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Eine reguläre Horosphärenüberdeckung
des hyperbolischen Raumes

1. Einleitung
Die Ebene soll mit kongruenten Kreisen völlig überdeckt werden. Für welche reguläre

Kreisanordnung ergibt sich eine dünnste Überdeckung Dieses Extremalproblem
wurde im Bereich der hyperbolischen Geometrie von Fejes Töth behandelt [l]1) [2].
Es ist nun besonders reizvoll, diese Untersuchung im Poincare-Modell durchzuführen.
So lässt sich zum Beispiel im Modell eine dünnste Horozyklenüberdeckung der
hyperbolischen Ebene wirklich konstruieren [3]. Der vorliegende Aufsatz beschäftigt sich
mit einer Erweiterung gerade dieses Gedankens ins Dreidimensionale. Es wird eine
spezielle, reguläre Horosphärenüberdeckung des hyperbolischen Raumes angegeben.
Wir verwenden dabei ein Poincare-Modell, dessen Fundamentalkugel zu einer
euklidischen Ebene (Grundebene) entartet ist. In diesem Modell wird dann die
Überdeckungsdichte unserer Anordnung ermittelt. Dabei erhalten wir eine
Dichteabschätzung, die sich bereits bei H. S. M. Coxeter [4] und L. Fejes Töth [5] [6] findet.
Weiter liefert unsere Untersuchung ein Verfahren zur Konstruktion solcher spezieller
Horosphärenüberdeckungen bei vorgegebener Dichte und zeigt schliesslich, dass für
eine bestimmte Überdeckung das Abschätzungsminimum tatsächlich angenommen
wird.

Wir setzen wieder voraus, dass der Leser mit den grundlegenden Sätzen der
hyperbolischen Geometrie und mit dem genannten Poincare-Modell vertraut ist.
Bezüglich eines genaueren Studiums verweisen wir erneut auf die in [3] angegebene
Literatur.

2. Die Konstruktion einer regulären Horosphärenüberdeckung
Die Grundebene des Modells teilt den euklidischen Raum. Die eine Hälfte ist als

Träger der Modellpunkte besonders ausgezeichnet.
Alle euklidischen Kugeln, welche die Grundebene berühren und alle euklidischen

Ebenen, welche zur Grundebene parallel laufen, stellen die Horosphären des Modells
dar (soweit sie in der genannten ausgezeichneten Hälfte des euklidischen Raumes

liegen). Die zweite Art solcher Horosphären nennen wir entartet.

x) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 79.
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Als Ausgangspunkt für unsere Konstruktion wählen wir drei spezielle, nicht
entartete, sich in einem Punkt P0 (einen zweiten, tiefer gelegenen Schnittpunkt nennen
wir Px) schneidende Horosphären Hlt H2, H3. Ihre hyperbolischen Mittelpunkte Mx,
M2, M3 bilden ein gleichseitiges euklidisches Dreieck. Die drei euklidischen Kugeln
Hlf H2, i_T3 haben gleichen Radius r. Eine vierte Horosphäre H0 ist entartet und enthält
ebenfalls den Punkt P0. Figur 1 zeigt diese Konfiguration im Grundriss (ohne H0).
Schneiden wir mit einer Ebene durch MB, P0, Px so entsteht Figur 2. Dem schraffierten

Dreieck entnehmen wir mit M2MX 2 a und M^P0 =¦ h:

(h-r)*+{^ap)*^r*
oder

(Ä/a)t+(4/_3)
2 (h/a)

(1)

Zur Auffindung weiterer Horosphären verwenden wir hyperbolische Spiegelungen.
Wir beschränken uns hier darauf, das Konstruktionsverfahren in zwei Fällen
vorzuführen.

Der Umkreis des eukhdischen Dreiecks MXM2M3 (Kreismittelpunkt Sx M4)
ist Äquator der ersten Inversionskugel. Die euklidische Gerade P0SX enthält den,
bereits erwähnten, Punkt Px. Bei dieser Spiegelung bleiben die Horosphären Hx, H2,
H3 hegen, aus H0 wird eine neue Horosphäre HA mit dem Mittelpunkt M4. Neben Px
hat #4 mit je zwei der Horosphären Hx, H2, H3 noch einen weiteren Punkt gemeinsam,

etwa mit Hx, H2 den Punkt P2.
Der Umkreis des eukhdischen Dreiecks M1M2M4 (Kreismittelpunkt S2) ist

Äquator einer zweiten Inversionskugel. Die euklidische Gerade PXS2 enthält den
genannten Punkt P2. Bei dieser Spiegelung bleiben die Horosphären Hx, H2, jE_"4 liegen;
aus Hs wird eine neue Horosphäre H& mit dem Mittelpunkt M5. Dieser Punkt M6 ist
Mittelpunkt der euklidischen Strecke MXM2. Die Figuren 1 und 2 zeigen die Horosphären

_¥4 und H6 in Grund- und Aufriss.

Figur 1
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Figur 2

Durch weitere Inversionen an Kugeln, bei denen der Äquator Umkreis eines
euklidischen Dreiecks (MXM^M5, M2M^M3, ist, ergeben sich neue Horosphären
Auf diesem Wege fortschreitend ist es möglich, das gerade euklidische Prisma mit der
Grundflache MXM2M3 völlig mit Horosphären auszufüllen Durch Aneinanderfügen
solcher Prismen erhalten wir schliesslich eine Horosphärenüberdeckung des gesamten
hyperbolischen Raumes Nach der Art der Konstruktion muss es sich um eme reguläre
Horospharenanordnung handeln

3. Inhaltsberechnungen
Die Horospharenmittelpunkte Mx, M2, Mz und M0 bestimmen ein vierfach

asymptotisches, reguläres Tetraeder mit der Inhaltsmasszahl T Dieses Tetraeder
schneidet aus den vier Horospharenkorpern H0, Hx, H2 und H3 je einen Teilkorper
Die Inhaltsmasszahlen dieser Korper nennen wir V0, Vx, V2 und Vz Aufgabe dieses

Abschnitts ist es, die genannten fünf Masszahlen zu bestimmen

a) Die Masszahl T
Nach Liebmann ([7], Seite 66) gilt

oo

x sm (2w/3)r-6 e2x 4- ¦ 2 cos (2n/3)
dx

Substitution z 2 % ergibt

T i/3/-4 I ez _j_ e-z _|_ 1

0

dz

Der Integrand wird in eine Reihe folgender Form entwickelt

n 0

Durch Vergleich werden die Koeffizienten ermittelt Wir erhalten

: 4- e~* + 1
z J1 (e-{l + 3k)z _ g-(2 + 3A)z)
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Wegen gleichmässiger Konvergenz darf gliedweise integriert werden. Die dann
auftretenden Integrale der Form ^

/ x e~Xx dx
o

werden durch partielle Integration ausgewertet. Es ergibt sich:

oo

I x e~Kx dx X~2

o

Damit erhalten wir schliesslich eine Formel, die bereits H. S. M. Coxeter [8] auf
anderem Wege gefunden hat:

T T r
3 l"i2 ~ ~¥ + ~4* ~ ' " ') T V3£ (l + 3 k)2 (2 + 3 k)2)' W

b) Die Masszahl V0

Euklidisch gesprochen stellt der jetzt zu berechnende Körper ein gerades Prisma
dar, das sich ins Unendliche erstreckt und dessen Grundfläche das gleichseitige Drei-

^2
Grundebene

Figur 3

eck RXR2RZ ist (Figur 3). Nach Liebmann ([7], Seite 152) gilt für das hyperbolische
Volumen eines solchen Körpers:

l F (3)

F ist dabei die hyperbolische Flächenmasszahl des euklidischen Dreiecks Rx R2 R3. Zur
Bestimmung dieser Masszahl F zeichnen wir in einer Seitenfläche des Prismas, etwa
in Ex, einen Kreis um den Mittelpunkt Tx der euklidischen Strecke MXM2 mit dem
Radius h (Figur 3). Die beiden dabei entstehenden Punkte Ax, A2 bestimmen eine

hyperbolische Strecke von der hyperbolischen Länge ax. Es gilt bekanntlich:
1 + cos q>xIn
1 — cos <px

oder tanh- cos9?! T. (4)
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Die euklidische Strecke MXM2 wird jetzt fortgesetzt halbiert. So erhalten wir etwa
den Punkt Tn mit Mx Tn xn a/2"-1. Durch Konstruktion eines Kreises um Tn vom
Radius h ergibt sich wieder eine hyperbolische Strecke. Analog zu (4) erhalten wir für
ihre hyperbolische Länge an:

1 + coso?n j an xn a
a" lnl-cos^ oder tanh^L=C0S93" ^L ^TF.

Daraus mit (4):

tanh^ ^tanh-£. (5)

Genau so verfahren wir in den Ebenen E2 und Ez. Zu den beiden Punkten Ax, A2
erhalten wir auf diesem Wege einen dritten Punkt A3. Diese drei Punkte bestimmen
ein gleichseitiges hyperbolisches Dreieck mit der Seite av Seine Fläche stellt eine
erste Näherung für die gesuchte Masszahl F dar.

Wir fügen jetzt 4n_1 gleichseitige hyperbolische Dreiecke mit der Seite an und der
Einzelfläche FA derart aneinander, dass ihre Grundrisse das euklidische Dreieck
MXM2M3 so ausfüllen wie es in Figur 3 für n 3 eingezeichnet ist. Die Gesamtfläche
Fn dieser Dreiecke stellt eine bessere Näherung für die Masszahl F dar. Es gilt:

Fn 4»-iFA 4»-i(7z-3an).

Dabei ist an ein Winkel eines einzelnen gleichseitigen Teildreiecks. Wir formen um
mit der Abkürzung A (n — 3 an)/sin (n — 3 a„):

Fn 4"-1 A sin(7r -3aJ 4""1 A sinan (4 cos2oc„ - 1)

Eines unserer Teildreiecke wird durch eine Höhe in zwei rechtwinklige Dreiecke
zerlegt. In einem solchen rechtwinkligen Dreieck gilt (Nepersche Regel):

cosan cothtf„ tanh-—.

Mit einem Additionstheorem für Hyperbelfunktionen erhalten wir daraus:

cosan \ (l + tanh2^).
Jetzt ergibt sich:

Fn 4n~1A sinan h tanh2-^- + tanh4-^-},

mit (5) weiter:

Für n -+ oo geht A nach 1, a„ wird nß und wir bekommen schliesslich:

limJFB V/3tanh2-^-.
M->00 T Z,

Es zeigt sich, dass wir damit die Masszahl F gefunden haben. Mit (4) und (3) ergibt
sich dann die gesuchte Volumenmasszahl:

F. f(f)2- (6)
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c) Die Masszahlen Vx, V2, Vz

Es genügt, eme der drei Masszahlen zu bestimmen, da die drei zugehörigen Korper
zueinander kongruent sind

Einer dieser drei Korper wird begrenzt von der Hörospharenflache Hx, einer
hyperbolischen Ebene, welche die Punkte Mx, M2, M3 enthalt, und den beiden
Ebenen E3 und Ex Figur 4 zeigt die Ebene Ex und schraffiert das vom Korper aus ihr
geschnittene Flachenstuck

£/ fy fy

M2

Figur 4

Zur Volumbestimmung des beschriebenen Korpers fuhren wir eme Inversion durch
an einer Kugel um Mx mit dem Radius Mx Cx 2r Das Bild der Horosphäre Hx ist
dann eme euklidische Ebene Hx, parallel zur Grundebene Der euklidische Kreis durch
Mx, Bx, M2 wird zu einer euklidischen Geraden, senkrecht zur Grundebene durch den

Bildpunkt Bx und Bx Die Ebenen E3 und Ex gehen sich in uber Nach den Gesetzen

der Inversion gilt fur die Lange der euklidischen Strecke CXBX

CxBX'2a 4r2 also Cx Bx ^~ (7)

Hyperbolisch gesehen handelt es sich bei unserer Abbildung um eine Spiegelung Der
fraghche Horospharenkorper vom Inhalt Vx geht in einen neuen Korper gleichen
Volumens uber, der von derselben Gestalt ist, wie der bei b) betrachtete An die Stelle
der Grossen a und h m Formel (6) treten jetzt nach (7) die Grossen r2/a und 2 r
Wir erhalten also lAr- vr^pw.-ffc)' (8)

4. Die Überdeckungsdichte
Aus Gründen der Regulantat genügt es, die Überdeckungsdichte d lediglich im

Bereich unseres asymptotischen Tetraeders zu bestimmen Dort gilt

d v.+ Vi + v*+v*9

Dabei smd F0, Vx, F2, Vz und T die im letzten Abschnitt berechneten Inhaltsmasszahlen

Fur die Überdeckungsdichte innerhalb des asymptotischen Tetraeders und
damit im ganzen hyperbolischen Raum erhalten wir also mit (6) und (8)

'-MiT+idfi
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Das ergibt mit (1) und (h/a)2 /u:

d= YJ 9,»+_4„ + 64.
96 T n v '

Diese Funktion hat für unsere Überlegungen nur einen Sinn im Bereich r <£ h < 2 r,
oder 4/3 ^ /i < oo. An der Stelle ja 8/3 liegt das Dichteminimum 3 j/3 /4 T vor.
Mit (2) erhalten wir folgende Dichteabschätzung:

-l
d^ 27?-4l(H3^ (2 + 3*)*,

Ist die Dichte d gegeben, so errechnet sich aus (9) sofort ein Wert für ja. Damit aber
können wir die vier speziellen Horosphären HQ,HX, H2 und H3 und davon ausgehend
durch Spiegelungen die gesamte Überdeckungdeshyperbolischen Raumes konstruieren.

H. Zeitler, Weiden/Deutschland
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Sur trois nombres triangulaires en progression arithmetique
a difference triangulaire

On demontre sans peine qu'il n'existe pas trois nombres carres distincts formant
une progression arithmetique k difference carre\ En effet, s'il £tait, pour les nombres
naturels x, y, z et t, y2 - x2 t2 et z2 - y2 t2, on aurait y2 - t2 x2, y2 + t2 z2,

d'oü y4— fl (x z)2 et cette e*quation, comme on le sait, n'a pas de Solutions en
nombres naturels x, y, z et t.

Or, je d^montrerai ici d'une fagon 616mentaire le theoreme T suivant:
T. II existe une infinite de triples de nombres triangulaires formant une progression

arithmetique ä difference triangulaire.
Demonstration. Je demontrerai d'abord que le th£or&me T Equivaut k la proposition

P suivante:
P. II existe une infinite de Solutions en nombres impairs x > 1, y 4= x, z et u du

Systeme d'equations
x2 + z2 2 y2 et y2-x2^u2-\. (1)
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