ong= 17 ’ ‘ S
(p(——), g <zx<gq?, -2 <x< —q,
q
<p(—;;), < x < gttt gttt < x < —¢g",

ol p(x) est une fonction définie pour 1 < x < ¢. Si 0 < ¢ < 1, nous prendrons 1/g =
p > 1, et nous aurons d’aprés (3) w(x, ) = w(x, p). Dans 1’étude qui suit nous nous
limiterons au cas ol ¢ est un nombre positif. Nous laissons de c6té dés a présent tous
les autres cas.

I1 suit de la définition que toute fonction g-périodique a a l’origine une singularité
essentielle et que la connaissance de @(x) pour 1 < x < ¢, définit w(¥, ¢), excepté aux
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points 4 1, 4 ¢*, 4 ¢~ Pour ces points nous connaissons la limite a gauche et a
droite de la fonction. Nous considérons alors les deux fonctions

qc (x,q), pourlaquelle, @(x) = cos [2 7 Z - 1 ] (4)
et
. x—1
qs (x,q), pour laquelle, ¢@(x) = sin [2 L ] . (5)

On voit immédiatement que ces fonctions et leurs dérivées sont continues partout
sauf 4 l'origine. Plus généralement, si ¢(x) est une fonction définie pour 1 < x < ¢
qui peut étre développée en série de FOURIER de période fondamentale (g — 1), alors
w(x, g) peut étre développée en une série de la forme

oz, q) = 3 + 2 o qc (5, + byas (5, 9], (6)

les coefficients a, et b, étant les mémes que ceux du développement de g(x) en série
de Fourier. On voit immédiatement que qc(x) et qs(x), en particulier, et toute fonc-
tion w(x, g) en général satisfont les conditions 4(g) w(x, ¢) = w(x, ¢), B(q) w(x, q) = 0.

4. Application des opérateurs B(q) et B(q)~! aux fonctions élémentaires

Comme nous 'avons dit plus haut nous supposerons que ¢ est un nombre positif
et que ¢ + 1. Nous aurons alors

B(g) % = (¢* — 1) %, (7)
si bien que
B(Q)_lxk~ (x: q) ’ (8)
et
B(g) Inx = lnq , (9)
si bien que
B(9)~! o(x, 9) = o(x, 9) + 4%, 9) (10)
et
B(q) 112‘—‘1%/;1)— Inx = Inx, (11)
si bien que,
B(g)!Inx = - ‘lfl/g’ Inx + o, g) - (12)

Nous observons finalement que

Rz kR(k—1)lx
PO G~ -

1 k'x 1 (k+D!x
B(q) 1(q___1)k= E+1 (g— 1)k+1 + w(x 9),

donc

ce qui est I’équivalent en g¢-différences des formules

R+ -1

Dx* = k x%-1,
et

A= by, A= 0, k-1,
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5. Formule de sommation
En utilisant I'identité algébrique
Q+x+22+234+.. +a7) (x—1) =2+l -1,
nous pouvons écrire, avec ¢ > 0, ¢ + 1, et A(q) = A, B(g) = B, B(q)' = B,
(I+A+A2+A34...+4) (A —-T)=A"+1 1T,

ou A — I = B. Multipliant par B-* de droite et observant que (4 —I) B-1=BB1=1,
nous obtenons
I+A4+ A2+ A%+ ... + A7 = (A*+1 — 1) B~1, (13)

En appliquant ce résultat a une fonction f(x) nous aurons, avec B! f(x) = ¢(¥) +
(%, 9),

f@) + flg ) + f@22) + - + F(g" %) = plg" ™) — 9(x) , (14)
ou encore "
g_(,)' flg* %) = plg"+' %) — () . (15)

6. Equations fonctionnelles pour q constant en variables réelles

Nous supposons que ¢ > 0 et ¢ + 1, et nous nous limitons au cas de x réel. Nous
appellerons équation fonctionnelle d’ordre # une équation de la forme

plx, f(x), f(g %), f(¢*%) , ..., flg"%)] = 0. (16)

Démontrons d’abord que (16) peut étre écrit comme équation vectorielle d’ordre un.
Nous aurons a supposer que (16) peut étre résolue par rapport au terme de plus haut
ordre, donc que (16) est équivalent a

fq" %) = qlx, f (%), f(g %), f(@*%) , ..., flg"~* %)] . (17)

Posons alors f(x) = y;, f(g%) = Y2, ..., flg" 2 x) = y,, et introduisons la notation clas-
sique des espaces vectoriels & # dimension

Y: [yl’ y2: y3: ,y,,] .
Puisque 4y, = A f(¢*1x) = f(¢*x) =y, pour k=1,2,...,n—1, et Ay, = f(g"x) =
nlx, f(x), flg %), ..., flg"* )], nous aurons,

AY = [Ayl’Ay2’ s Ayn] = [yz»ys» oo s Yo 77],
AY =F(Y, %), (18)

ou F(Y,x) =[yy ¥3 ---, ¥, 1] est une fonction vectorielle du vecteur Y et du
scalaire .
Plus généralement, considérons le systéme d’équations fonctionnelles simultanées

(pj[x»fl(x):fl(q x)»fl(qzx)x ’fl(qn’x)rf2(x)lf2(q x): vee ’fz(qn.x)’ LA
In®), fu(@%), - fulg™m 2)] = O, (19)
17=1,2,...,m.

ou encore
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Nous supposerons encore que le systéme d’équations (19) peut étre résolu par rapport
aux termes de plus haut ordre, donc que (19) est équivalent a

fi(g" %) = n;lx, f1(%), f1(g %), ..., filg™1 ), fo(%), falg %), -, falgt %),
5@, f5(q %) o (G R) s e fu®) s (@ %) s e falgm e R)] = (20)
i=1,2,...,m
Nous allons montrer que (20) I;eut étre écrit sous la forme (18). Posons
L®) = y1, A(@ %) =Y, -, L@ %) = Y,
Jol®) = Yuu1, [ol@ %) = Va5 Sl H) = Yppingr ooe s

fm(x) = yn,+nz+---+nm_1+1’fm(qx) = Vit ngteordnmy b2 200 s

fm(qnm—l x) = yﬂ1+n5+' et nmaatag

En complétant avec les relations (20) et utilisant un espace vectoriel & #n = n, + n, +
-+ + n,, dimensions nous obtenons encore une équation vectorielle fonctionnelle de
la forme (18).

Nous nous proposons de démontrer que les équations (17) et (20) ont des solutions
satisfaisant certaines conditions aux limites et que ces solutions sont uniques. Il suffit
pour cela de démontrer que (18) a des solutions puisque nous avons montré que (17)
et (20) peuvent étre écrits sous la forme (18). Nous supposerons que la fonction vec-
torielle F est définie pour toutes les valeurs de ». Nous prendrons comme condition
aux limites que pour x = x,, les composantes du vecteur Y sont définies, c’est-a-dire
que pour x = x,, ¥, = Py, B =1, 2, ..., n, les quantités p, étant des nombres donnés.
Il s’ensuit que pour ¥ =%y, ¥ =Yy =[py, pa, --., D,] €t que F(Y, x) = F(Y,, %,)-
D’apres (18) AY = F(Y, x),donc, AY, = F(Y,, xp). Mais F(AY, gxp) = AF(Y, %) =
A?Y,, ce qui nous donne le vecteur Y pour x = ¢% x,. En continuant de la méme
fagon nous obtenons le vecteur Y pour %, ¢ %4, 2%, - .., " %,, & partir de sa définition
pour x = x,. Cependant ceci ne prouve pas que Y existe pour toute valeur de x. Pour
démontrer que Y existe pour toute valeur de «x il faut changer les conditions aux
limites.

Nous supposerons donc que pour %, < x < g%, Y = Y= [0,(%), wy(x),...,
w,(%)], o w;(x), 7 =1, 2, ..., n, sont des fonctions données définies sur l'intervalle
fermé [x,, ¢ xO] En répétant le méme raisonnement que précédemment nous voyons
que pour tout nombre entier positif #, A*Y = A" 1F(Y,, x) = F(A* 1Y, ¢" 1 %), si
bien que Y est défini pour ¢"x, < x < ¢"t' x,. Nous pouvons énoncer le théoréme
suivant:

Théoréme I. Etant donné I'équation fonctionnelle vectorielle AY = F(Y, x), ou
Y = [y1, Y2 - .-, V], cette équation aura une solution pour toute valeur de x si la fonc-
tion vectorielle F est définie pour toute valeur de x et si pour x, S x* < g%y, Y =
[wl(x)’ wz(x)’ ey wn(x)]

Pour démontrer que cette solution est unique nous supposons qu’il y en ait deux,
Y et Z, c’est-a-dire que AY = F(Y,x) et AZ = F(Z, x), et telles que pour 1y < x <
g %y, Y = [@,(%), wg(%), ..., w,(x)] = Z. Dans ces conditions A Y = F(Y, %) = F(Z, x) =
AZ, et A2Y = F(AY,qx)=F(AZ, qx) = A%*Z, et ainsi de suite. Pour compléter le
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raisonnement par induction nous supposons que A"1Y = 4*-1Z, si bien que, A"Y =
F(Am1Y, g 1x) = F(A"1Z,q"x) = A"Z, ce qui est vrai pour tout entier positif ».
Nous concluons: Y = Z pour toute valeur réelle de x et énongons:

Théoréme I1. La solution, dont 'existence a été démontrée par le théoréme I, est

unique.
La solution dont nous avons démontré I'existence et 1'unicité dépend de #» fonc-
tions arbitraires w;(x), j =1, 2, ..., n, définies sur l'intervalle fermé [x,, g x,]. Ceci re-

vient & supposer que les fonctions w;(x) sont g-périodiques, autrement dit w;(x) =
w;(%, ¢). Il n’y a pas de contradiction dans le fait que les fonctions g-périodiques sont
définies sur un intervalle ouvert (x,, g %) puisque pour chaque fonction w;(x, q), ¢(x)
est défini pour x = 1+ et pour x = ¢~

7. Equations fonctionnelles d coefficients constants

I1 est clair que les méthodes de solutions d’équations fonctionnelles aux g¢-diffé-
rences doivent étre étudiées a part et on trouvera un grand nombre de ces équations
résolues dans [2], [3] et [4]. A titre d’exemple nous montrerons comment résoudre
I'équation linéaire a coefficients constants. Une telle équation d’ordre #» s’écrit

| o) 16) = ). @)
Nous étudierons d’abord 1'équation homogeéne,
LZO' ay, A(Q)"} fx) =0, (22)
qui peut encore s’écrire
o [T (4@ — 1) 703 =0 2
=1
On vérifie aisément que I'équation du premier ordre
, [A(g) —b 1] f{x) =0 (24)
admet la solution générale
f(®) = o(x, g) i, (25)

out w(x, q) est une fonction ¢g-périodique arbitraire. D’apreés le théoréme II cette solu-
tion est unique. Il suit des propriétés de commutativité de 1'opérateur A(g) que la
solution générale de I'équation (23) ou (22) sera

fl#) = ] onlw, ) wntaiine, (26)

E=1 :
ou les fonctions w,(x, ¢) sont g-périodiques et arbitraires. Remarquons que les nombres
b sont.réels ou complexes mais distincts. Dans le cas ol b; = b;,; = --- = b;,, C'est-

a-dire que b; est une racine d’ordre s + 1 de I'équation algébrique

”
2 akzk—':O,
k=0

on vérifiera aisément que la partie de la solution correspondant a b; sera

A0 [eo (5, q) + @) 44(%, q) In% + ;4 4(x, q) (IN2)2 + ... + @) ,(x, q) (Inx)s] . (27)
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Terminons par un exemple numérique: Soit i résoudre l'équation fonctionnelle
f(16 x) — 9 f(8 x) + 29 f(4 x) — 39 f(2 x) + 18 f(x) = 0. Nous pouvons écrire
(A* — 9 A% + 29 42 — 39 4 + 18 I) f(x) = 0, avec 4 = A(2), ou encore,
(A —-312(A-1) (A — 21) flx) = 0. La solution générale de I'équation est
f(x) = x1m3n2 [, (x, 2) + wy(x, 2) Inx] + wy(x, 2) + w,(x, 2) .

En ce qui concerne 'équation non-homogéne nous remarquons que 'on peut dé-
montrer ici encore que la solution générale de I’équation non-homogeéne est la somme
de la solution générale de 'équation homogeéne augmentée d’une solution particu-
liere quelconque de I'équation non-homogeéne.

SELMO TAUBER, Portland State College, USA.
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Remarque sur 'axonométrie dimétrique

1. En axonométrie orthogonale on sait construire les axes axonométriques selon
PASTERNAK, connaissant les longueurs /, m, » proportionnelles aux rapports de réduction
cosa, cosf, cosy et vérifiant la relation /2 + m?2 + %2 = 2 k2 1). Dans le cas de la dimétrie
1:2:2 (axonométrie des ingénieurs), REHBocK ?), HEss?) et PRAETORIUS*) ont publié pres-
que simultanément une construction trés élégante a l'aide d’un triangle auxiliaire de
cotés 2, 2, 3. Nous montrons qu’un triangle analogue de cotés =, %, k /2 existe pour la
dimétrie en général.

2. Nous utilisons le théoréme: Le triangle orthique X, Y, Z, du triangle axonométrique
XY Z a des c6tés proportionnels aux carrés des rapports de réduction, donc proportionnels
a 2, m? n®%). En vertu des propriétés du triangle orthique et des quadrilatéres inscrits
les demi-angles & et 7 de ce triangle sont les angles de pente des axes 0 X et O Y avec
I'’horizontale. Comme % cosa = I et &k sina = /4% — 72, il vient

. 0Z, _ htgy _ YRR YR
SN = 5X = Jotga — BV = In :
Pour la dimétrie ot m = n et 12 = 2 (k2 — n?) (1)
]/ 2__ ]2
il vient sinf = ——{i———l— et cosé = k .

1) Note sur I'axon. orthog., Enseign. math. 7925, 106-110.

2) Zur Ingenieuraxonometrie, ZAMM 24, 86 (1944).

8) Bemerkungen zur norm. dim. Axon., El. Math, 7, 108-110 (1946).

%) Eine einfache und exakte Konstruktion..., ZAMM, 25/27, 173-174 (1947).
%) Voir p.ex. RossiER, Perspective, p. 76 (Neuchatel 1946).
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