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wackeliges Achiflach. Auch mit einem Gelenkoktaeder sind aber jedenfalls in jeder
nicht ausgearteten Lage vier Paare von Mobiustetraedern verbunden.

Wihrend sich die Betrachtungen iiber kippende oder wackelige Achtflache un-
schwer auf andere Polyeder ausdehnen lassen, scheint iiber sonstige Vielflache mit
paradoxer Beweglichkeit nichts bekannt zu sein. W. WuNDERLICH, Wien

LITERATURVERZEICHNIS

[1] A.L.CaucHny, Ile mémoire sur les polygones et les polyédres, J. Fc. polyt. 9, 87-98 (1813).

[2] E. $1EINITZ, H. RADEMACHER, Vorlesungen tiber die Theorie der Polyeder, Grundlehren
math. Wiss. 47, 57ff (Berlin 1934).

[3] W. BrascHKE, Wackelige Achtflache, Math. Z. 6, 85-93 (1920).

[4] A. REUSCHEL, Konstruktion zweier gleich grosser reguldver Tetraeder, die einander zu-
gleich eim- und umgeschrieben sind. El. Math. 4, 7-11 und 25-30 (1949).

[5] R. BRICARD, Mémoire sur la théorie de I’ octaédre avticulé, J. math. pur. appl. 3, 113-148
(1897). — Legons de cinématique, II, 318—-332 (Paris 1927).

[6] W. BLASCHKE, Analytische Geometrie, 60 (Wolfenbiittel 1948).

Eine ordnungstheoretische Charakterisierung
des elementaren Flicheninhalts

Es sei ¥ ein verallgemeinerter Boolescher Verband mit Nullelement 0) und x eine
(einfach additive) Massfunktion auf V¥, das heisst eine Abbildung von V in die
Menge R+ der nichtnegativen reellen Zahlen, welche die Eigenschaft

ANB=0 = p(AduB)=pu) +uB) (1)

1) Das heisst V sei ein abschnittskomplementirer distributiver Verband; siehe hierzu etwa [5]2),
Seite 48f. Mit anderen Worten: In V gelten genau dieselben Rechengesetze wie in einem Mengensystem,
das mit zwei Mengen 4, B stets auch die Vereinigungsmenge 4 \v B und (im Falle 4 ¢ B) die Differenz
B~ 4 enthilt.
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besitzt. Dann hat die durch

A 5B < p(d) <uB) 0)
definierte Relation < in V die Eigenschaften (jewelils fiir alle 4, B, C € V):
054, (1)
A<sB BsC=A45C, (2)
A'<B oder BsAd, (3)
ANC=0=BNC= (4 B+ A4uC sBu(). (4)

Die naheliegende Frage, ob man umgekehrt jede Relation < in ¥ mit (1) bis (4) in
dieser Weise erhalten kann, wird in [7]2) fiir den Fall untersucht, dass V endlich, also
ein Boolescher Verband von einer Ordnung 2» ist3). Die Frage erweist sich als dqui-
valent mit einem auch an sich interessanten, aber bis jetzt nicht allgemein gel6sten
Separationsproblem fiir endliche Punktmengen; fiir » << 3 ist sie zu bejahen.

Wir wihlen jetzt fiir ¥ den Verband P der (beschrinkten, als elementargeometri-
sche Figuren?) aufgefassten) Polygone und modifizieren das Problem wie folgt:
Es werden nur Relationen < in P betrachtet, die ausser (1) bis (4) noch die Invarianz-
cigenschatt A <-B = A° < B? fiir alle Punktspiegelungen ¢ (5)
haben; gefragt ist, ob jede solche Relation mittels (0) aus einer Massfunktion g mit der
Invarianzeigenschaft

u(A°) = u(4) fiir alle Punktspiegelungen ¢ (und alle A4) (IT)

abgeleitet werden kann. Wenn man von einer Massfunktion mit (II) ausgeht, ist
natiirlich (5) erfiillt.

Bekanntlich ist jede nicht identisch verschwindende Abbildung von P in R+ mit
den Eigenschaften (I), (II) eine elementare Flicheninhaltsfunktion, und dies gilt
sogar schon, wenn (II) durch die schwéchere Forderung

u(AT) = u(A) fiir alle Translationen = (IT"

ersetzt wird®). Indessen vertrigt (5) fiir eine positive Beantwortung unserer Frage
keine derartige Abschwichung zu

A <SB = A < B fiir alle Translationen 7. (8

Eine Relation mit (1) bis (4) und (5’) braucht nimlich nicht aus einer invarianten
Massfunktion ableitbar zu sein, wie die durch

x+ 1Jr-}-
A<B = A/]e ydxdygdB[/e Ydx dy

definierte Relation < zeigt.

2) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 35.

3) Die Relationen mit (1) bis (4) sind genau diejenigen, die in [7] als reduzierbare Reihungen bezeichnet
werden.

4) Siehe hierzu [1] und [6].

5) Siehe hierzu [3], S. 34f,
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Die obige Frage ist jedoch zu bejahen, das heisst es gilt der

Satz. Ist < eineRelation in P mit den Eigenschaften (1) bis (5), so gibt es eine Ab~
bildung p von P in R+ mit (I) und (I1), derart dass

A$B = uld)<uB).

Dem Beweis schicken wir einige Folgerungen aus (1) bis (4) voraus (die somit fiir
beliebige V statt P gelten). Zunichst liefert (1) und (4), wenn man in (4) 4, B, C durch
0, B— A, A ersetzt:

ACB = A$B. (6)
Sodann ist die durch
A~B < A<B und BgA

def

definierte Relation ~ wegen (2) und (3) eine Aquivalenzrelation. Die wichtigste
Folgerung formulieren wir als

Lemma. Ist < eine Relation mit den Eigenschaften (2) und

ANC=0=BNC,A<sB = AuC<sBucC, (4a)
so gilt auch
AnC=0=BND,4<B,CsD = AuC sBubD. (7)

Zum Beweis von (7) setzen wir BN C = R; dann ist BN (C — R) = 0 und wegen
ANC=0 auch A0 (C — R) =0. Somit sind die Voraussetzungen von (4a) mit
C — R statt C erfiillt, und es folgt

AU(C—R) SBu(C—-R =BuC.

Nach Definition von R ist weiter CN (B — R) =0 und wegen BN D =0 auch
D0 (B — R) = 0. Somit folgt aus C < D, wieder nach (4a):

CuB=Cu(B—R)sDu(B—R).

Nach (2) ergibt sich jetzt 4 U (C — R) < DU (B — R), das heisst wegen A N C =
0=BNDund RCC, RC B:

(AuC)— R s (BuD)—R.

Nochmalige Anwendung von (4a) liefert schliesslich A UC < Bu D.

Damit ldsst sich nun unser Satz auf wohlbekannte Tatsachen der elementaren
Inhaltslehre (wie sie etwa in [6] zusammengestellt sind) zuriickfithren. Nach dem
Lemma hat die Aquivalenzrelation ~ die Eigenschaft

ANC=0=BnNnD,A~B,C~D = AuC~BybD. 8)

Nach (3) gilt A < A° oder A° < A fiir jede Punktspiegelung o; nach (5) folgt daraus
(wegen 2 = 1) A ~ A° und mit (2) weiter

A~A firalle €S, (9)
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wobei S die von den Punktspiegelungen erzeugte Gruppe®) ist. Nun sind zwei Fille zu

unterscheiden:  Fgy; 7. Es gibt A, Be Pmit A C Bund B < 4.
Fall 2. Fir alle A, Be P gilt: A C B = (nicht B 5 A).

Im ersten Fall folgt sofort 0C B — A und nach (4) B— 4 < 0. Die strikte
Inklusion 0 C B — A im Verband P bedeutet, dass das Polygon B — A einen inneren
Punkt hat und damit auch ein (nicht ausgeartetes) Parallelogramm @ enthilt:
Q C B — A. Nach (6) und (2) folgt ¢ < 0 und nach (4) und (5) auch Q' < O fiir jedes
Parallelogramm @', das aus @ durch zentrische Streckung mit positiv ganzzahligem
Streckungsfaktor % hervorgeht. (Ein solches @’ kann stets durch «Zusammensetzen»
geniigend vieler parallelkongruenter Exemplare von Q erhalten werden!) Fiir jedes
X € P gilt dann X C Q' bei geeignetem & und damit X < Q' und X < 0. Somit hat
man wegen (1) und (2) fiir alle X, Y € P schliesslich X < Y, das heisst die Relation <
leitet sich aus der identisch verschwindenden Massfunktion ab.

Im zweiten Fall kann fiir 4 C B niemals A ~ B gelten. Daher darf man aus (8)
und (9) folgern (vgl. [6], insbesondere Satz 5), dass die Relation ~ mit der elementaren
Inhaltsgleichheit iibereinstimmt:

A~B <« p(d) = u(B) (10)
(u bezeichne eine elementare Inhaltsfunktion). Es bleibt zu zeigen, dass sogar
4 5B <+ wud) < uB)

gilt. Zu beliebigen A, B € P gibt es stets Polygone A’, B’ € P mit der Eigenschaft
w(d’) = u(4), u(B’) = u(B), derart dass

entweder A'C B’ oder A'DB’

gilt. Esseinun A < B. Wire u(A4) > u(B), so hitte man auch u(4’) > u(B’), und es
miisste von den beiden genannten Moglichkeiten die zweite, A’ D B’, vorliegen.
Nach (6) wiirde dann B’ < A’, also wegen (10) B~ B’ < A’ ~ A, B £ A und damit
A ~ B folgen, im Widerspruch zu (10). Schliesslich sei u(4) < u(B), das heisst
u(A’y < u(B’): dann muss 4’ C B’ sein; denn die Annahme A’ D B’ fiihrt, da pu
elementare Inhaltsfunktion in P ist, zu u(A4’) > u(B’). Somit folgt A’ < B’, also
A < B. ArNoLD KirscH, Giessen
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%) Auf die ausgezeichnete Rolle, welche die Gruppe S in der elementaren Inhaltslehre spielt, haben wohl
zuerst H. HApwiGER und P. GLUR in [4] und dann W. BoLrjaNskI in [2] hingewiesen.
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