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voneinander; also unterscheiden sich auch die rechten Seiten von (17) für Fx und F2
um höchstens 0(x) voneinander:

tp(x; k, l) log* + £ J~; k, -A A(n)
n<x

(»,Ä) 1

-log*(*-C2-l) + ^ ZA(n)(±-Ct-l) + 0(x)

(19)

(n,A)-l

Aus (19), (13), (14) und (15) folgt die Behauptung. G. J. Rieger, München
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Sur les nombres pseudopremiers carres

On appelle pseudopremiers les nombres composes n tels que n \ 2n — 2. Dans le
travail [4]1) j'ai d£montr6 qu'il existe une infinite de nombres pseudopremiers
triangulaires. Ici je de*montrerai la proposition suivante:

Th6or£me. Les seuls nombres pseudopremiers < 1012 qui sont carres sont les
nombres 10932 et 35112.

Lemme. Si n2 (oü n est un entier positif) est un nombre pseudopremier, alors pour
tout diviseur premier p de n on a p2\2p~~1 — 1.

Demonstration du lemme. Soit n2 un nombre pseudopremier. On a alors 2f n,
puisqu'il n'existe aucun nombre pseudopremier divisible par 4. II resulte donc de
n2\2n% — 2 que n2\2nt~x — 1. Supposons que p est un nombre premier >2 tel que
p\n et soit b Vexposant auquel appartient le nombre 2 mod^>. Si p2\2d — 1 on a,

d'apres ö\p — 1, p2\2p~1 — 1. Supposons que p2 f 2? — 1. Alors, pour qu'on ait
p2\2x — 1 oü * est un entier positif, il faut qu'on ait p d\x (voir [5], p. 52). Donc,
d'apr&s p2\n2\ 2n'-1 — 1 on a p\n2 — 1, ce qui est impossible, vu que p\n. Le
lemme se trouve ainsi d6montre\

Dettiontration du th£or&me. Les nombres p2 10932 et p2 35ll2 sont
pseudopremiers, puisqu'on a pour ces nombres

p*^*-1 - ifö2-1 - l\2*2 - 2

l) Les chiffres entre crochets renvoient k la Bibliographie, page 40.
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On sait (voir [1]) que les seuls nombres premiers p < 106 pour lesquels p2\2p~1 — 1

sont^> 1093 etp 3511. Donc, si le nombre pseudopremier n2 a un diviseur premier
p autre que 1093 et 3511, alors, d'apr&s le lemme ona^2^^-1- 1 et p > 106, d'oü
n2 > 1012. Donc un nombre pseudopremier n2 ^ 1012 peut avoir comme diviseurs
premiers seulement les nombres 1093 et 3511. Comme 10932 • 35ll2 > 1012, notre
th6or&me est demontre^ (On peut d'ailleurs demontrer que le nombre 10932 • 35112

n'est pas pseudopremier).
Les nombres premiers p, pour lesquels p2 | 2P~X — 1 sont li£s avec l'equation

x2 - yp 1. (1)

Comme on sait (voir [3]), si les entiers positifs * ety et le nombre premier^) satisfont ä

l'equation (1) et si l'on n'a pas * 3, y 2, p 3, alors on a

2p~x 1 (modp2) et 3*-1 1 (modp2) (2)

et, comme Font dernontre* K. Inkeri et S. Hyyrö (voir [2])

*>2^~2>, y>4p~2. (3)

Commep2<r3p~1 — 1 pourp £gal ä 1093 ou ä 3511, ona^>> 106 et, d'apres (3) on a

* > 103-10" et y > 106-10\ Donc, si les nombres naturels x, y, n autres que le Systeme

x 3, y 2, n 3, satisfont ä Vequation x2 — yn 1, on a x > lO3-10", y > 106-105 et

n > 106. A. Rotkiewicz (Varsovie)
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Aufgaben
Aufgabe 473. Einem Kreis vom Radius r sind drei kongruente Ellipsen einzubeschrei-

ben, die sich paarweise so berühren, dass sie eine Figur mit drei Symmetrieachsen bilden.
Welche numerische Exzentrizität müssen die Ellipsen haben, damit sie den grösstmögli-
chen Teil der Kreisfläche bedecken, und wie gross wird dieser Bruchteil

C. Bindschedler, Kusnacht

/. Lösung. Einem der drei Kreissektoren, die je eine Ellipse enthalten sollen, werde eine
Raute umbeschrieben, von der _twei Seiten auf den (verlängerten) Begrenzungsradien des
Sektors liegen. Die beiden andern Seiten berühren den Kreis in ihren Mittelpunkten. Die
grosste der Raute einbeschriebene Ellipse berührt diese ebenfalls in den Seitenmitten, denn
mit ihr zusammen ist die Raute affines Bild eines Quadrats mit Inkreis. Diese Ellipse ist
aber zugleich dem Kreissektor einbeschrieben, da sie den Kreis in denselben beiden Punkten
(je zweipunktig) berührt, ihn also nicht ausserdem noch durchsetzen kann. Jede andere
dem Sektor einbeschriebene Ellipse ist nun kleiner als die zu ihr ähnhehe, die der Raute
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