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134 Kleine Mitteilungen fAufgaben

4, = 1 fiir alle 2 e N gilt T| A. Wir wollen Teiler dieser Art auch zu den trivialen Teilern
von A #= 0 zidhlen. In diesem Sinne sehen wir Elemente aus R, die nur solche trivialen
Teiler besitzen, als unzerlegbare Elemente an. Offensichtlich ist P = (p)zen > 1 aus RN
genau dann unzerlegbar, wenn fiir alle 2 € N p, Primzahl ist. Ein unzerlegbares Element
aus N braucht jedoch nicht Primelement zu sein, denn aus P|4 B, P unzerlegbar, folgt
im allgemeinen nicht P|A4 oder P|B. Man wihle etwa P = 2, 4 = (a;)en mit a5 = 2
fiir ungerades %k und a;, = 3 fiir gerades k¥ und B = (b;); ¢y mit b, = 3 fiir ungerades % und
by, = 2 fiir gerades k.

Es gilt also nicht der ZPE-Satz.

Um den g.g.T. zweier Elemente 4, B € R, die nicht beide 0 sind, zu bestimmen,
kénnen wir ebenfalls auf die Komponenten von 4 und B zuriickgreifen. Fiir 4 = (a3)zen
und B = (by)gen 15t D = (dp)ren mit dy = (ay, by) fiir alle £ e N g.g. T. von 4 und B.
Sei ndmlich T|4 und T| B, T = (f;)xen aus N, dann gilt fiir alle & e N #;|a;, und #,|b;.
Aus dy = (ay, b;) und #|d, fiir alle 2eN folgt T|D, D|4 und D|B. Es gilt also der Satz
vom g.g.7T.

Verwenden wir eine Produktdefinition, die Laucwitz2) in anderem Zusammenhang
benutzt, so ldsst sich fiir alle Elemente aus R, die grosser als 1 sind, wenigstens eine Zer-
legung in ein Produkt unzerlegbarer Elemente gewinnen. Fiir Py = pe. (Prv,)ren mit
0+ V= (v3)kens Pr, V € R, schreiben wir

N
Q———Def.HPV;
V=M

wobel

Q = (4 keN—~(HPkm)
keN

m=mp

mit N = (B)gen > M = (my)gen ist. Damit gilt
=

Zu jedem A ap)ren > 1 aus N existiert eine Darstellung
S
4=[]P, (1)
V=1

wobei die P, unzerlegbare Elemente sind und S € R eindeutig bestimmt ist.

Fiir alle £ € N sei namlich o

A = l 1 Prm
m=1
die kanonische Zerlegung von a;, dann folgt mit Py = (¢, vp)keN, V= (v) e v und eindeutig
bestimmtem S = (s;)xen die Darstellung (I). Dass die Darstellung (I) nicht nur formal
sinnvoll ist, erkennt man daran, dass fiir alle Py aus (I) gilt Py|4, wenn fiir alle 2 eN
1 £ vy < 5. Allerdings ist Darstellung (I) im allgemeinen nicht eindeutig.

HaNs-JoacHiM VOLLRATH, Darmstadt

Aufgaben

Aufgabe 465 Aus den #* Platznummern einer Cayleyschen Multiplikationstafel einer
Gruppe der Ordnung # werden m Nummern zufillig (etwa durch Ziehen aus einer Urne)
ausgewdhlt und in der Gruppentafel die entsprechenden Elemente entfernt. Den grossten
Wert k(n) von m, fiir den die Tafel aus dem Rest stets eindeutig rekonstruiert werden
kann, hat kiirzlich J. D&NEs bestimmt (ohne Angabe von Beispielen). Es ist k(n) =
2n — 1 fiir n % 4 und k(4) = 3.

%) Lavewirz, D., Eine Einfihrung der 0-Funktionen, Sitzungsber. Bayer. Akad. Wiss. Math.-nat. KL
41-59 (1959).
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a) Man rekonstruiere die Tafel (E = Einselement)
A B C D
*

*

oy = = % * %)y
LR K L B B N

w*****bm

*mmﬁ'l*bkm
*hy * ok ® % a

* % 2 * &

‘

TONMUO
'***m**

b) Man streiche in der rekonstruierten Tafel 2 » = 16 Elemente so weg, dass die Tafel
nicht mehr eindeutig ergdnzt werden kann. E. Trost, Ziirich

Lésung von a): Fiir die Rekonstruktion der Multiplikationstafel verwende ich nur 7
(anstelle der 12 in der Aufgabe gegebenen) Daten, ndmlich:

FA=G, HA=D, BD=G, CB=A4, CA=E, DG=E, FH=E.

Aus den letzten drei Daten folgt zunidchst AC = E, GD = E, HF = E. Nun kénnen wir
folgendermassen weiterschliessen:

HA=D=HAC=DC=H=GDC=GH = C=GHF = CF=G") =

ACF — AG = F > AGD = FD = A (1)

FA=G= FAC=GC=F=DGC=DF=C=DFH=CH=D = 2
ACH — AD — H = ADG = HG = A }

BD =G = BDG = G?= B = DG* = DB = G (3)

CB=A= ACB = A*= B (

CB=A4A=CBD=AD oder CG=H= ACG= AH =G = CAHC = CGC (5)

oder nach (2) und (1) HC=CGC=CF=G= FG=FHC=C= FGD=CD =F.
Nach (2) und (5) bzw. (1), (3) und (5) ist H? = ADCG = AHG = G* = B, also H? = B.
Der Rest ist nicht mehr schwierig, wenn man beachtet, dass jedes Element in ]eder Zeile
und jeder Spalte nur einmal vorkommt. Die vollstindige Tafel sieht folgendermassen aus:

E A B C D F G H
A B C E F G H D
B C E A G H D F
C E A B H D F G
D H G F B A E C
F D H G C B A E
G F D H E C B A
H G F D A E C B P. HoHLER, Olten

Bekanntlich gibt es genau zwei nichtabelsche Gruppen der Ordnung 8: dieQuaternionen-
gruppe mit den erzeugenden Relationen X¢ = E, Y2 = X2, YX = X-1Y und die Dieder-
gruppe D, mit X* = Y2 = E, YX = X-1Y. Die obige Gruppe ist die Quaternionengruppe,
wobei

A=X, B=X: C=X*, D=Y, F=X%Y, G=X'Y, H=XY

ist. Wird das rechte untere Viertelsquadrat der obigen Gruppentafel weggelassen, so gibt
es also eine zweite Méglichkeit der Rekonstruktion, indem man in den in dieses Quadrat
fallenden Produkten Y? = E setzt und die Diedergruppe erhilt. Eine Verifikation der
Gruppenaxiome. eriibrigt sich bei dieser Schlussweise.

Weitere Losungen sandten J. FriscHKNECHT (Berneck) (nur Angabe der Gruppen-
tafel), O. REUTTER (Ochsenhausen/BRD), J. STEINIG (Ziirich).

1) Die unterstrichenen Relationen sind in der Aufgabe iiberfliissig.
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Aufgabe 466. Erweiterungen der Aufgabe 4431):

a) Es gibt genau eine viergliedrige arithmetische Folge erster Ordnung, deren Glieder
x, ¥, 2, w teilerfremde natiirliche Zahlen sind und einer Gleichung

x’l + yﬂ + zn = wn

mit natiirlichem » geniigen. _

b) Man bestimme alle fiinfgliedrigen arithmetischen Folgen erster Ordnung, deren
Glieder #, y, 2z, u, v teilerfremde natiirliche Zahlen sind und einer Gleichung

xﬂ+yﬂ+zn=un+vn

mit natiirlichem » geniigen. E. TEurrEL, Korntal/Stuttgart

Losung des Aufgabenstellers : a) 1. Wir zeigen zunichst, dass die Differenz der arithme-
tischen Folge gleich 1 sein muss. Dazusetzenwiry =y —d,z2=y+d,w=y + 2d{d > 0)
und haben

y—ayr++a)r=uw+2a"—-y", (1)

2 [y" + (’2’) yr-2 de 4 ]= (’1‘) 2dyn-1 + (’2’) (2d)2yn=2 4 ... (2)

Aus (2) folgt d | y* und damit d = 1 wegen (x, y, 2z, w) = 1.

I1. Wir beweisen je'fzt indirekt, dass » ungerade sein muss und nehmen dazu #» = 2* u,
s = 1, mit ungeradem # an. y muss ungerade sein, denn fiir gerades y wiirde sich aus (1)
mit d = 1 2 = 0 (mod 4) ergeben. Wir setzen also ¥ = 24 — 1 und weiter zur Abkiirzung

(2k+1)2=4,, (2k-1)2=B,.
Damit wird aus (1)
28 [(k — 1)" + k"] = (Ag — B,) (A¥~1 + A¥~2 B, + --- 4+ B¥~1), (3)
Wegen 4, = B, =1 (mod %) ist nach (3)
2n[(k — 1) 4+ k"] = 2" = 0 (mod ),

also £|27 etwa k = 2* mit » > 0, denn » = 0 ergdbe y = 1, ¥ = 0.

Wir betrachten jetzt die Faktoren auf der rechten Seite von (3). Jedes Glied des zweiten
Faktors ist Produkt von Potenzen mit einer Basis der Form (2*+! 4 1)2 = 1 (mod 2%+2).
Da es # Glieder sind, ist

A1 4 AY=2B, + - + B¥~1 =y (mod 2%+?), (4)

Vom ersten Faktor beweisen wir durch vollstindige Induktion, dass er die Zahl 2 genau in
der (x + s + 2)-ten Potenz enthilt, genauer

As _ Bs = 2%+s+8 Us (5)
Us =1 (mod 22""'2) . (6)

Tatsidchlich ist A, — B, = 8 k = 2*3 und die Behauptung also richtig fiir s = 1. Sie sei
bewiesen fiir s. Dann ist

As+1 - B.s+1 = (As + Bs) (As — Bs) = (As + Bs) 2%+s+2 Us

mit

und dabei
: 28

AS+BS=2+2(2

)4kz+... =2 (1+ g2%%+?%), g ganz,
also
As+1 - Bs+1 = 2¥+(s+1)+2 Us+1 " mit Us+1 = Us (1 + g 23u+2) =1 (m0d22x+’) !

was zu beweisen war.

1) El. Math. 18, 139-140 (1963).
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Auf der linken Seite von (3) ist

(B — 1)n 4 hn = (22% — 2%+1 4 1)n/2 4 28% = 1 (mod 2*t1), (7)
Vergleich der Exponenten von 2 auf der linken und rechten Seite von (3) ergibt
2y=n=x+s+4 2. (8)

Vergleich der ungeraden Faktoren ergibt nach (7), (6), (4)
1=1% (mod2*+1), also wu=1+4 ag2%+1,
Waire hier a > 0, also 4 > 1, so wire
u—1=a éﬁsu-—s—l >a 2242 =g 4u-1> qu—1,
da 2f # — s mit s monoton wéchst. v — 1 = 4! ist aber unméglich, also gilt

a=0, u=1, (9)
und folglich wegen (8) und » = 1
s=3, x=23 (10)

Dividieren wir nun in (3) beiderseits durch 27, so erhalten wir mit (8), (9) und (6)
(2% — 1)#+s+2 4 2%e+s+9) = U 1 = 1 (mod 22%+3)
und da nach (10) »% (% + s + 2) = 2% + 2 sowie 3x > 2x + 2, ist

1=(1—2%*+s+2 =1 — 252% 4 25-1 (25— 1) 22% (mod 22%+2) |
also
2%+s = 2% +s=1 (25 — 1) (mod 22%+2) | 1 = 2%~1(2% — 1) (mod 2*—++2) ,

Aus der letzten Kongruenz folgt, dass » = 1 sein muss, denn wegen (8) und (10) ist
% — s+ 2= 25— 2s > 0. Dies steht im Widerspruch zu (10). Die Annahme eines geraden
n ist also unmoglich.

ITI. Nun sei » ungerade, also offenbar » = 3. Aus (2) ergibt sich

yn + (Z)yn—z+,,, +ny=myn—l= ...t p2n=2y 4 2n-1
und man hat y|2*1 etwa y = 27 (y < n — 1), sowie weiter
ny=n2""2y+4 27~1(mody?), also xn=n27""?4 27~1-7(mody). (11)
Da y > 1 sein muss, ist y > 0, also ¥ gerade. Deshalb folgt aus (11)
l=n=27"%4 27-1-9 = 2%"1-7 (mod 2)

und damit n = n — 1, y = 271, Aus (11) erhalten wir jetzt 27 =%y + 2 = 2 (mod ),
also y = 271|2 (n — 1). Wegen 271> 2 (n— 1) fiir » > 3 ist » = 3 und y = 22 Tat-
sdchlich ist 3% 4 43 + 5% = 6% und damit ist der Satz bewiesen.

b) I. Die Differenz der arithmetischen Folge heisse d, dann ist

(z—2d)"+ (g —d)"+ 2" = (2 + d)" + (z + 2d)",

also d|{z"und d =1 wegend > Ound (v,y, 2, u,v) = 1.
I1. Fiir ungerades n hat man .

z»=z(’1‘)zn—1(1+z)+z(;‘)zn~8(1+2a)+..-+2(1+2n).

Fiir n = 1 ergibtsichz = 6 und manerhidlt4 + 5+ 6 = 7 4 8. Fiir » > 1ist 2?|2 (1 + 27)
und das ist unmoglich, weil z gerade, also 22 ein Vielfaches von 4 ist.
II1. Bei geradem n hat man

e LR R S R

1) Fiir » = 2 ergibt sich z = 12 und man erhilt
10% 4 11% 4 122 = 132 | 142,

L) @+2my
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2) Firn > 2ist 21 > 2n 2"2 (1 4 2), also z > 6 » und
2|20 (1 + 2771, (2)

also 36 n? < 22 £ 2 (1 4+ 271), was fiir » < 8 nicht moglich ist. Also ist # = 10.

3) Wir setzen z = 2'Z, n = 2°N,t=1,s=1, Z und N ungerade. Dann ist wegen (2)
2t<1+4+s,alsos=2¢t—12=¢.

Es sei nun schon bewiesen, dass s = 2¢ (k= 1). Wir werden zeigen, dass daraus
s= (k + 1) ¢ folgt, so dass s grosser ist als jedes Vielfache von ¢£. Damit ist dann bewiesen,
dass es keine weiteren Losungen gibt. '

Aus (1) erhalten wir, wenn wir rechts die Reihenfolge der Summanden 4dndern

zn——l —_ 2(?) (1 + 2n-—-1) + 2(132) (]_ + 2n—3) 22+ . bs
42 (2 kn+ 1) (14 27—2k=1) 22k 4 2 4 z2k+2

mit einer ganzen Zahl A. Nun ist bekanntlich

a (ab) fir (a,¢)=1.

c

Somit enthilt jeder der angeschriebenen Binomialkoeffizienten den Faktor 2. Folglich ist
20n=1)t Zn=1 — 21+s [J L 21+(2k+2)t B
mit einer ungeraden Zahl U und einer ganzen Zahl B. Wire s < (k + 1) ¢, so wire
/ 2n=Nt=(+5) Zn=1 _ [ 4 2@k+2t—s B

wo der Exponent von 2 rechts positiv wire, nimlich > (2 4 1) £. Damit miisste links der
Exponent von 2 verschwinden und man hitte 1 + s=(n — 1)funds=(n - 1)t -1 <
(k + 1) ¢, folglich

m—-1et=skR+1)t, n—1<k+1, 2NZk+ 2. (3)

Fir N=1,n= 25 =210,s = 4 ergdbe sich 2 = 14. Wegen s = k¢ = & folgt aber aus (3)
2 < k + 2, was schon fiir 2 = 3 falsch ist. Fiir N > 1, N = 3 wiirde 2¥ 3 < % + 2 folgen
und das ist fiir # = 1 falsch. Also muss s = (k¢ + 1) ¢ sein und wir sind am Ziel.

Aufgabe 467. Bilden in einer Determinante die Elemente von p + 2 Zeilen (Spalten)
je eine arithmetische Reihe p-ter Ordnung (p = 1), so hat die Determinante den Wert Null.
G. GUTTLER, Frankfurt a. M.

Lésung: Transponieren oder Vertauschen von Zeilen einer Matrix 4 verdndert |det 4|
nicht. Also bilden ohne Beschrankung der Annahme die ersten p 4 2 Spalten a,, a,, ..., a,,,
von A eine arithmetische Folge p-ter Ordnung. Man bilde die ersten Differenzen und er-
hélt in den ersten p + 1 Spalten a, — a,, a3 — ay, ..., ap,; — a,,,. Sodann bilde man die
Differenzen dieser neuen p + 1 Spalten und fahre so fort. Nach ¢ solchen Schritten stim-
men nach Voraussetzung die erste und die zweite Spalte iiberein. Da sich bei diesen Um-
formungen det 4 nicht veriandert, folgt det 4 = 0. J. SpiLKER, Freiburg i. Br.

Weitere Losungen sandten W. JANICHEN (Berlin-Zehlendorf), H. MeiL1 (Winterthur)
und O. REUTTER (Ochsenhausen, BRD).

Aufgabe 468. Es seien a; die Langen der Seiten und w; diejenigen der Winkelhalbieren-
den eines Dreiecks. Man zeige, dass stets gilt

3 3
16 ) 'w} < 9} af
=1 t=1

mit Gleichheit nur im gleichseitigen Dreieck.
J. BERKES, Szeged und A. Makowsk1, Warschau
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1. Lésung: Ist s der halbe Dreiecksumfang, so gilt?) w! < s (s — a;), woraus nach Um-

formung
4} < (4, + ay)® — af

folgt. Verwendet man die wohlbekannte Ungleichung zwischen arithmetischem und
quadratischem Mittel, also (4, + a,)%2 < 2 (a? + a}), dann erhilt man

4w <2(af+a3) —a3,
und hieraus
16w} <4at+4a}+8ala} —4atal — 4uial + a}.

Die Summation ergibt die gew{inschte Ungleichung

! 3
165’w§ <9 af.
i=1 i=1

Das Gleichheitszeichen gilt nur fiir a, = a, bzw. a, = a, und a, = ag, das heisst @, = a, = as,
also nur fiir das gleichseitige Dreieck. J. Scuopp, Budapest

274 Solution: Let a,, m,;,, w; denote the sides, medians and interior bissectors of the
triangle. The familiar relations :

4mf.== 2(a,2._1+ af“) —a (1=1,23;a,=a,)

yield, when squared and then added,
3 3

163 'mi =93 "a}.

i=1 i=1
Since m; = w;, with equality if and only if a;,_; = 4,,,, we have

3 3
3
16 E w? <9 2 a;‘, or M,(w,) < KZ:M‘(ai) ,
i=1 i=1

with equality in an equilateral triangle.
Further, if #; is the altitude on a;, we have %; < w;, and therefore, by a result of

Makxowski?), V3
My(hi) = - My(a;) for |k] =4,

with equality as above. J. StEINiG, Ziirich

Eine weitere L.osung sandte O. REUTTER (Ochsenhausen, BRD)

Neue Aufgaben

Aufgabe 489. Jedem Punkt P einer Ellipse werden die drei von P verschiedenen
Punkte P,, P,, P, zugeordnet, deren zugehérige Kriimmungskreise durch P gehen.
Kriimmungszentrum fiir P, sei K, (i = 1, 2, 3). Man zeige, dass die Flicheninhalte der
Dreiecke P, P, P, und K, K, K, konstant bleiben, wenn P die Ellipse durchlduft. (Fiir das

Dreieck P, P, P, ist diese Eigenschaft bekannt; siehe Enzyklopddie der Math. Wiss. III
C1,S.75) C. BINDSCHEDLER, Kiisnacht

Aufgabe 490. Istp, (n = 1, 2, ...) die Folge aller Primzahlen, dann gilt fiir alle reellen
x > 1 die Ungleichung o9 0o
Lol ¥
< p g

X
=1 Pa n=1 O. REUTTER, Ochsenhausen/BRD

1) Siche: Aufgaben fiir die Schule, Losung zu Nr. 8, El. Math. 17, 45-56 (1962).
) Some Geometric Inequalities, El. Math. 17, 40-41 (1962).
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Aufgabe 491. @ sei eine kubische Parabel (y = a 23 + b2 +cx + d)und M {g, g’, ...}
die Menge der Geraden, die € in drei (reellen) Punkten schneiden. Man begriinde folgende
eineindeutige Abbildung g «» g" von M auf sich: In den Schnittpunkten von g mit € werden
die Tangenten an € gelegt. Diese Tangenten schneiden ¢ in Punkten von g’. (g — g’ gilt fiir
jede Kurve 3. Ordnung. (Vgl. B. L. VAN DER WAERDEN, Algebraische Geometrie, S. 89)).
Zeige ferner:

glles = gilles - (1)
DV(g182858s).= DV(g182836s) » DV = Doppelverhiltnis, (2)
W. JANICHEN, Berlin-Zehlendorf

Aufgabe 492, Es seien a, b, ¢, d natiirliche Zahlen und ¢(a) die Eulersche Funktion.
Man beweise unter der Voraussetzung (b, ¢) = 1 die Kongruenz

th(%) (ZG’Z: i) =0 (modac) .

dla E. TrosTt, Ziirich

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitit der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen
nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass
der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewihlt
werden soll, x-Achse nach rechts, y-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrige sind zu senden an Prof. Dr. WiLL1 LUssy, Biielrainstrasse 51, Winterthur.
1. Die graphische Darstellung von
2934+ 292 — 22y — 43— 1092 —5xy — 322 —4y+16x+48=0
besteht aus drei Geraden. Wie lauten ihre Gleichungen ?
b y=x+43; = —x+ 4; =1, x— 2.
2. Es scheint nicht allgemein bekannt zu sein, dass das Pascalsche Dreieck auch zur
Entwicklung der Potenz eines Binoms mit negativem ganzem Exponenten gebraucht

werden kann: 11/
12/1
13/3/1
14/6/4 1
Es ist zum Beispiel:
l—23=14+3xr4+6224+10234+... |x|<1.
3. Im reguliren Neuneck A BCDEFGHI mit dem Umkreisradius » = 1 seien folgende Be-

zeichnungen gewiéhlt: AB =%, AC =1, (4D = V?) AE = z. Der Satz von Ptolemius
liefert

fiir das Viereck ACDG : y)/3 + #}/3 = 2J/3, (1)
fiir das Viereck ABCD: x* + x)/3 =42, (2)
fiir das Viereck ABCE: vy +xz =y}/3. (3)
Aus (1) ergibt sich # + y = 2z; eliminiert man y aus (2) und (3), so findet man die
«Neunecksgleichung» #A—3x4+)3=0. (4)
Fiir die Neuneckseite x gibt Herr H. KisseL, Bad Diirkheim, einen erstaunlich guten
Niherungswert an: =

: o 2)/ 58+ 1 (5)

Der einfache Bau der Formel gestattet eine sehr genaue Niherungskonstruktion fiir das
regulire Neuneck und fiir einen Winkel von 40°. Der relative Fehler von (5) betridgt
43,5 - 10-5, Die Gleichung (4) besitzt drei reelle Wurzeln, nimlich neben der Neun-

eckseite » die Werte von y und —z!
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4. Ein Polyeder besitzt genau dann ausschliesslich Dreiecksflichen, wenn fiir die Zahl der
Flachen (f) und der Kanten (&) gilt
fih=2:3.

p Die Anzahl der Polyederflichen, die von » Kanten begrenzt werden, sei f, (n =
3,4 , N). Dann ist die Anzahl aller Flichen

) 3

N
f=2'1.
n=3

Da an jeder Kante genau 2 Flichen angrenzen ist die Anzahl aller Kanten
o A )—v
- Az_../

Folglich gilt

N N
=32 E 2
n=3 =3
und Gleichheit besteht genau dann, wenn f, = ... = fy = 0 ist, wenn also das Poly-
eder nur Dreiecksflichen besitzt. O. REUTTER, Ochsenhausen, BRD

5. Die Aufgabe Nr. 4 in Band XVIII, Seite 93, behandelte einen Satz von BRocARD, und
lautete, mit etwas anderen Bezeichnungen:

«P und Q seien zwei Punkte einer gleichseitigen Hyperbel, die zum Hyperbel-
zentrum M symmetrisch liegen. Der Kreis um Q durch P schneidet die Hyperbel in drei
weiteren Punkten 4, (¢ = 1, 2, 3), die Ecken eines reguldren Dreiecks sind. — Fiir einen
eleganten planimetrischen Beweis dieses schonen Satzes wire ich dankbar.»

Es sei zunidchst an den Aufsatz von H. ScHAAL in Band XIX dieser Zeitschrift,
Seite 53 ff, erinnert, wo dieser Satz in einen grésseren Zusammenhang gestellt wird.
Dann haben die Herren E. Knup, St.Gallen und O. REuTTER, Ochsenhausen, Beweise
eingereicht, die sehr dhnlich sind. Beide beniitzen wesentlich den Satz, dass Q 4, und
P A mit den Asymptoten gleiche Winkel bilden. Der Beweis von Herrn REUTTER
lautet:

Wird die Ebene einer zentrischen Streckung mit dem Zentrum P und dem Strek-
kungsverhiltnis 1/2 unterworfen, dann wird das Dreieck 4,4, 4, in das Dreieck B, B, B,
abgebildet, dessen Ecken B, die Mittelpunkte der Hyperbelsehnen B4, sind. Der Um-
kreismittelpunkt Q von Dreleck A,A,A, geht in den Hyperbelmlttelpunkt M iiber,
dieser ist also Umkrelsm1ttelpunkt von Dreleck B, B, B,, und es ist iiberdies MP =
MB,. Wegen der Ahnlichkeits-Invarianz dieser Abbildung geniigt es zu zeigen, dass das
Dreieck B, B, B, regulir ist.

Der Mittelpunkt B, der Hyperbelsehne P4, ist bekanntlich auch der Mittelpunkt
des zwischen den Asymptoten gelegenen Abschnitts der Sekante PA,. Daraus (und
wegen der Orthogonalitit der Asymptoten) folgt, dass M B, und PA, (PB,) adjungierte
Richtungen in bezug auf die Asymptoten besitzen, das heisst M B, und PA, (PBy)
schliessen mit den Asymptoten je gleiche Winkel ein.

(0 £ o, < 2 n) sei der positiv-orientierte Richtungswinkel von M B, bezogen auf
die willkiirlich gewdhlte Richtung einer Asymptoten als Nullrichtung. Wir diirfen an-
nehmen, dass a, < @y < a, ist, was durch geeignete Numerierung der Punkte B er-
reicht werden kann. Dann folgt aus der erwédhriten Sekanteneigenschaft, dass

ist. Wegen M P = MB, ist das Dreieck PM B, gleichschenklig mit der Spitze M, also
¥ PMB,=n—2 4):MB P=4q,— (2k—1)n, und damit & ByMB, ., = X PMB,, —
< PM B =4 (g — ak) — 2 n. Andererseits ist trivialerweise <X B,MB,,, =
(441 — ). Aus den letzten beiden Beziehungen folgt % B M B, = 2 n/3, womit die
Regularitat des Dreiecks B, B, B; nachgewiesen ist,
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