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Schlussbemerkung (gemeinsam mit S. CHOwLA). Beachtet man, dass die Zihler
rechts in den Abschédtzungen aus den Sitzen 2a, b, c jeweils asymptotisch gleich
log ]/5 sind, so erhdlt man aus jenen prdzisen unteren Abschitzungen die asympto-
tischen unteren Abschidtzungen

liminf - *®)_ > 1
D—oo  log)D logm

b

giiltig in den betrachteten Diskriminantenfolgen, sofern diese nicht abbrechen, das
heisst sofern es unendlich viele Primzahlen p bzw. Primzahlpaare ¢, ¢’ des betr.
Typus gibt. In dieser asymptotischen Form besagen die in Rede stehenden Abschit-
zungen nichts Neues. Vielmehr hat ja SIEGEL ganz allgemein die asymptotische untere
Abschitzung

WD) loge = + 3 (—3) > DW= fir D> D,(6)
n=1

bei beliebigem 6 > 0 bewiesen [5], und in den hier betrachteten Richaud-Degertschen
Fillen ist die Grundeinheit ¢ < 2)/D (bzw. sogar < }/D), also loge =0 (log /D) = 0(D?)
fir beliebiges 6 > 0, so dass in diesen Fillen #(D) mindestens von der Ordnung
O(DW2 -9 (statt nur O(log)/D)) unendlich wird. Wiahrend aber bei SIEGEL die
Schranke Dy(60), oberhalb derer die asymptotische Abschidtzung gilt, nicht effektiv
angegeben wird, sind die prazisen Abschdtzungen aus den Sdtzen 2a, b, ¢ von dieser
Unbestimmtheit frei, geben also tiber das Siegelsche Ergebnis hinausgehende Infor-
mationen. Hermut Hasse, Hamburg
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Packing of 18 Equal Citcles on a Sphere

The largest possible angular diameter of 18 (or 19) equal circles which can be
packed on the surface of a sphere has not yet been determined. Suggested values for
17 and 20 circles have been published [1] [2]1). These values serve as bounds for the
possible values to be derived for 18 and 19 circles.

The best known arrangement for 20 circles is shown in Figure 1. If the circles at
the poles are removed, then the remaining 18 circles are still locked in static equi-
librium. If, in addition, the adjacent rings of 3 circles are removed, then 6 circles can
be replaced to form the stable arrangement shown in Figure 2. Surprisingly, the

1) Numbers in brackets refer to References, page 61.
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maximum angular diameter of these 18 circles is the same as in the arrangement for
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Figure 1 Figure 2
20 Circles, Arrangement [1,3,3,(6),3,3,1] 18 Circles, Arrangement [3,3,(6),3,3]
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Figure 3 Figure 4
18 Circles, Arrangement [1,3,3,(6),(4),1] 18 Circles, Arrangement [1,4,4,4,4,1]

In an attempt to find more efficient arrangements, the author investigated several
alternative arrangements. One of these is shown in Figure 3. It is symbolized by
1,3,3,(6),(4),1. This signifies that a circle is centered at the south pole, surrounded by
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two rings of 3 equally spaced circles each, then a ring of 6 unequally spaced circles,
a ring of 4 unequally spaced circles and completed by a single circle. The angular
diameter of the circles in this arrangement is approximately 48°38’.

The most efficient arrangement found to-date is the one shown in Figure 4. It is
symbolized by 1,4,4,4,4,1. This signifies that a circle is centered on a pole, surrounded
by four consective rings of 4 equally spaced circles each, and that a circle is then
placed at the opposite pole.

The angular diameter of these circles is 49°33’. The value is verified by the
following computation. If the zenith distance P4 = 2 u, then u is obtained from the

.
CAUATON anu = cos 45° tan 49°33" — 0.70711 x 1.1729 = 0.82937 ,
w = 390", 24 = 79°20' — PA .

The distance PB = 180° — 79°20’ = 100°40’, and the distance v = AB is given by

cos v = —cos2 79°30’ + sin2? 79°20’ cos 45°
= —0.185092 4 0.982722 x 0.70711 = 0.64862 ,
v = 49°33’ .,

The results are summarized in the following table.

Number of Symbolic arrangement Angular diameter
circles of circles

20 1,3,3,(6),3,3,1 47°26’

18 3,3,(6),3,3 47°26'

18 1,3,3,(6),4),1 48°38’

18 1,4,4,4,4,1 49°33/

17 1,5,5,5,1 51°02’

A similar investigation of two stable arrangements of 33 equal circles on a sphere
was recently made by the author [3]. MICHAEL GOLDBERG, Washington D. C., USA
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Ungeloste Probleme

Nr. 48. Unter einer Scheibe wird eine offene, zentralsymmetrische, konvexe Punkt-
menge der euklidischen Ebene verstanden. Wir sagen, dass eine Menge von Scheiben
eine Minkowskische Verteilung bildet, wenn keine Scheibe den Mittelpunkt einer ande-
ren enthilt.

Sind in einer Minkowskischen Verteilung die Scheiben homothetisch, so ist die
Scheibendichte < 4. Ziehen wir namlich jede Scheibe auf eine mit der urspriinglichen
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