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Zur Selbergschen Gleichung für die arithmetische Progression

Wir bezeichnen mit kleinen lateinischen Buchstaben natürliche Zahlen, mit p eine
Primzahl, mit fx bzw. cp die Moebiussche bzw. Eulersche Funktion und mit : Gleichheit

nach Definition. Die Konstante in 0() hängt nur von k ab.
Ferner sei A(n) : log^> für n pa und 0 sonst,

f(x;k,l):= 27 A(n) (1)
n < x

n l mod&

und ip(x): ip(x; 1,1). Alle bisherigen elementaren Beweise des Primzahlsatzes bzw.
des Primzahlsatzes für die arithmetische Progression gehen aus von einer Selbergschen

Gleichung

W(x) logx + 2> (~) ^(») 2 * log* + 0(x) (2)

bzw.

ip(x; k, l) logx + £ v (-J; *, -) A(n) -^J- log* + 0(*) (3)

n / mod &

für (ß, /) 1 oder einer Variante davon1). Ein besonders einfacher Beweis von (2)
stammt von Iseki und Tatuzawa3) ; es scheint bisher nicht bemerkt worden zu sein,
dass sich auch (3) ähnlich kurz beweisen lässt, was hier geschehen soll. Insbesondere
werden Charaktere vermieden. Die Methode liefert auch noch neue Beweise für
allgemeinere Selbergsche Gleichungen wie etwa für Idealklassen mod/4) oder
Restklassen ganzer Zahlen mod/eines behebigen algebraischen Zahlkörpers5) ohne neue
Schwierigkeit.

Bekanntlich gilt

H{x;k,l):= 27 1 \X~lk+k]=ir + 0W (4)

n l modk
und

H(x;k):= £l ^x+R(X',k), R(x; k) 0(1) (5)
n < x

(M)-l
Bekanntlich ist

2^=l0g*+C1+0(|) (6)

1) Vgl. etwa [3]a).
2) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 39.
8) Vgl. etwa [4], 66-67.
4) Vgl. [1].
6) Vgl. [2].
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mit einer absoluten Konstanten Cx; aus (5) folgt durch Teilsummation wegen (6) noch

i;i f(iog, + g + o(i) (7)
m < x

(w,Ä) l
mit einer nur von k abhängigen Konstanten C2; aus (4) folgt durch Teilsummation

£ log£ | + OQogx) (8)
m

tn «** x
tn l mod k

und aus (8) wegen log(xjm) log* — logm und (4) noch

2J logm y log* - ~ + 0(log*) (9)
m <,x

m l mod Ä

Aus den Definitionen für /x und A folgert man bekanntlich unmittelbar

£l*\(d) 1 bzw. 0 für w bzw. > 1, (10)

ÜA(d) logn (n)

d\n

d\n

und daraus mit Hilfe der Mobiusschen Umkehrformel

;l(»)=2>(i)log" (12)

Wegen der Definition von A ist

2,^ i;i^ + 0(1)=i-i^ +
n<* p<x r p<x p

(»,*)-l (M)~l
Aus der elementaren Primzahltheorie übernehmen wir die Formeln6)

und
2;i^ iog* + o(i) (i4)

V(x) 0(*) (15)

Im Falle (n, k) 1 ist unter der Restklasse Ijn moclk wie üblich die durch die
Kongruenz ny =1 mod& eindeutig bestimmte Restklasse y mod& zu verstehen.

Hilfssatz. Es seien k und l beliebige natürliche Zahlen, F (a; k, l) eine für a ^ 1

erklärte kompiexwertige Funktion, welche nur von a und der Restklasse l mod& abhängt,
und

G(x;k,l): logx £ f(^; k, ±) ; (16)
n<x

(M)-l
•) Vgl. etwa [4], Satz 22 und (83).
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dann gilt
^_^^ ^ ^ ^ ^ ;) ^ + ^^ ^ ^ _ (i?)

(d,k)-l (»,*) 1

Beweis. Durch Einsetzen von (16) in die linke Seite von (17) entsteht

27*4Gfr*.4) -27*01*7 £/(£;*. i)
(rf,Ä)-l (rf,Ä) l (n,Ä) l

^Z>W^fe*'i)
(n<*,fc)«=l

(18)

Das Paar w, ^ wird jetzt vermöge m: nd ersetzt durch das Paar m, d; dann geht
die Bedingung n d <^ * über in die Bedingungen m <L x,d\m; wir können also in (18)

wegen log(x/d) log(*/w) + log(m/d) fortfahren:

E"(^i)S^){^ + ^),tn<x d\m
(W,Ä)=1

woraus sich wegen (10) und (12) die rechte Seite von (17) und damit die Behauptung
ergibt.

Satz. Für x ;> 1 und (k, l) 1 gilt (3).
Beweis. Bei der zweimaligen Anwendung des Hilfssatzes schreiben wir Flf Gx und

JF2, G2 für F, G. Mit Fx(x; k,l): =y> (x; k, l) erhält man vermöge (16) und (1)
zunächst

gx(„; k, i) log* 27 27 Aw loe* 2727 Ä(d) >

n<# d<(xfn) nd<,x
(»,Ä)-1 4==(//n)modÄ nrf==Zmodfe

da wegen (£, /) 1 und nd =1 modß von selbst (n, k) 1 erfüllt ist. Das Paar n, ^
wird jetzt vermöge m: nd ersetzt durch das Paar m, d; dann geht die Bedingung
nd ^x über in die Bedingungen m ^ x, d\m; wegen (11) und (9) folgt

Gx(„; k, l) £ (log*)' - £ log* + O((log*)a).

Mit

F2(*; M : ~^ (x-C%- 1)

erhält man vermöge (16) wegen (7) und (5) noch

|(log*)*-|Gt{x; M x (log*)*- ^log* + 0(log*)
Es folgt

G1(*;Ä,Z)-Ga(*;Ä,/) 0(|/*).
Daher unterscheiden sich die linken Seiten von (17) für Gx und G2 um höchstens
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voneinander; also unterscheiden sich auch die rechten Seiten von (17) für Fx und F2
um höchstens 0(x) voneinander:

tp(x; k, l) log* + £ J~; k, -A A(n)
n<x

(»,Ä) 1

-log*(*-C2-l) + ^ ZA(n)(±-Ct-l) + 0(x)

(19)

(n,A)-l

Aus (19), (13), (14) und (15) folgt die Behauptung. G. J. Rieger, München
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Sur les nombres pseudopremiers carres

On appelle pseudopremiers les nombres composes n tels que n \ 2n — 2. Dans le
travail [4]1) j'ai d£montr6 qu'il existe une infinite de nombres pseudopremiers
triangulaires. Ici je de*montrerai la proposition suivante:

Th6or£me. Les seuls nombres pseudopremiers < 1012 qui sont carres sont les
nombres 10932 et 35112.

Lemme. Si n2 (oü n est un entier positif) est un nombre pseudopremier, alors pour
tout diviseur premier p de n on a p2\2p~~1 — 1.

Demonstration du lemme. Soit n2 un nombre pseudopremier. On a alors 2f n,
puisqu'il n'existe aucun nombre pseudopremier divisible par 4. II resulte donc de
n2\2n% — 2 que n2\2nt~x — 1. Supposons que p est un nombre premier >2 tel que
p\n et soit b Vexposant auquel appartient le nombre 2 mod^>. Si p2\2d — 1 on a,

d'apres ö\p — 1, p2\2p~1 — 1. Supposons que p2 f 2? — 1. Alors, pour qu'on ait
p2\2x — 1 oü * est un entier positif, il faut qu'on ait p d\x (voir [5], p. 52). Donc,
d'apr&s p2\n2\ 2n'-1 — 1 on a p\n2 — 1, ce qui est impossible, vu que p\n. Le
lemme se trouve ainsi d6montre\

Dettiontration du th£or&me. Les nombres p2 10932 et p2 35ll2 sont
pseudopremiers, puisqu'on a pour ces nombres

p*^*-1 - ifö2-1 - l\2*2 - 2

l) Les chiffres entre crochets renvoient k la Bibliographie, page 40.
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