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Starre, kippende, wackelige und bewegliche Achtflache

Ein von acht Dreiecken gebildetes Achtflach oder Oktaeder besitzt bekanntlich
sechs Ecken und zwölf Kanten, von denen bei gleichartigem Bau je vier in einer Ecke
zusammentreffen. Bezeichnet man die Gegeneckenpaare mit A0, Av B0, Bx und C0, Clt
so besteht das Kantensystem aus allen Verbindungsstrecken dieser Punkte mit
Ausnahme der Diagonalen A0AV B0 Bt und C0 Cv Falls einander die Dreiecksflachen
nicht durchsetzen, so lässt sich leicht ein Kartonmodell herstellen, das im allgemeinen
starr sein wird, auch wenn die Verbindungen längs der Kanten flexibel sind. Finden
gegenseitige Durchdringungen statt, so können im Modell bis zu vier Dreiecksflachen
offen bleiben. In allen Fällen lässt sich durch Materialisierung der Kanten ein
Stabmodell anfertigen, das ebenfalls im allgemeinen starr sein wird, selbst wenn die Stäbe
in den Ecken gelenkig miteinander verbunden sind. Die gewohnte Starrheit ist jedoch
keineswegs zwangsläufig bedingt, und die vorhegende Note1) soll die verschiedenartigen

Möglichkeiten des Verhaltens solcher Oktaeder erörtern.

I. Konvexe Oktaeder

Seit Cauchy (1812) weiss man, dass jedes konvexe Polyeder starr ist [l]2). Dies gilt
im besonderen also auch für konvexe Oktaeder. Der Nachweis läuft auf die Behauptung
hinaus, dass zwei konvexe Achtflache, die in den Kantenlängen und damit in den
Kantenwinkeln übereinstimmen, auch paarweise gleiche Flächenwinkel aufweisen und
daher kongruent sind.

Zu diesem Zweck werden die von entsprechenden Ecken ausgehenden (konvexen)
Vierkante verglichen. Die Deformationen eines solchen, längs der Kanten gelenkig
beweglich zu denkenden Vierkants werden am besten überblickt, wenn man es mit einer
Kugel schneidet, die ihren Mittelpunkt im Scheitel hat: man erhält so ein (konvexes)
sphärisches Gelenkviereck ABCD mit starren Seiten (Figur 1). Wird es unter Erhaltung

der Seitenlängen in eine wieder als konvex vorauszusetzende Form A'B'CD'
deformiert, wobei etwa der Winkel ot bei A grösser geworden ist (a' > a), so wächst
auf Grand des sphärischen Kosinussatzes die Diagonale BD (B'D' > BD), und daher
nimmt auch der gegenüberliegende Winkel y bei C zu (yf > y). So einleuchtend es

erscheint, dass dies zwangsläufig eine Verkleinerung der beiden anderen Winkel nach

») Nach einem am 20. Mai 1063 in Zagreb gehaltenen Vortrag.
*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 32.
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sich zieht (ßf < ß, d' < d), so ist der strenge Beweis dieser Tatsache auf der Kugel -
wo man im Gegensatz zur Ebene nicht mit der Konstanz der Winkelsumme operieren
kann - ziemlich umständlich. Ein elementarer, jedoch mancherlei Fallunterscheidungen

verlangender Beweis wäre nach dem Vorbild von E. Steinitz [2] zu führen3), der
eine diesbezügliche Lücke bei Cauchy geschlossen hat; ein einfacher Beweis wäre
wünschenswert.
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Figur 1

r

4
Figur 2

Nehmen wir also die mit der Vergrösserung zweier gegenüberliegender Flächenwinkel

eines Vierkants bei Wahrung der Konvexität einhergehende Verkleinerung
der beiden anderen Flächenwinkel als bewiesen an. Für den Vergleich zweier in den

Kantenlängen übereinstimmenden Oktaeder 0 und 0' bringen wir nun bei den Kanten
von 0 eine Signatur an, indem wir alle Kanten, die beim Übergang zu 0' eine

Vergrösserung des Flächenwinkels erfahren, mit einem Pluszeichen markieren, jene
hingegen, bei welchen eine Verkleinerung des Flächenwinkels eintritt, mit einem
Minuszeichen. Die beste Übersicht gewährt ein «Schlegel-Diagramm» nach dem Muster
der Figur 2: Steht bei der Kante AQBQ etwa ein Plus, dann sind die Nachbarkanten
AqCq und BqCq mit einem Minus zu versehen; damit haben aber die beiden Nachbarkanten

CqAq und C0j&0 das gleiche Vorzeichen erhalten, jyas nicht zulässig ist. Dieser

Widerspruch lehrt, dass die beiden konvexen Oktaeder 0, 0' in allen Flächenwinkeln
übereinstimmen müssen, also (gleich- oder gegensinnig) kongruent sind.

Ein konvexes Oktaeder mit unveränderlichen Kantenlängen ist demnach ein starres
Gebilde. Es ist durch sein «Netz» (die Abwicklung) eindeutig bestimmt. So einfach die

Herstellung des Modells durch Zusammenkleben der acht gegebenen Dreiecke ist, so

schwierig scheint die geometrische Konstruktion des Oktaeders zu sein, die im
allgemeinen auf ein Problem 8. Grades führen dürfte.

II. Kippoktaeder

Beim Starrheitsbeweis des konvexen Oktaeders spielt die Konvexität eine wesentliche

Rolle. Lässt man die Voraussetzung der Konvexität fallen, lässt man also auch

einspringende Kanten zu, so ist die eindeutige Existenz des durch sein Netz gegebenen
Achtflachs nicht mehr gesichert.

•) Der indirekte Beweis daselbst zeigt* dass die gleichzeitige Vergrösserung (Verkleinerung) der Winkel
« und ß die Verlängerung (Verkürzung) der Seite CD bedingen würde.
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So kann es vorkommen, dass zu ein und demselben Netz aus acht Dreiecken zwei

nur wenig voneinander verschiedene Achtflache existieren, sodass bei dem zugehörigen

Kartonmodell der Übergang von der einen zur anderen Form mit sanfter Gewalt
zu erzwingen ist. Das Modell erfährt dabei eine als Kippung bezeichnete sprunghafte
Deformation.

Solche «Kippoktaeder» sind folgendermassen zu konstruieren: Man gehe aus von
zwei kongruenten Dreiecken A1B1C1 £ A2B2C2 in einigermassen benachbarter
Raumlage. Die drei Symmetralefeenen a von AxA2,ß von BXB2, y von CXC2 bilden bei
allgemeiner Annahme ein Dreikant. Schneidet man dasselbe mit einer passenden
Ebene 7t0 nach einem Dreieck A0B0C0, so definiert dieses mit A1B1C1 bzw. A2B2C2
zwei Oktaeder (Figur 3), die wegen A0BX A0B2 usf. paarweise übereinstimmende

t z^\

I
C2r

4
Figur 3

Kantenlängen, also ein gemeinsames Netz besitzen. Jede der beiden Oktaederformen
ist im allgemeinen für sich starr, doch genügt bei einiger Nachgiebigkeit des
Modellmaterials bereits eine schwache Torsion, um die Kippung zu bewirken.

Figur 4 stellt die beiden Formen eines einfachen, metrisch speziellen
Kippoktaeders in Grund- und Aufriss dar. Hier sind die beiden als gleichseitig angenommenen

Ausgangsdreiecke A1B1C1 £ A2B2C2 in paralleler Lage und mit gemeinsamer
dreizähliger Symmetrieachse zu denken. Die zu ihnen parallele Schnittebene jr0
wurde ferner in einem solchen Abstand gelegt, dass auch _40_50C0 £ A1B1C1. In den

Figuren wurden die Deckflächen fortgelassen, um den Einblick ins Innere
freizugeben4). Bei festgehaltenem Basisdreieck A0B0C0 vollzieht sich die Kipptransformation

A1B1C1 -> A2B2C2 als Schraubung um die genannte Symmetrieachse.
Zwischen dem zugehörigen Drehwinkel co, den beiden Höhen hv h2 und dem Umkreisradius

r der gleichseitigen Dreiecke besteht die leicht abzuleitende Relation

Äl~Af 2r2sin~. (1)

Für den (zur praktischen Durchführbarkeit der Kippung notwendigen) «Überhang» u
der sechs kongruenten Manteldreiecke findet man:

0 ^ u r (cos-f - cos-J) ^f (l-ij) « 0,134 f. (2)

*) Wird ein solches Modell mit sämtlichen acht Flächen ausgeführt, so empfiehlt es sich, irgendwo ein
Loch für den Durchtritt der eingeschlossenen Luft vorzusehen.
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Im linken Grenzfall u 0 (co nß) tritt als erste Körperform eine Art dreiseitiger
Doppelpyramide auf, während die zweite das Aussehen eines dreiseitigen Prismas mit
eingezogenen Manteldiagonalen hat. - Der rechte Grenzfall (co — 0) gehört schon in
den nächsten Abschnitt.

Zu erwähnen wäre noch der Sonderfall hx 0, bei welchem die erste Körperform
nach Art eines «chapeau claque» vollständig in eine Ebene zusammenklappt.
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Figur 4

III. Wackeloktaeder

Die beiden kongruenten Ausgangsdreieeke A1B1C1 £ A2B2C2 in Abschnitt II
hängen bekanntlich stets durch eine gewisse Schraubung zusammen. Rücken sie

zusammen, so werden die benutzten Symmetralebenen a, ß, y zu den Bahnnormal-
ebenem cnx von Ax, ßx von Bx und yx Von Cx einer Schraubung. Irgendein Schnittdreieck
A$SaC0 des Dreikants axßxyx legt dann zusammen mit Ax Bx Cx A2 B% C2 ein Oktaeder
fest, das zwei infinitesimal benachbarte Formen besitzt, also statt der Kippung eine

gewisse infinitesimale «Wackelbewegungf* gestattet. Diese ist im übrigen am Modell
deutlicher feststellbar, als zu erwarten wäre.
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Mit Rücksicht darauf, dass bei einer Schraubung die Raumpunkte mit ihren
Bahnnormalebenen durch ein MÖBiussches lineares Nullsystem verknüpft sind, muss der
Punkt Px OL1ß1y1 (also der Scheitel des Dreikants cf.xßiyx) der Ebene nx AlB1C1
angehören. Diese Bedingung ist nicht nur notwendig, sondern auch hinreichend.

Ein Wackeloktaeder ist demnach folgendermassen zu konstruieren: Man geht aus
von zwei Ebenen nQ, nx mit der Schnittgeraden p und nimmt in nx ein beliebiges
Dreieck A1B1C1 sowie einen keiner Dreieckseite angehörenden Punkt Px an; keiner
der Punkte soll auf p liegen (Figur 5). Die auf p liegenden Punkte von BXCV CxAlf
AXBX seien mit XQ, Y0, Z0 bezeichnet, jene von PxAlt P1B1, PXCX mit Xx, Yx, Zx.
Nach Desargues sind X0XX, Y0YX, Z0Zt drei Punktepaare einer Involution. Nun
ziehe man in n0 drei von p verschiedene und keinem Büschel angehörende Geraden
durch Xlf Yx undZx; sie bilden die Seiten eines Dreiecks AQB0C0. - Die Verbindungsgeraden

_40Z0 und B0Y0 liefern einen Schnittpunkt P0. Weil die Gegenseitenpaare
des vollständigen Vierecks A0BQC0PQ auf p ebenfalls drei Punktepaare einer
DESARGUESschen Involution ausschneiden und diese wegen der gemeinsamen Punktepaare

X0XX, Y0YX mit der erstgenannten identisch ist, muss auch die Gerade CQZQ

durch P0 gehen.

U
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// Figur 5

Um nun nachzuweisen, dass das durch A0B0C0 und AXBXCX definierte Oktaeder
ein wackeliges ist, ist nur zu zeigen, dass die drei Elementenpaare Ax, olx AXB0C0,
Bx,ßx BXC0A0 und Cx, yx CXAQB0 eine Nullkorrelation bestimmen. Eine solche
kann bekanntlich durch zwei reziproke Polare und einen Nullstrahl festgelegt werden.
Verwenden wir hierzu die Geraden AXBX und CQPX sowie den Strahl CXA0, so werden
den Punkten Ax und Bx tatsächlich die Nullebenen AXC0PX &x und BxCQPX ~ ßx

zugewiesen, und weiters gehört zu Cx die von den Nullstrahlen CXA0 und Ci^i
(Treffgerade von AXBX und C0PX) aufgespannte Ebene CXA0PX yx. - Zum Punkt _40 c ßxyx
gehört ferner die ihn mit BXCX verbindende Nullebene a0 A0BXCX, und analog
gehören zu B0 und C0 die Nullebenen ßQ BQCXAX und y0=CQAxBx. Schliesslich ist
Pq aoß0}>0 der Nullpunkt von n0 AQBQC0 und ebenso Px der Nullpunkt von nx.
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Aus dem Gesagten folgt unter anderem, dass A0B0C0P1 und A1B1C1P0 ein
Möbiussches Tetraederpaar bilden, denn die Ecken des einen Tetraeders liegen in den
Seitenflächen des anderen und umgekehrt. Die beiden Tetraeder sind einander also
(im projektiven Sinne) gleichzeitig eingeschrieben und umgeschrieben. - Mit einem
Wackeloktaeder sind im übrigen vier Mobiussche Tetraederpaare verbunden, weil ja
je zwei gegenüberhegende Seitenflächen eine infinitesimale Relativbewegung
ausführen, welche ein lineares Nullsystem erzeugt.

Die Wackeloktaeder hat W. Blaschke entdeckt, der ihre infinitesimale
Beweglichkeit als eine affine Eigenschaft hervorhob [3]. Aus der zugrundeliegenden
Nullkorrelation und der daraus abgeleiteten rein projektiven Konstruktion geht aber klar
hervor, dass es sich bei der Wackeligkeit sogar um eine projektive Eigenschaft handelt:
Jedes durch Kollineation aus einem Wackeloktaeder gewonnene Achtflach ist auch
ein (wenigstens) wackeliges.

Aus Figur 5 ist noch herauszulesen, dass ein konvexes Oktaeder niemals wackelig
sein kann: es müssten ja sonst die Spuren PXAX, PXBX und PXCX ganz im Aussengebiet

des Dreiecks AXBXCX verlaufen, was offensichtlich unmöglich ist.
Das metrisch spezielle, eine dreizählige Drehsymmetrie aufweisende

Wackeloktaeder, das zum Grenzfall co 0 von (2) gehört, ist dadurch charakterisiert, dass
die gegenüberliegenden Flächen AQB0C0 und AXBXCX gleichseitige Dreiecke sind, die
vermöge einer Viertelschraubung um die gemeinsame Symmetrieachse auseinander
hervorgehen (<px cp2 n\2 in Figur 4). Die zugehörigen Möbiustetraeder sind übrigens

auch in projektiver Hinsicht ausgezeichnet, indem sie sich in neunfacher
hyperboloidischer Lage befinden [4].

IV. Bricardsche Gelenkoktaeder

So merkwürdig bereits das Auftreten kippender und wackeliger Achtflache an und
für sich ist, weit erstaunlicher noch ist die Existenz von Oktaedern mit endlicher,
kontinuierlicher Beweglichkeit. Sie wurden von R. Bricard im Zuge einer systematischen

Untersuchung von bewundernswerter Tiefgründigkeit gefunden [5]. Er
gelangte dabei zu drei Typen:

1. Gelenkoktaeder mit Symmetrieachse. Man gehe aus von zwei behebigen, längs
einer Seite zusammenhängenden Dreiecken A0B0C0 und AXB0C0, und unterwerfe sie

einer axialen Spiegelung, welche _40 mit Ax vertauscht; die dabei aus B0 und C0

hervorgehenden Punkte seien Bx und Cx (Figur 6). Die beiden, gelenkig verbunden zu
denkenden Dreieckspaare A0B0C0, AXB0CQ und A0BXCX, AXBXCX weisen eine
Beweglichkeit von zwei Freiheitsgraden auf. In jeder Lage sind auf Grund der Symmetrie
die Strecken BQCX und BXC0 gleich lang, sodass die Festsetzung ihrer gemeinsamen
Länge die Beweglichkeit noch nicht aufhebt, sondern nur um einen Grad auf
Zwanglaufreduziert. Man kann also die (kongruenten) Dreiecke A0B0CX und AXBXC0 noch
hinzufügen. Die restlichen Dreiecke A0 Bx C0 und Ax B0 Cx müssen offen bleiben, um die
Bewegung des Modells nicht zu stören. - Ein hübsches, von W. Blaschke [6]5)
angegebenes spezielles Modell erhält man, wenn man die sechs materialisierten Dreiecke
gleichschenklig-rechtwinldig ausführt, wobei ihre Hypotenusen die beiden
gleichseitigen Öffnungen beranden.

*) Dort steht das (aus einem Würfel abgeleitete) Modell in Zusammenhang mit der bekannten
Konfiguration von Petersen-Morley.
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2. Gelenkoktaeder mit Symmetrieebene. Man gehe wieder von zwei beliebigen, längs
einer Seite gelenkig zusammenhangenden Dreiecken A0BQC0 und AXB0C0 aus, spiegle
sie diesmal jedoch an einer durch _40 und Ax gehenden Ebene; die dabei aus B0 und C0

Figur 6
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Figur 7

hervorgehenden Punkte seien Bx und Cx (Figur 7). Dieselben Betrachtungen wie
unter 1 lehren, dass man noch die Dreiecke A0B0CX und AXBXC0 (mit gleichen Basen

B0CX BXC0) hinzufügen kann, ohne die Beweglichkeit ganz aufzuheben. Die
restlichen Dreiecke A0BXC0 und AXB0CX müssen wieder offen bleiben. - Ein hübsches
spezielles Modell ergibt sich, wenn die Ausgangsdreiecke gleichseitig und die
Zusatzdreiecke gleichschenklig-rechtwinklig (mit rechten Winkeln bei _40 und Ax) ausgeführt
werden. In der Mittellage fallen die Ecken mit jenen eines regulären Oktaeders
zusammen.

3. Gelenkoktaeder mit platten Grenzformen. Man geht aus von zwei konzentrischen
Kreisen einer Ebene n und zwei behebigen Punkten A0, Ax e n ausserhalb des grösseren

Kreises. Die Tangenten aus _40 und Ax an den einen Kreis liefern im Schnitt die
Punkte B0 und Bx, die Tangenten an den anderen Kreis die Punkte C0 und Cx

(Figur 8). Die Dreiecke A0BXCQ und AXB0CX bleiben wieder offen. Das so konstruierte
Oktaeder, dessen Beweglichkeit nicht unmittelbar einzusehen ist, besitzt ausser der
Ausgangslage noch eine zweite ebene Grenzform. - Das spezielle, als Beispiel für den
2. Typ angeführte Achtflach gehört im übrigen auch zum 3. Typ.

Alle drei Modelle bestehen aus einem beweglichen Band aus sechs materialisierten
Dreiecken. Die auf diesen in den Abbildungen eingetragenen, durchgehenden Schraf-
fen verlaufen jeweils längs der freien Randkanten.

Die endliche Beweglichkeit eines BRiCARDschen Oktaeders ist keine projektive
Eigenschaft mehr. Eine Kollineation verwandelt es im allgemeinen bloss in ein
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wackeliges Achtflach. Auch mit einem Gelenkoktaeder sind aber jedenfalls in jeder
nicht ausgearteten Lage vier Paare von Möbiustetraedern verbunden.

Während sich die Betrachtungen über kippende oder wackelige Achtflache
unschwer auf andere Polyeder ausdehnen lassen, scheint über sonstige Vielflache mit
paradoxer Beweglichkeit nichts bekannt zu sein. W. Wunderlich, Wien

Ai
Figur 8
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Eine ordnungstheoretische Charakterisierung
des elementaren Flächeninhalts

Es sei V ein verallgemeinerter Boolescher Verband mit Nullelement 01) und ja eine
(einfach additive) Massfunktion auf V> das heisst eine Abbildung von V in die
Menge R+ der nichtnegativen reellen Zahlen, welche die Eigenschaft

inj8 0^/*(4uß)= fi(Ä) + p(B) (I)

l) Das heisst V sei ein abschnittskomplementärer distributiver Verband; siehe hierzu etwa [5]2),
Seite 48f. Mit anderen Worten: In V gelten genau dieselben Rechengesetze wie in einem Mengensystem,
das mit zwei Mengen A, B stets auch die Vereinigungsmenge A\j B und (im Falle A C B) die Differenz
B-A enthält.


	Starre, kippende, wackelige und bewegliche Achtflache

