Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 20 (1965)

Heft: 1

Artikel: Ein Schliessungssatz für zwei Kreise

Autor: Bottema, O.

DOI: https://doi.org/10.5169/seals-23920

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

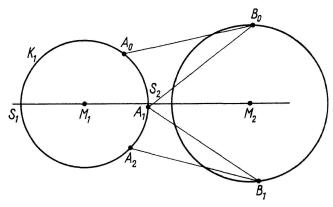
> Publiziert mit Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung

El. Math. Band XX Heft 1 Seiten 1-24 Basel, 10. Januar 1965

Ein Schliessungssatz für zwei Kreise

1. Wir betrachten die Figur zweier Kreise K_1 und K_2 , mit den Mittelpunkten M_1 , M_2 und den Radien R_1 , R_2 . Der Abstand M_1 M_2 ist d. Weiter ist noch eine Strecke k gegeben.

Wir wählen auf K_1 einen beliebigen Punkt A_0 und bestimmen auf K_2 einen der beiden Punkte B_0 mit A_0 $B_0 = k$.



Figur 1

Dann konstruieren wir auf K_1 den von A_0 verschiedenen Punkt A_1 mit B_0 $A_1 = k$. Auf K_2 bestimmen wir den von B_0 verschiedenen Punkt B_1 mit A_1 $B_1 = k$, usw. (Figur 1).

Auf K_1 erscheint die Punktreihe A_0 A_1 A_2 ..., auf K_2 die Punktreihe B_0 B_1 B_2 Wir wollen diese Reihen betrachten und dabei vor allem die Frage stellen, ob A_n (n > 1) mit A_0 (und dann auch B_n mit B_0) zusammenfallen kann.

Wenn wir uns auf reelle Figuren beschränken wollen, so müssen zwischen R_1 , R_2 , d und k gewisse Ungleichungen bestehen. Es genügt dabei offenbar, dass für beliebige A_0 der Kreis (A_0, k) mit K_2 zwei reelle (und wir wollen voraussetzen: verschiedene) Schnittpunkte hat. Sind S_1 und S_2 die Schnittpunkte von K_1 mit der Geraden M_1 M_2 (Figur 1), dann hat man S_1 $M_2 = R_1 + d$, S_2 $M_2 = -R_1 + d$, und wir haben daher die Ungleichungen

$$|R_2 - k| < R_1 + d < R_2 + k$$
 und $|R_2 - k| < |R_1 - d| < R_2 + k$,

die bekanntlich zwei wesentlich verschiedene Lösungen haben. Es muss entweder d oder R_1 die kleinste der vier bezüglichen Strecken sein; die Grössenordnung der übrigen ist beliebig, aber es soll zudem die Summe der kleinsten und der grössten Strecke kleiner als die Summe der anderen sein. Das ist der Inhalt der sogenannten Grashofschen Regel der Getriebelehre.

Im ersten Fall folgt nicht nur aus einem beliebigen Punkt A_0 ein reeller Punkt B_0 , sondern auch umgekehrt gibt es zu einem beliebig auf K_2 gewählten Punkt B einen reellen Punkt A auf K_1 mit B A = k. In diesem, sagen wir, symmetrischen Fall könnte man die Kreise K_1 und K_2 vertauschen. Im zweiten, unsymmetrischen Fall dagegen trifft das nicht zu. Der Ort der mittels der Kreise (A_0, k) auf K_2 konstruierten Punkte B ist nicht K_2 selbst; er besteht aus zwei Kreisbogen von K_2 . Oder in der Sprache der Getriebelehre: im ersten Fall ist das Getriebe M_1 M_2 B A eine Doppelkurbel, im zweiten Fall eine Kurbelschwinge.

Wir führen folgende Bezeichnungen ein:

$$\begin{aligned}
\phi_{1} &= -R_{1} + R_{2} + d + k, & \phi_{2} &= R_{1} - R_{2} + d + k, \\
\phi_{3} &= R_{1} + R_{2} - d + k, & \phi_{4} &= R_{1} + R_{2} + d - k; \\
q_{1} &= R_{1} - R_{2} - d + k, & q_{2} &= -R_{1} + R_{2} - d + k, \\
q_{3} &= -R_{1} - R_{2} + d + k, & q_{4} &= R_{1} + R_{2} + d + k.
\end{aligned} (1)$$

Offenbar haben wir

$$p_1 > 0$$
 , $p_2 > 0$, $p_3 > 0$, $p_4 > 0$, $q_4 > 0$.

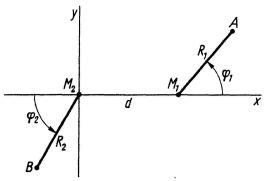
Weiter hat man im symmetrischen Fall:

$$q_1 > 0$$
, $q_2 > 0$, $q_3 < 0$ (2)

und im unsymmetrischen Fall:

$$q_1 < 0$$
, $q_2 > 0$, $q_3 > 0$. (3)

Wir bestimmen erst allgemein analytisch den Zusammenhang zwischen A_i und B_i . 2. Wir wählen die X-Achse des rechtwinkligen Koordinatensystems entlang $M_2 M_1$; es sei $M_2 = (0, 0)$, $M_1 = (d, 0)$. Die Punkte A von K_1 und die Punkte B von K_2 werden bestimmt durch die Winkel φ_1 und φ_2 (Figur 2). Dann ist



Figur 2

$$x_A = d + R_1 \cos \varphi_1$$
, $y_A = R_1 \sin \varphi_1$, $x_B = -R_2 \cos \varphi_2$, $y_B = -R_2 \sin \varphi_2$, (4)

und die Gleichung, welche aussagt, dass der Abstand A B gleich k ist, lautet

$$\{d + (R_1 \cos \varphi_1 + R_2 \cos \varphi_2)\}^2 + (R_1 \sin \varphi_1 + R_2 \sin \varphi_2)^2 = k^2, \tag{5}$$

oder mit

$$\operatorname{tg} \frac{\varphi_1}{2} = u$$
, $\operatorname{tg} \frac{\varphi_2}{2} = v$:

$$(R_1^2 + R_2^2 + d^2 - k^2) (1 + u^2) (1 + v^2) + 2 R_1 d (1 - u^2) (1 + v^2)$$

$$+2R_{2}d(1+u^{2})(1-v^{2})+2R_{1}R_{2}\{(1-u^{2})(1-v^{2})+4uv\}=0$$
.

Das heisst

$$p_3 q_3 u^2 v^2 + p_1 q_1 u^2 + p_2 q_2 v^2 - p_4 q_4 - 8 R_1 R_2 u v = 0$$
 (6)

ist die Gleichung für die (2, 2)-Verwandtschaft zwischen den Punkten A(u) auf K_1 und B(v) auf K_2 .

Wenn A(u) gegeben ist, so folgen die zugeordneten Punkte B(v) aus der quadratischen Gleichung

$$(p_3 q_3 u^2 + p_2 q_2) v^2 - 8 R_1 R_2 u v + (p_1 q_1 u^2 - p_4 q_4) = 0$$
 (7)

mit der Diskriminante

$$D = -p_1 q_1 p_3 q_3 u^4 + (16 R_1^2 R_2^2 - p_1 q_1 p_2 q_2 + p_3 q_3 p_4 q_4) u^2 + p_2 q_2 p_4 q_4.$$
 (8)

Für die Nullstellen von D findet man $u^2 = -q_2 q_4/p_1 p_3$ und $u^2 = p_2 p_4/q_1 q_3$, welche Zahlen wegen (2) und (3) negativ sind. Überdies ist der Koeffizient von u^4 positiv; D ist somit positiv-definit, und das bestätigt, dass zu einem beliebigen Punkt A_0 ein reeller Punkt B_0 gehört.

Umgekehrt folgt aus einem Punkt B(v) ein Punkt A(u) mittels der Gleichung

$$(p_3 q_3 v^2 + p_1 q_1) u^2 - 8 R_1 R_2 u v + (p_2 q_2 v^2 - p_4 q_4) = 0$$
(9)

mit der Diskriminante

$$D' = -p_2 q_2 p_3 q_3 v^4 + (16 R_1^2 R_2^2 - p_1 q_1 p_2 q_2 + p_3 q_3 p_4 q_4) v^2 + p_1 q_1 p_4 q_4. \quad (10)$$

Diese hat die Nullstellen $v^2 = -q_1 q_4/p_2 p_3$ und $v^2 = p_1 p_4/q_2 q_3$. Im symmetrischen Fall sind diese Zahlen wieder negativ, und D' ist positiv-definit, das heisst zu jedem Punkt B gehört ein reeller Punkt A. Im unsymmetrischen Fall sind sie aber positiv, und D' hat Zeichenwechsel; die Punkte B, die zu reellen A gehören, liegen auf zwei Kreisbogen von K_2 .

3. Aus (6) können wir nun auch die Relation zwischen zwei aufeinanderfolgenden Punkten der Folge A(u) ableiten. Nennen wir ihre Parameter kurz u_1 und u_2 , dann müssen die zwei quadratischen Gleichungen (7):

$$(p_3 q_3 u_i^2 + p_2 q_2) v^2 - 8 R_1 R_2 u_i v + (p_1 q_1 u_i^2 - p_4 q_4) = 0 , \quad i = 1, 2$$
 (11)

eine gemeinsame Wurzel haben, da zu $A(u_1)$ und $A(u_2)$ derselbe Punkt B gehört. Die Bedingung dafür lautet

64
$$R_1^2 R_2^2 (p_3 q_3 u_1 u_2 - p_2 q_2) (p_1 q_1 u_1 u_2 + p_4 q_4)$$

+
$$(p_3 q_3 p_4 q_4 + p_1 q_1 p_2 q_2)^2 (u_1 + u_2)^2 = 0$$

oder, wenn man noch den letzten Koeffizienten ausrechnet,

$$(p_3 q_3 u_1 u_2 - p_2 q_2) (p_1 q_1 u_1 u_2 + p_4 q_4) + (-R_1^2 - R_2^2 + d^2 + k^2)^2 (u_1 + u_2)^2 = 0$$
, (12)

und wir erhalten, wie zu erwarten war, eine biquadratische Gleichung zwischen u_1 und u_2 .

Die Punkte $A(u_1)$ und $A(u_2)$ haben die homogenen Koordinaten

$$x = d + R_1 + (d - R_1) u_i^2$$
, $y = 2 R_1 u_i$, $z = 1 + u_i^2$,

und ihre Verbindungsgerade hat daher die Gleichung

$$(1 - u_1 u_2) x + (u_1 + u_2) y + \{-(d + R_1) + (d - R_1) u_1 u_2\} z = 0.$$
 (13)

Wenn wir eine Gerade durch

$$Ux + Vy + Wz = 0$$

darstellen, so gilt für (13):

$$U: V: W = (1 - u_1 u_2): (u_1 + u_2): \{-(d + R_1) + (d - R_1) u_1 u_2\}$$

und es folgt daraus

$$u_1 u_2 = \frac{(d+R_1) U + W}{(d-R_1) U + W}, \quad u_1 + u_2 = \frac{-2 R_1 V}{(d-R_1) U + W}.$$
 (14)

Wir substituieren (14) in (12) und finden so eine Gleichung für die Linienkoordinaten der Geraden $A(u_1)$, $A(u_2)$. Schreiben wir noch

$$2f = -R_1^2 - R_2^2 + d^2 + k^2, (15)$$

dann wird

$$f^{2} U^{2} + 2 f d U W + (d^{2} - R_{2}^{2}) W^{2} + f^{2} V^{2} = 0$$
 (16)

oder

$$(f U + d W)^{2} + f^{2} V^{2} - R_{2}^{2} W^{2} = 0.$$
 (17)

Es zeigt sich also, dass die Geraden A_i A_{i+1} Tangenten eines Kegelschnittes C sind, dessen Klassengleichung (17) ist. Der Streckenzug A_0 A_1 ... ist somit K_1 eingeschrieben und C umschrieben, das heisst, er ist ein Ponceletscher Streckenzug.

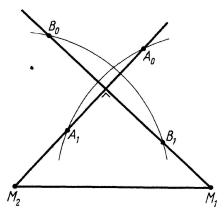
Aus einem klassischen Satz folgt deshalb: wenn für einen bestimmtent Punkt A_0 von K_1 das Polygon sich nach n Zügen schliesst, so schliesst es sich nach n Zügen für jeden Punkt A_0 .

4. Wir betrachten den Kegelschnitt C noch etwas näher. Da in (17) die drei Koeffizienten niemals alle dasselbe Zeichen haben, ist C immer reell.

Aus (16) lesen wir ab, dass die Diskriminante von C gleich $-R_2^2 f^4$ ist.

C zerfällt also nur dann, wenn f=0 ist. Diese Bedingung hat bekanntlich eine einfache geometrische Bedeutung: sie drückt aus, dass im Viereck M_1 M_2 B A die Diagonalen M_1 B und M_2 A aufeinander senkrecht stehen. Aus (16) folgt, dass C jetzt (für $d^2 \neq R_2^2$) die Gleichung $W^2 = 0$ hat und also aus der Geraden durch M_2 besteht. In diesem Fall fällt immer A_2 mit A_0 zusammen. Das lässt sich natürlich auch unmittelbar geometrisch zeigen (Figur 3). Wenn nicht nur f=0, sondern auch $d^2=R_2^2$ ist, so ist C unbestimmt. Man hat dann $d=R_2$, $k=R_1$; die Konstruktion versagt, weil jetzt einem Punkt A_0 immer der Punkt M_1 von K_2 zugeordnet ist. Wir setzten

nun weiterhin $f \neq 0$ voraus; C ist nicht entartet. Fragen wir jetzt nach den Tangenten an C durch M_2 , dann müssen wir in (16) W=0 substituieren; das Resultat ist $U^2+V^2=0$, wodurch die isotropen Geraden durch M_2 dargestellt werden. Wir finden also: der Punkt M_2 ist ein Brennpunkt von C.



Figur 3

Die Gerade U=V=0 ist Tangente von C, wenn $d=R_2$ ist. Das heisst: C ist eine Parabel, falls K_2 durch M_1 geht.

Man zeigt leicht, dass C eine Ellipse ist für $d < R_2$ und eine Hyperbel für $d > R_2$. Für den Mittelpunkt N von C findet man

$$x = \xi = \frac{f d}{d^2 - R_2^2}, \quad y = 0.$$
 (18)

Verschiebt man den Ursprung des Koordinatensystems von M_2 nach N und bezeichnet die neuen Koordinaten mit x_1 , y_1 , U_1 , V_1 , W_1 , dann erhält C die Tangentengleichung

$$-R_2^2 f^2 U_1^2 + (d^2 - R_2^2) f^2 V_1^2 + (d^2 - R_2^2)^2 W_1^2 = 0,$$
 (19)

und seine Gleichung in Punktkoordinaten ist somit

$$\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1 \,, \tag{20}$$

wobei

$$a^2 = \frac{R_2^2 f^2}{(R_2^2 - d^2)^2}, \quad b^2 = \frac{f^2}{R_2^2 - d^2}.$$
 (21)

Mit diesen Daten ist C wohl genügend beschrieben. Die Relation $a^2 - b^2 = \xi^2$ bestätigt, dass M_2 ein Brennpunkt ist. Für $d \neq 0$ ist C niemals ein Kreis. Die zu M_2 gehörige Brennlinie von C hat die einfache Gleichung x = f/d.

5. Bei unseren Betrachtungen über den Kegelschnitt C wurden die anfangs genannten Realitätskriterien ausser acht gelassen. Es ist klar, dass zu einem beliebigen Punkt A_0 nur dann ein reeller Punkt A_1 gehört, wenn jeder Punkt von K_1 ausserhalb C liegt. Dafür gibt es zwei Möglichkeiten: entweder wird C durch K_1 umschlossen, oder C und K_1 liegen ausserhalb einander. Man kann nun leicht analytisch nachprüfen, dass diese zwei Konfigurationen bzw. den symmetrischen und den unsymmetrischen Fall darstellen. Im ersten Fall ist C immer eine Ellipse, im zweiten Fall entweder eine Ellipse, eine Parabel oder eine Hyperbel. In beiden Fällen kann f positiv, Null oder negativ sein.

6. Die Bedingung für ein Ponceletsches Polygon, sich nach n Zügen zu schliessen, kann bekanntlich durch eine Gleichung in den Invarianten der beiden Kegelschnitte ausgedrückt werden. Der Fall n=2 wurde oben besprochen und führt zu f=0. Wir betrachten hier noch den Fall n=3.

Sind die Invarianten des Kegelschnittpaares K_1 und C aufeinanderfolgend Δ_1 , θ_1 , θ_2 , Δ_2 , dann lautet die Bedingung:

$$\theta_2^2 = 4 \Delta_2 \theta_1 . \tag{22}$$

Wählen wir das Koordinatensystem $N X_1 Y_1$, dann sind die Gleichungen von K_1 und C:

$$x_1^2 + 2(\xi - d)x_1z_1 + y_1^2 + \{(\xi - d)^2 - R_1^2\}z_1^2 = 0$$
, $b^2x_1^2 + a^2y_1^2 - a^2b^2z_1^2 = 0$,

und man findet

$$\theta_1 = b^2 (\xi - d)^2 - b^2 R_1^2 - a^2 R_1^2 - a^2 b^2$$

$$\theta_2 = a^2 b^2 \{ (\xi - d)^2 - R_1^2 \} - a^4 b^2 - a^2 b^4$$
, $\Delta_2 = -a^4 b^4$.

Die Bedingung (22) gibt nun mittels (18) und (21):

$$2f(d^2 \pm R_1 R_2) - (d^2 - R_1^2)(d^2 - R_2^2) = 0. (23)$$

Für gegebene R_1 , R_2 und d folgen aus (23) zwei Werte für k, wobei der Streckenzug sich nach drei Zügen schliesst.

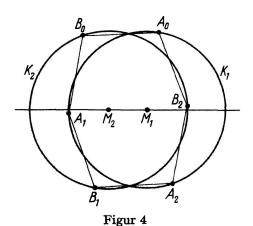
An einem Beispiel zeigen wir, dass die Konfiguration reell möglich ist. Sei

$$R_1 = R_2 = R$$
, $d < R$.

Dann folgen aus (23) die Werte k_1 und k_2 :

$$k_1 = R$$
, $k_2^2 = R^2 \frac{3R^2 - d^2}{R^2 + d^2}$. (24)

Mit beiden Werten sind wir im symmetrischen Fall. Für k_1 ist das ohne weiteres klar; wir haben dabei $\xi = d/2$, N ist die Mitte von M_1 und M_2 , a = R/2 (Figur 4).



Für k₂ finden wir

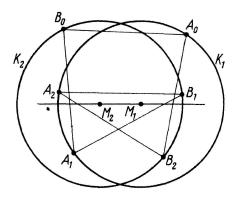
$$k_2^2 - R^2 = \frac{2(R^2 - d^2)}{R^2 + d^2} > 0$$
 ,

so dass k_2 die grösste der vier Strecken ist. Weiter hat man

$$R^2 (3 R^2 - d^2) - (R^2 + d^2) (2 R - d)^2 = -(R - d)^4 < 0$$

und also

$$k_2^2 \le (2 R - d)^2$$
, oder $k + d \le 2 R$.



Figur 5

In Figur 5 ist für diesen Fall das Dreieck $A_0 A_1 A_2$ konstruiert; es wurde dabei d=1, R=2 und also $k^2=k_2^2=8.8$ genommen. O. BOTTEMA, Delft

Kleine Mitteilungen

Über Pseudoprimzahlen

In El. Math. 19, 36 (1964) hat A. ROTKIEWICZ gezeigt, dass jede Zahl

$$M = \frac{a^{a^{n^2}} - 1}{a^{a^n} - 1} \quad (n \ge 4)$$

in bezug auf die natürliche Zahl a>1 pseudoprim ist, das heisst M ist zusammengesetzt und $M \mid a^{M-1}-1$, also auch $M \mid a^{M}-a$. Bei der Durchsicht des Beweises von Rotkiewicz stellte ich fest, dass die Wahl des relativ grossen Exponenten n^2 bei der Zählerzahl nicht notwendig ist. Vielmehr lässt sich zeigen, dass bereits der Exponent n+2 dafür hinreichend ist, dass M für $n \geq 2$ bezüglich a pseudoprim ist. Ich beweise hier den folgenden

Satz: Ist a > 1 eine natürliche Zahl und

$$A_n = a^{a^n} - 1,$$

dann ist

$$M = \frac{A_{n+r}}{A_n}$$

für $n \ge r \ge 2$ (n, r ganz) bezüglich a pseudoprim.

Beweis: Die Zahlen A_n haben die Eigenschaften $A_p < A_q$ für p < q, $A_p | A_q$ und $A_p + 1 | A_q + 1$ für $p \le q$, und $A_{a^n} + 1 = a^{A_n + 1}$ (p, q, n nicht-negativ, ganz). Daraus folgt zunächst

$$A_n (M-1) = A_{n+r} - A_n = (A_n+1) \left(\frac{A_{n+r}+1}{A_n+1} - 1 \right) = (A_n+1) g$$

mit ganzzahligem g, also $A_n+1\,|\,M-1$, da $(A_n,\,A_n+1)=1$. Nun gilt für $n\geq r\geq 2$ sicherlich die Ungleichung $n+r\leq a^n$, somit $M\,|\,A_{n+r}\,|\,A_{a^n}=a^{A_n+1}-1\,|\,a^{M-1}-1$, letzteres wegen $A_n+1\,|\,M-1$. Es ist also $M\,|\,a^{M-1}-1$, und M ist auch zusammengesetzt, denn

$$N = \frac{A_{n+1}}{A_n}$$

hat die Eigenschaften $N \mid M$ und 1 < N < M, da $r \ge 2$ ist.

O. REUTTER, Ochsenhausen