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Das ergibt mit (1) und (k/a)? = u:
V3 our+24pu4 64
4= 96 T U ) (9)
Diese Funktion hat fiir unsere Uberlegungen nur einen Sinn im Bereich7 < 4 < 27,

oder 4/3 < u < co. An der Stelle u = 8/3 liegt das Dichteminimum 3 }/3 /4 T vor.
Mit (2) erhalten wir folgende Dichteabschitzung:

(o) 1 1 -1
d%[Z{(1+3k)2 - (2+3k)2}] :

k=0
Ist die Dichte d gegeben, so errechnet sich aus (9) sofort ein Wert fiir g. Damit aber
koénnen wir die vier speziellen Horosphidren H,, H,, H, und H, und davon ausgehend
durch Spiegelungen die gesamte Uberdeckung des hyperbolischen Raumes konstruieren.

H. Ze1TLER, Weiden/Deutschland
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Sur trois nombres triangulaires en progression atithmétique
a différence triangulaire

On démontre sans peine qu’il n’existe pas trois nombres carrés distincts formant
une progression arithmétique A différence carré. En effet, s’il était, pour les nombres
naturels x, y, z et ¢, y2 — 22 = 2 et 22 — y2 = {2, on aurait y% — 2 = 22, y2 4 2 = 22,
d’ott y4— t4= (x 2)? et cette équation, comme on le sait, n’a pas de solutions en
nombres naturels x, y, z et £.

Or, je démontrerai ici d’une fagon élémentaire le théoréme T suivant:

T. 11 existe une infinité de triples de nombres triangulaires formant une progression
arithmétique a différence triangulaire.

Démonstration. Je démontrerai d’abord que le théoréme T équivaut & la propo-
sition P suivante:

P. Il existe une infinité de solutions en nombres impairs x > 1,y + %, z et u du
systeme d’équations

224+ 22=2y2 e y2P—at=ut-1. (1)
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Démonstration de 1'équivalence de T et P. Supposons que T est vrai. Il existe
donc une infinité de systémes de nombres naturels m, #, 7 et s tels que pour £, =
k(k+1)/20na

t—t =t —t =t, (2)
donc, vu que ¢, = [(2 £ + 1) — 1]/8:
2rn+12—-2m+12=027r+12—-2n+1)2=(2s+1)2—-1 3)
ce qui donne pour
x=2m+1, y=2n+1, z=2r+1, u=2s+1 (4)

les formules (1) etonax > lety = x. Onadonc T - P.

Or, supposons que P est vrai: les nombres x > 1, y + x, z et # sont donc im-
pairs et on a les formules (4), oit m, n, et s sont des nombres naturels et m =+ #.
On a donc, d’aprés (1), les formules (3) qui, comme on le voit sans peine, sont équi-
valentes aux formules (2). On en déduit que P > T.

L’équivalence des propositions T et P est donc établie. Pour démontrer le théo-
réme T il suffira donc de démontrer la proposition P.

-LEMME : L’équation

g2 —24n=1 (5)

a une infinité de solutions en nombres impairs g et h.
Démonstration du lemme. L’équation (5) a évidemment la solution en nombres
impairs g = 5, & = 1. Or, vu l'identité

(49 g + 240 k)2 — 24 (10 g + 49 )2 = g2 — 24 b2

on conclut que si les nombres impairs g et & satisfont & 1’équation (5), les nombres
impairs 49 g + 240 %4 et 10 g + 49 % plus grands que g et %, satisfont aussi a cette
équation. Elle a donc une infinité de solutions en nombres impairs g et 4 et le lemme

est démontré.
Soit maintenant g et % une solution quelconque de I’équation (5) en nombres im-
pairs g et 2 > 1 et posons

x=h, y=5h, z=7Th, u=g. (6)
On aura x2 + 22 =A% + 49 h2 =50 h2 = 2 (5 h)2 = 2 42, et, d’aprés (5):
y2— 2 =251 — =242 =g2— 1.

Les nombres (6) sont donc impairs et satisfont aux équations (1) et, 2 pouvant étre
aussi.grand que l'on veut, la proposition P, donc aussi le théoréme T, se trouvent
démontrés.

On peut démontrer que la solution de I'équation (5) en nombres impairs g et
h > 1 les plus petits est g = 485, & = 99, ce qui donne, d’aprés (6), x = 99, y = 495,
z = 693, u = 485, et les formules (4) donnent: m = 49, n = 247, r = 346, s = 242.
Les formules (2) donnent donc

t247 ‘ 549 = t:m - t247 = t242 .
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Or, la solution de 1'équation (2) en nombres naturels les plus petits est, comme on
le trouve sans peine:

Notre procédé ne donne pas donc toutes les solutions de I’équation (2) en nombres
naturels m, n, r et s. W. SIERPINSKI (Varsovie)

Sur les opérateurs A et B

Introduction

Le calcul des g¢-différences est considéré généralement comme une branche du cal-
cul des différences finies. Pour les origines et les développements de ce calcul et des
équations fonctionnelles auxquelles il conduit nous référons a [1]1), [2]. Dans [3],
[4], [5] et [6] on trouvera une bibliographie a peu prés compléte jusqu’en 1931. Le
poids principal des recherches allait surtout vers la solution d’équations aux g-diffé-
rences linéaires.

La présente étude donne d’abord quelques aspects essentiels des bases du calcul
des g-différences. Nous approchons le probléme du point de vue opérationnel. Nous
donnons ensuite la démonstration des théorémes d’existence et d'unicité des solu-
tions des équations et systémes d’équations simultanées aux g¢-différences, théorémes
qui, & notre connaissance, n’ont jamais été démontrés.

1. L’opérateur A(q)

Cet opérateur est défini, pour un nombre donné ¢, par la relation

A(q) f(x) = flg %) - (1)
Nous observons immédiatement que

(i) pour g =0, A(0) f(x) = f(0) = constante,

(i) pourg=1, A(1) f(x) = f(x), si bien que, A(1) = I, 'opérateur identique,

(i) A(q) est un opérateur linéaire puisque pour des constantes « et 8, nous aurons,
Alg) [0 /(0) + Bg(0)] = a flg 2) + Belg %) = a Alg) 0) + f A(q) &),

(iv) dapres (1), A(p) Alg) fx) = f(p %) = flg p %) = Alq) A(p) f),
si bien que, A(p) Ag) = A(g) A(p), et, A(p) [Al) A()] = [A(p) A(g)] A(r). Tl
s’ensuit que les opérateurs A pour différents ¢ ont des produits commutatifs
et associatifs,

(v) pourgq =+ 0, A(q) A(1/q) = I, si bien que A(1/q) = A(g)7?,

(vi) pour g #+ 0, si 4(g) f(x) =0, f(x) =0,

(vii) A(q) x* = ¢*x*, donc x* est une fonction propre de I'opérateur A(g) avec valeur
propre g%,

(viii) si , ;, 7=1, 2, ..., n sont les » racines n-iémes de 'unité, alors 4(w, ;)" =
A(wp ;) = I, donc, A(w, ;) = IV~

1) Les chiffres entre crochets renvoient 3 la bibliographie, page 87.
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