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Eine regulire Horosphireniiberdeckung
des hyperbolischen Raumes

1. Einleitung

Die Ebene soll mit kongruenten Kreisen véllig tiberdeckt werden. Fiir welche regu-
lire Kreisanordnung ergibt sich eine diinnste Uberdeckung ? Dieses Extremalproblem
wurde im Bereich der hyperbolischen Geometrie von FEJgEs TOTH behandelt [1]2) [2].
Es ist nun besonders reizvoll, diese Untersuchung im Poincaré-Modell durchzufiihren.
So ldsst sich zum Beispiel im Modell eine diinnste Horozykleniiberdeckung der hyper-
bolischen Ebene wirklich konstruieren [3]. Der vorliegende Aufsatz beschiftigt sich
mit einer Erweiterung gerade dieses Gedankens ins Dreidimensionale. Es wird eine
spezielle, reguldre Horosphireniiberdeckung des hyperbolischen Raumes angegeben.
Wir verwenden dabei ein Poincaré-Modell, dessen Fundamentalkugel zu einer
euklidischen Ebene (Grundebene) entartet ist. In diesem Modell wird dann die Uber-
deckungsdichte unserer Anordnung ermittelt. Dabei erhalten wir eine Dichteab-
schitzung, die sich bereits bei H. S. M. COXETER [4] und L. FEjEs Tét1H [5] [6] findet.
Weiter liefert unsere Untersuchung ein Verfahren zur Konstruktion solcher spezieller
Horosphidreniiberdeckungen bei vorgegebener Dichte und zeigt schliesslich, dass fiir
eine bestimmte Uberdeckung das Abschitzungsminimum tatsichlich angenommen
wird.

Wir setzen wieder voraus, dass der Leser mit den grundlegenden Sdtzen der
hyperbolischen Geometrie und mit dem genannten Poincaré-Modell vertraut ist.
Beziiglich eines genaueren Studiums verweisen wir erneut auf die in [3] angegebene
Literatur.

2, Die Konstruktion einer reguliren Horosphireniiberdeckung

Die Grundebene des Modells teilt den euklidischen Raum. Die eine Hilfte ist als
Trdger der Modellpunkte besonders ausgezeichnet.

Alle euklidischen Kugeln, welche die Grundebene beriihren und alle euklidischen
Ebenen, welche zur Grundebene parallel laufen, stellen die Horosphiren des Modells
dar (soweit sie in der genannten ausgezeichneten Hilfte des euklidischen Raumes
liegen). Die zweite Art solcher Horosphiren nennen wir entartet.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 79.
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Als Ausgangspunkt fiir unsere Konstruktion wihlen wir drei spezielle, nicht ent-
artete, sich in einem Punkt P, (einen zweiten, tiefer gelegenen Schnittpunkt nennen
wir P;) schneidende Horosphiren H,, H,, Hy. Thre hyperbolischen Mittelpunkte M,
M,, M, bilden ein gleichseitiges euklidisches Dreieck. Die drei euklidischen Kugeln
H,, H,, Hyhaben gleichen Radius r. Eine vierte Horosphire H,ist entartet und enthalt
ebenfalls den Punkt P,. Figur 1 zeigt diese Konfiguration im Grundriss (ohne H,).
Schneiden wir mit einer Ebene durch M,, P,, P, so entsteht Figur 2. Dem schraffier-
ten Dreieck entnehmen wir mit My,M,; = 2aund M, P, = h:

(h— 72+ (—i— a ]/3—)2—- 7
oder
= )

Zur Auffindung weiterer Horosphiren verwenden wir hyperbolische Spiegelungen.
Wir beschrinken uns hier darauf, das Konstruktionsverfahren in zwei Fillen vorzu-
fithren. ,

Der Umkreis des euklidischen Dreiecks M;M,M, (Kreismittelpunkt S; = M,)
ist Aquator der ersten Inversionskugel. Die euklidische Gerade P,S, enthilt den,
bereits erwihnten, Punkt P,. Bei dieser Spiegelung bleiben die Horosphiren H,, H,,
Hg liegen, aus H, wird eine neue Horosphire H, mit dem Mittelpunkt M,. Neben P,
hat H, mit je zwei der Horosphidren H,, H,, Hs noch einen weiteren Punkt gemein-
sam, etwa mit H,, H, den Punkt P,.

Der Umkreis des euklidischen Dreiecks M, M,M, (Kreismittelpunkt S,) ist
Aquator einer zweiten Inversionskugel. Die euklidische Gerade P,S, enthilt den ge-
nannten Punkt P,. Bei dieser Spiegelung bleiben die Horosphiren H,, H,, H, liegen;
aus Hgy wird eine neue Horosphire H; mit dem Mittelpunkt M. Dieser Punkt M ist
Mittelpunkt der euklidischen Strecke M, M,. Die Figuren 1 und 2 zeigen die Horosphi-
ren H, und H; in Grund- und Aufriss.

Figur 1
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Durch weitere Inversionen an Kugeln, bei denen der Aquator Umkreis eines
euklidischen Dreiecks (M, M,M;, M, M,M,, ...) ist, ergeben sich neue Horosphiren.
Auf diesem Wege fortschreitend ist es moglich, das gerade euklidische Prisma mit der
Grundfliche M, M, M, véllig mit Horosphdren auszufiillen. Durch Aneinanderfiigen
solcher Prismen erhalten wir schliesslich eine Horosphédreniiberdeckung des gesamten
hyperbolischen Raumes. Nach der Art der Konstruktion muss es sich um eine reguldre
Horosphirenanordnung handeln.

3. Inhaltsberechnungen

Die Horosphirenmittelpunkte M,, M,, M; und M, bestimmen ein vierfach
asymptotisches, reguldres Tetraeder mit der Inhaltsmasszahl T. Dieses Tetraeder
schneidet aus den vier Horosphdarenkérpern H,, H,, H, und H, je einen Teilkorper.
Die Inhaltsmasszahlen dieser Kérper nennen wir V,, V;, V; und V,. Aufgabe dieses
Abschnitts ist es, die genannten fiinf Masszahlen zu bestimmen.

a) Die Masszahl T
Nach L1IEBMANN ([7], Seite 66) gilt:

o o]

B x sin (271/3)
T = 6./2%4 e~%¥ — 2 cos (27/3) -

g
Substitution z = 2 x ergibt:

o0

T3 [ i@

0

Der Integrand wird in eine Reihe folgender Form entwickelt:

(o ¢]
2D a, e
n=0

Durch Vergleich werden die Koeffizienten ermittelt. Wir erhalten:

o0

z
— —(1+3K)z __ p—(2+3K)2) |
e+ e*+4+ 1 Zké\:; (8 )
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Wegen gleichmissiger Konvergenz darf gliedweise integriert werden. Die dann auf-

tretenden Integrale der Form oo

/x e~ **dx

¢
werden durch partielle Integration ausgewertet. Es ergibt sich:

[o o]

/‘x errdx = A2,
§

Damit erhalten wir schliesslich eine Formel, die bereits H. S. M. CoXETER [8] auf
anderem Wege gefunden hat :

Tz%‘/g(il_z‘“él‘z‘jLi:‘z‘_'")="?{l/§k§((1+13k)2 N (2+13k)2)' @)

b) Die Masszahl V,,

Euklidisch gesprochen stellt der jetzt zu berechnende Kérper ein gerades Prisma
dar, das sich ins Unendliche erstreckt und dessen Grundfliche das gleichseitige Drei-

Me
A

—-

M % g;§ M,
7;

Grundebene M,

Figur 3

eck R,R,R, ist (Figur 3). Nach LIEBMANN ([7], Seite 152) gilt fiir das hyperbolische
Volumen eines solchen Korpers:

1

F ist dabei die hyperbolische Flichenmasszahl des euklidischen Dreiecks R, Ry, Ry. Zur
Bestimmung dieser Masszahl F zeichnen wir in einer Seitenfliche des Prismas, etwa
in E,, einen Kreis um den Mittelpunkt 7; der euklidischen Strecke M, M, mit dem
Radius # (Figur 3). Die beiden dabei entstehenden Punkte 4,, 4, bestimmen eine
hyperbolische Strecke von der hyperbolischen Linge a,. Es gilt bekanntlich:

l 1 -+ cos Py

a . i
T obsy, oder tanh—- = cosg, = (4)

a1= h.
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Die euklidische Strecke M, M, wird jetzt fortgesetzt halbiert. So erhalten wir etwa
den Punkt 7, mit M, T, = x, = a/2"1. Durch Konstruktion eines Kreises um 7, vom
Radius 4 ergibt sich wieder eine hyperbolische Strecke. Analog zu (4) erhalten wir fiir
ihre hyperbolische Linge a,:

. 1 4 cosg, Ay Xy a
a, = In——"% SO, oder tanh—* = cosg, = 5 = iy
Daraus mit (4): .
tanh%"— = 711:? tanhﬁz-l-. (5)

Genau so verfahren wir in den Ebenen E, und E,;. Zu den beiden Punkten 4,, 4,
erhalten wir auf diesem Wege einen dritten Punkt 4,. Diese drei Punkte bestimmen
ein gleichseitiges hyperbolisches Dreieck mit der Seite a,. Seine Fliche stellt eine
erste Naherung fiir die gesuchte Masszahl F dar.

Wir fiigen jetzt 471 gleichseitige hyperbolische Dreiecke mit der Seite a, und der
Einzelfliche F, derart aneinander, dass ihre Grundrisse das euklidische Dreieck
M, M, M, so ausfiillen wie es in Figur 3 fiir » = 3 eingezeichnet ist. Die Gesamtfldche
F, dieser Dreiecke stellt eine bessere Naherung fiir die Masszahl F dar. Es gilt:

FE=4-1F, =4"-1(g—3a, .

Dabei ist «, ein Winkel eines einzelnen gleichseitigen Teildreiecks. Wir formen um
mit der Abkiirzung 4 = (m — 3 &,)/sin(x — 3 a,):

F,=4"-14sin(w — 3 «,) = 4"~! 4 sina, (4 cos®a, — 1) .

Eines unserer Teildreiecke wird durch eine Héhe in zwei rechtwinklige Dreiecke zer-
legt. In einem solchen rechtwinkligen Dreieck gilt (Nepersche Regel):

cosa, = cotha, tanhfle .
Mit einem Additionstheorem fiir Hyperbelfunktionen erhalten wir daraus:

cosa, = -12—~ (1 e tanhz%’i) ‘
Jetzt ergibt sich:
E, =4"-14sina, {2 tanhz%'L + tanh“—azi} ,

mit (5) weiter:

p a, . tanh?(a,/2)
E, = A4 sina, {2 tanh?—* + —5 }

Fiir n - oo geht A4 nach 1, «, wird #/3 und wir bekommen schliesslich:

. Ay a
limF, = V3 tanh?—~.

7—> 00

Es zeigt sich, dass wir damit die Masszahl F gefunden haben. Mit (4) und (3) ergibt
sich dann die gesuchte Volumenmasszahl:

-G 0
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¢) Die Masszahlen V,, V,, V,

Es geniigt, eine der drei Masszahlen zu bestimmen, da die drei zugehorigen Korper
zueinander kongruent sind.

Einer dieser drei Koérper wird begrenzt von der Horosphirenfliche H,, einer
hyperbolischen Ebene, welche die Punkte M,, M, M, enthdlt, und den beiden
Ebenen E, und E,. Figur 4 zeigt die Ebene E; und schraffiert das vom Korper aus ihr
geschnittene Flichenstiick.

G Hy B,

M Mo

Figur 4

Zur Volumbestimmung des beschriebenen Korpers fithren wir eine Inversion durch
an einer Kugel um M, mit dem Radius M, C, = 2 r. Das Bild der Horosphire H, ist
dann eine euklidische Ebene H,, parallel zur Grundebene. Der euklidische Kreis durch
M,, B,, M, wird zu einer euklidischen Geraden, senkrecht zur Grundebene durch den
Bildpunkt B, und B,. Die Ebenen E, und E, gehen sich in tiber. Nach den Gesetzen
der Inversion gilt fiir die Linge der euklidischen Strecke C,B;:

C,B,-2a=4r also C11—3—1=2—;i. (7)
Hyperbolisch gesehen handelt es sich bei unserer Abbildung um eine Spiegelung. Der
fragliche Horosphdrenkorper vom Inhalt V; geht in einen neuen Kérper gleichen
Volumens iiber, der von derselben Gestalt ist, wie der bei b) betrachtete. An die Stelle
der Grossen a und % in Formel (6) treten jetzt nach (7) die Gréssen #%2/a und 2 7.
Wir erhalten also: V3 (72
Vi= V= Vo=t (Z) (8)

a

4. Die Uberdeckungsdichte
Aus Griinden der Regularitit geniigt es, die Uberdeckungsdichte d lediglich im
Bereich unseres asymptotischen Tetraeders zu bestimmen. Dort gilt:

d=Yot Vit Va+ Vs
T .

Dabei sind V,, V3, V,, V5 und T die im letzten Abschnitt berechneten Inhaltsmass-
zahlen. Fiir die Uberdeckungsdichte innerhalb des asymptotischen Tetraeders und
damit im ganzen hyperbolischen Raum erhalten wir also mit (6) und (8):

=L
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Das ergibt mit (1) und (k/a)? = u:
V3 our+24pu4 64
4= 96 T U ) (9)
Diese Funktion hat fiir unsere Uberlegungen nur einen Sinn im Bereich7 < 4 < 27,

oder 4/3 < u < co. An der Stelle u = 8/3 liegt das Dichteminimum 3 }/3 /4 T vor.
Mit (2) erhalten wir folgende Dichteabschitzung:

(o) 1 1 -1
d%[Z{(1+3k)2 - (2+3k)2}] :

k=0
Ist die Dichte d gegeben, so errechnet sich aus (9) sofort ein Wert fiir g. Damit aber
koénnen wir die vier speziellen Horosphidren H,, H,, H, und H, und davon ausgehend
durch Spiegelungen die gesamte Uberdeckung des hyperbolischen Raumes konstruieren.

H. Ze1TLER, Weiden/Deutschland
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Sur trois nombres triangulaires en progression atithmétique
a différence triangulaire

On démontre sans peine qu’il n’existe pas trois nombres carrés distincts formant
une progression arithmétique A différence carré. En effet, s’il était, pour les nombres
naturels x, y, z et ¢, y2 — 22 = 2 et 22 — y2 = {2, on aurait y% — 2 = 22, y2 4 2 = 22,
d’ott y4— t4= (x 2)? et cette équation, comme on le sait, n’a pas de solutions en
nombres naturels x, y, z et £.

Or, je démontrerai ici d’une fagon élémentaire le théoréme T suivant:

T. 11 existe une infinité de triples de nombres triangulaires formant une progression
arithmétique a différence triangulaire.

Démonstration. Je démontrerai d’abord que le théoréme T équivaut & la propo-
sition P suivante:

P. Il existe une infinité de solutions en nombres impairs x > 1,y + %, z et u du
systeme d’équations

224+ 22=2y2 e y2P—at=ut-1. (1)
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