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Or, la Solution de l'equation (2) en nombres naturels les plus petits est, comme on
le trouve sans peine:

t% — tz t% — t% t§.

Notre procede ne donne pas donc toutes les Solutions de l'equation (2) en nombres
naturels m, n, r et s. W. Sierpinski (Varsovie)

Sur les Operateurs Act B

Introduction

Le calcul des ^-differences est considere generalement comme une branche du calcul

des differences finies. Pour les origines et les developpements de ce calcul et des

equations fonctionnelles auxquelles il conduit nous referons ä [l]1), [2]. Dans [3],
[4], [5] et [6] on trouvera une bibliographie k peu pres complete jusqu'en 1931. Le
poids principal des recherches allait surtout vers la Solution d'equations aux ^-differences

lineaires.
La presente etude donne d'abord quelques aspects essentiels des bases du calcul

des ^-differences. Nous approchons le probleme du point de vue operationnel, Nous
donnons ensuite la demonstration des theoremes d'existence et d'unicite des
Solutions des equations et systemes d'equations simultanees aux ^-differences, theoremes
qui, k notre connaissance, n'ont jamais ete demontres.

1. VOperateur A (q)

Cet Operateur est defini, pour un nombre donne q, par la relation

^ (_)/(*) =/(?*). (i)

Nous observons immediatement que

(i) pour q 0, A (0) f(x) /(0) constante,
(ii) pour q 1, A(l)f(x) =f(x), si bien que, _4(1) /, l'operateur identique,
(iii) A (q) est un Operateur lineaire puisque pour des constantes a et ß, nous aurons,

A(q) [oc f(x) + ß g(x)] *f(qx)+ßg(q x) a A(q) f(x) + ß A(q) g(x),
(iv) d'apres (1), A(p) A(q) f(x) f(p q x) f(qp x) A(q) A(p)f(x),

si bien que, A(p) A(q) A(q) A(p), et, A(p) [A(q) A(r)] [A(p) A(q)] A(r). II
s'ensuit que les Operateurs A pour differents q ont des produits commutatifs
et associatifs,

(v) pour q #= 0, A(q) A(ljq) I, si bien que A(l/q) A(q)~1,

(vi) pour q 4= 0, si A(q) f(x) 0, f(x) 0,

(vii) A(q) xk qkxk, donc xk est une fonction propre de l'operateur A(q) avec valeur

propre qk,

(viii) si ojnJ, j 1, 2, n sont les n racines n-iemes de l'unite, alors A(conj)n

MKJ /, donc, A(conJ) Pl\
x) Les chiffres entre crochets renvoient k la bibliographie, page 87.
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2. L'operateur B(q)

Cet Operateur est defini par la relation

B(q)=A(q)-I. (2)

L'operateur B(q) est appeie Operateur de ^-difference. D'apres (2), B(q) f(x)
f(qx) — f(x). Nous observons immediatement que

(ix) pour q 1, B(l) A(l) — I 0, l'operateur zero, si bien que B(l)f(x) 0,

pour toute fonction /,
(x) d'apres (2) il est facile d'etendre (iv) aux produits d'operateurs A et B,

(xi) soit C une constante arbitraire, on aura, B(q) C 0, mais B(q) f(x) 0 n'en-
traine pas que f(x) C, mais que f(x) co(x, q), oü co(x, q) est une fonction
^-periodique (nous etudierons de telles fonctions dans le paragraphe suivant),

(xii) [B(q)f B{qf -^(-l)* (*) A{qY-,
_ 0

(xiii) pour q 4= 1, [Sfe)]"*1 B(q)~1 est defini par la relation B(q) B(q)~1 I; il
s'ensuit que si B(q) f(x) (p(x), alors B^)-1 q>(x) /(#) 4- oj(x, q), co(x, q) etant

' une fonction ^-periodique arbitraire; donc B(q)~1 B(q) 4= I.

3. Fonctions q-periodiques

Nous supposerons que q est un nombre reel et que q > 1. On appellera fonction
^-periodique une fonction definie par

co(x, q)

<p(qnx) q~n < x < q~n + 1, -g~w+1 < x < -q~n

(p(qx), q-iKxKl,
<p(x) Kx<q,
v(j) • q<x<q2,

-l<x< ~q-\
-q<x<-l,
-q2< x< -q,

?(4). qn<x<q«+\ ~qn+i<x<-q»,

(3)

oü <p(x) est une fonction definie pour 1 ^ x ^ q. Si 0 < q < 1, nous prendrons 1/q

p > 1, et nous aurons d'apres (3) oj(x, q) w(x, p). Dans l'etude qui suit nous nous
limiterons au cas oü q est un nombre positif. Nous laissons de cöte des ä present tous
les autres cas.

II suit de la definition que toute fonction ^-periodique a k Forigine une singularite
essentielle et que la connaissance de <p(x) pour 1 < x < q, definit co(x, q), excepte aux
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points zt 1, db qn, ± q~n. Pour ces points nous connaissons la limite k gauche et k
droite de la fonction. Nous considerons alors les deux fonctions

qc (x, q) pour laquelle, <p(x) cos 2 tz ——^ (4)

et

qs (x, q), pour laquelle, q>(x) sin 2 n —ZT\\ * (**)

On voit immediatement que ces fonctions et leurs derivees sont continues partout
sauf ä l'origine. Plus generalement, si tp(x) est une fonction definie pour 1 < x < q

qui peut etre developpee en serie de Fourier de periode fondamentale (q — 1), alors
co(x, q) peut etre developpee en une serie de la forme

CO

<*>(x> q) ir +U [** (ic (*> + 6* qs (*, ?)]. (6)
Ä-l

les coefficients ak et bk etant les memes que ceux du developpement de cp(x) en serie
de Fourier. On voit immediatement que qc(x) et qs(#), en particulier, et toute fonction

co(x, q) en general satisfont les conditions A(q) co(x, q) co(x, q), B(q) w(x, q) 0.

4. Application des Operateurs B(q) et B(q)~1 aux fonctions elementaires

Comme nous 1'avons dit plus haut nous supposerons que q est un nombre positif
et que q 4= 1. Nous aurons alors

si bien que

et

B(q) xk (qk - 1) xk (7)

B(q)~1x* -^+a>(x,q), (8)

B(q) ln* mq (9)

si bien que lnAr
B(q)~1 co(x, q) oj(x, q) -^ + cox(x, q) (10)

B(q)^^-lnx^lnx, (11)
et

si bien que,

B(q)-Hnx ^^-\nx + w(x,q). (12)

Nous observons finalement que

DW (q _ 1)* {q - l)*-i '
donc

ce qui est l'equivalent en ^-differences des formules

Dx^kx*-1, D-1xk=-^-+C, * * -1
et
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5. Formule de sommation

En utilisant l'identite algebrique

(1+ X + X2 + xz + h xn) (x - 1) xn + 1 - 1

nous pouvons ecrire, avec q > 0, q #= 1, et A(q) A, B(q) B, B(q)~1 B_1,

(7 + 4 +^2 + ^3 + --. +^4") (4 -7) _4"+1- 7,
oü _4 — 7= B. Multipliant par B-1 de droite et observant que (_4 — 7) B"1 BB-1 7,
nous obtenons

7 + A + A2 + _43 + + An (A**1 - I) B-1. (13)

En appliquant ce resultat ä une fonction f(x) nous aurons, avec B_1 f(x) <p(x) +
co(x, q),

f(x) + f(q x) + f(q2x) + ...+ f(q»x) <p(q« + *x) - <p(x) (14)

ou encore n

27/(.**) <p(."+1 *)-?(*)• (15)

6. Equations fonctionnelles pour q constant en variables reelles

Nous supposons que q > 0 et q 4= 1, et nous nous limitons au cas de x reel. Nous
appellerons equation fonctionnelle d'ordre n une equation de la forme

?[*./(*)./(? *)./(.2*) • • • ,/(_"*)] 0 (16)

Demontrons d'abord que (16) peut etre ecrit comme equation vectorielle d'ordre un.
Nous aurons ä supposer que (16) peut etre resolue par rapport au terme de plus haut
ordre, donc que (16) est equivalent k

f(qnx) ri[xJ(x),f(qx)J(fx) ,/fe»-1*)] (17)

Posons alors f(x) yltf(qx) y2,... ,f(qn"1x) yn, et introduisons la notation
classique des espaces vectoriels ä n dimension

Y= [yi,y2,y3,...,:yn]

Puisque Ayk Aftf^x) =f(qkx) yk+1> pour k - 1, 2,..., n - 1, et Ayn =f(qnx)
yix>/(*)> A4 *),-.. >f{qn~x x)] > nous aurons,

a y [ii^My«,..., 4yj bwa--- *y»»^L
ou encore ii y F(y, *), (18)

oü F(Y,x) [y2,y$,... ,yn, rj] est une fonction vectorielle du vecteur Y et du
scalaire x.

Plus generalement, considerons le Systeme d'equations fonctionnelles simultanees

9jlx>fi(x)»/i(?x)>Mf %)> • • • >/i(?ni*)./•(*)./•(?*)>••• ./i.«**).•••,

/-=l,2,...,w.
(19)
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Nous supposerons encore que le Systeme d'equations (19) peut etre resolu par rapport
aux termes de plus haut ordre, donc que (19) est equivalent k

f3(qnix) rjjlxj^xjj^qx),... tf1(qn^1x),f2(x),f2(q x),... J^q^x),
fj(*).fj(q*).". JM^x),... ,fm(x)tfm(qx),... ,ftn(qnm-lx)] Vj>

\ (20)

j 1,2,... ,m.
Nous allons montrer que (20) peut etre ecrit sous la forme (18). Posons

/_.(*) yi > Ad x) y2, • • • > Ate"1-1 x) yni>

/«(*) jvh, /»(?*) _v„1+2,• • •, fiti"*-1 x) yni+n*>

Jm\X) — yni+n2+-'-+nm-1+l> Jm\q X) ~ JV^H- «_+••• +nm_i 1-2 > •¦• »

Jmiq m X) yni+n3+---+nm-l+nm '

En compietant avec les relations (20) et utilisant un espace vectoriel kn nx + n2-\-
\- nm dimensions nous obtenons encore une equation vectorielle fonctionnelle de

la forme (18).
Nous nous proposons de demontrer que les equations (17) et (20) ont des Solutions

satisfaisant certaines conditions aux limites et que ces Solutions sont uniques. II suffit
pour cela de demontrer que (18) a des Solutions puisque nous avons montre que (17)
et (20) peuvent etre ecrits sous la forme (18). Nous supposerons que la fonction
vectorielle F est definie pour toutes les valeurs de x. Nous prendrons comme condition
aux limites que pour x x0, les composantes du vecteur Y sont definies, c'est-ä-dire

que pour x x0, yk pk, k 1, 2, n, les quantites pk etant des nombres donnes.
II s'ensuit que pour x x0, Y YQ= [px,p2, pn] et que F(Y, x) F(YQ, x0).

D'apres (18) AY F(Y, x), donc, AY0 - F(Y0, x0). MaisF(^Y0, qx0) AF(Y0,x0)
A2 Y0, ce qui nous donne le vecteur Y pour x q2 x0. En continuant de la meme
fagon nous obtenons le vecteur Ypour x0, qx0, q2x0,..., qnx0, k partir de sa definition
pour x xQ. Cependant ceci ne prouve pas que Y existe pour toute valeur de x. Pour
demontrer que Y existe pour toute valeur de x il faut changer les conditions aux
limites.

Nous supposerons donc que pour x0 ^ x ^ qxQ, Y Y0 [ojx(x), co2(x),

oj„(x)], oü ojj(x), j 1, 2, n, sont des fonctions donnees definies sur l'intervalle
ferme [x0,qx0]. En repetant le meme raisonnement que precedemment nous voyons
que pour tout nombre entier positif n, An Y0 i4n~1F(yo, x) F(An-% Y0, q"-1 x0), si
bien que Y est defini pour qnx0 fg x ^ qn+1xQ. Nous pouvons enoncer le theoreme
suivant:

Theoreme I. Etant donne l'equation fonctionnelle vectorielle AY F(Y, x), ou
Y ~ [yvy*> -->y^> cette equation aura une Solution pour toute valeur de x si la fonction

vectorielle F est definie pour toute valeur de x et si pour x0^ x ^ q xQ, Y
[cox(x),co2(x), ...,ojn(x)].

Pour demontrer que cette Solution est unique nous supposons qu'il y en ait deux,
y et Z, c'est-ä-dire que A Y F(Y, x) et A Z F(Z, x), et telles que pour x0 <J x ^
q xQ, Y [ojx(x),co2(x),..., con(x)] Z. Dans ces conditions A Y F(y, x) F(Z, x)

AZ, et A2 Y F(_4 y, qx) F(ilZ, f x) ^2Z, et ainsi de suite. Pour compieter le
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raisonnement par induction nous supposons que An~x Y An~1Z, si bien que, An Y
F(An~1Y, qn-1x) F(An~1Z, qn~xx) _4nZ, ce qui est vrai pour tout entier positif n.
Nous concluons: Y Z pour toute valeur reelle de x et enoncons:

Theoreme II. La Solution, dont l'existence a ete demontree par le theoreme I, est

unique.
La Solution dont nous avons demontre l'existence et l'unicite depend de n fonctions

arbitraires (Oj(x), j 1, 2, n, definies sur l'intervalle ferme [x0, qx0]. Ceci
revient ä supposer que les fonctions ojj(x) sont ^-periodiques, autrement dit odj(x)
coj(x, q). II n'y a pas de contradiction dans le fait que les fonctions ^-periodiques sont
definies sur un intervalle ouvert (x0,qx0) puisque pour chaque fonction o)j(x, q), <p(x)

est defini pour x — 1+ et pour x q~.

7. Equations fonctionnelles ä coefficients constants

II est clair que les methodes de Solutions d'equations fonctionnelles aux ^-differences

doivent etre etudiees ä part et on trouvera un grand nombre de ces equations
resolues dans [2], [3] et [4]. A titre d'exemple nous montrerons comment resoudre

l'equation lineaire ä coefficients constants. Une teile equation d'ordre n s'ecrit

2>_^(?)* /(*) _(*)

Nous etudierons d'abord l'equation homogene,

qui peut encore s'ecrire

Z*kA{qy
£ 0

/(*) o,

/(*) o.

(21)

(22)

(23)

(24)

(25)

oü oj(x, q) est une fonction ^-periodique arbitraire. D'apres le theoreme II cette Solution

est unique. II suit des proprietes de commutativite de l'operateur A(q) que la
Solution generale de l'equation (23) ou (22) sera

]J(A(<l)-hI)
Ä=l

On verifie aisement que l'equation du premier ordre

[A(q)-bl]f(x) 0

f(x) oj(x, q) xlnblln«
admet la Solution generale

f{x)=£o>k{x>q)xlnbkllnq >

Ä-l
(26)

oü les fonctions wk(x, q) sont ^-periodiques et arbitraires. Remarquons que les nombres
bk sont xeels ou complexes mais distincts. Dans le cas oü bj bJ+x • • • bJ+s, c'est-
ä-dire que bj est une racine d'ordre s + 1 de l'equation algebrique

on verifiera aisement que la partie de la Solution correspondant ä bj sera

xinbßnq fyfa j) + a,J+x(x9 q) mx + coJ+2(xt q) (mx)2 + + a>J+s(x, q) (mx)*] (27)
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Termmons par un exemple numerique: Soit ä resoudre l'equation fonctionnelle
/(16 x) - 9 /(8 x) + 29 /(4 x) - 39 /(2 x) + 18 f(x) 0. Nous pouvons ecrire
(_44 - 9 A* + 29 A2 - 39 _4 + 18 7) /(*) 0, avec A _4(2), ou encore,
(A - 3 7)2 (4-J) (_4 - 2 7) /(%) 0. La Solution generale de l'equation est

f(x) ___ A;in3/in2 [a)^X) 2) -f co2(*, 2) In*] + o>3(*, 2) -f co^(x, 2) x
En ce qui concerne l'equation non-homogene nous remarquons que l'on peut

demontrer ici encore que la Solution generale de l'equation non-homogene est la somme
de la Solution generale de l'equation homogene augmentee d'une Solution particuhere

quelconque de l'equation non-homogene.

Selmo Tauber, Portland State College, USA.
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Remarque sur l'axonom&trle dim6trique
1. En axonometne orthogonale on sait construire les axes axonometriques selon

Pasternak, connaissant les longueurs /, m, n proportionnelles aux rapports de reduction
cosa, cosß, cosy et venfiant la relation l2 -f m2 + n2 2 k21). Dans le cas de la dimetrie
1 2.2 (axonometne des Ingenieurs), Rehbock2), Hess3) et Praetorius4) ont pubhe presque

simultanement une construction tres elegante ä l'aide d'un triangle auxihaire de
cötes 2, 2, 3. Nous montrons qu'un triangle analogue de cötes n, n, k [/2 existe pour la
dimetrie en general.

2. Nous utihsons le theoreme: Le triangle orthique Xt Yx Zx du triangle axonometrique
XYZ a. des cötes proportionnels aux carres des rapports de reduction, donc proportionnels
ä l2, m2, n2 5). En vertu des proprietes du triangle orthique et des quadrilateres_ mscrits
les demi-angles £ et r\ de ce triangle sont les angles de pente des axes O X Qt OY avec
l'honzontale. Comme k cosa / et k sma ^k2 — l2, il vient

OZx htgy x x ]fW^¥yW^-n2sm£ -p—^ y tga tgy -I ^OX hetgoi o or in
Pour la dimetrie oü m n et l2 2 (k2 - n2) (1)

il vient sin| — =— et cos!
nfz

x) Note sur Taxon. orthog., Enseign. math. 1925, 106-110.
a) Zur Ingemeuraxonometne, ZAMM 24, 86 (1944).
8) Bemerkungen zur norm. dim. Axon., El. Math. /, 108-110 (1946).
4) Eine einfache und exakte Konstruktion..., ZAMM, 25J27, 173-174 (1947).
5) Voir p.ex. Rossier, Perspective, p. 76 (Neuchätel 1946).
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