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Ein Axiomensystem fiir die euklidische Geometrie

Die axiomatische Struktur der Algebra ist sehr viel einfacher als die der Geometrie.
Daher erscheint es dem Verfasser natiirlich, in der Geometrie-Vorlesung fiir zukiinftige
Mathematiklehrer ein moglichst algebraisches Axiomensystem zugrunde zu legen. Die
in dieser Note gegebene Theorie der euklidischen Ebene ist vom Verfasser mehrmals
in diesem Sinne verwendet worden.

Unsere Axiome sagen im wesentlichen aus, dass es nichtkollineare Punkte gibt,
dass die Ebene «vollstindig» ist, und dass das Pythagoriische Theorem gilt. Die For-
mel des Satzes von Pythagoras selbst ist nicht als Axiom brauchbar, da sie auf vielen
komplizierten Definitionen (zum Beispiel «Gerade», «rechter Winkel») beruht. Daher
ist sie ersetzt durch eine Relation zwischen den sechs Segmenten, welche durch vier
beliebige Punkte in der Ebene gegeben werden. Die Formel, welche von L. N. M.
CARNOT zum erstenmal gegeben wurde, sagt aus, dass das Volumen des Tetraeders
aus den vier Punkten verschwindet.

Ein Vorteil unseres Axiomensystems ist, dass die fundamentalen Relationen nur
gerade Potenzen von Lingen enthalten, aber dass trotzdem gerichtete Strecken auf
natiirliche Weise eingefiihrt werden koénnen, sogar fiir die Geometrie iiber nicht reel-
angeordneten Korpern. Gerichtete Strecken kénnen kohirent nur auf einer einzelnen
Geraden, nicht in der ganzen Ebene, eingefiihrt werden. Deshalb sollte ein Axiomen-
system nicht auf diesen Begriff Bezug nehmen, falls man nicht bereit ist, eine doppelte
Uberlagerung der Ebene in die Elementargeometrie einzufithren. Unser Axiomen-
system ist nicht geeignet, als Basis fiir eine Geometrie iiber den komplexen Zahlen zu
dienen (siehe Axiom V). ’

Der gruppentheoretische Hintergrund unserer Behandlung ist der Folgende: Die
einzige Invariante der euklidischen Geometrie ist der Abstand zweier Punkte. Zwi-
schen den sechs Abstidnden vierer Punkte muss esne Relation bestehen. Wir zeigen,
dass diese Relation sowohl die Bewegungsgruppe, wie auch die Invariante, festlegt.

Definitionen sollen mit D. ¢ (¢ =1, 2, 3, ...), Sitze durch S. 7 bezeichnet werden.

Axtome

K sei ein vorgegebener Korper der Charakteristik p + 2. K2 sei die Menge aller
Elemente von K, welche Quadrate sind. Punkte in der Ebene n (aufgefasst als Punkt-
menge) werden durch grosse, Geraden und Elemente von K durch kleine Buchstaben
bezeichnet.

1. Es gibt eine Funktion v X v > K2, welche jedem (ungeordneten) Paar von Punkten
P, Q von & esne Element P Q2 € K% zuordnet.

I1. Zu je zwei verschiedenen Punkten P, Q und jedem a® € K2, a? & O gibt es wenig-
stens zwet verschiedene R so, dass Q R? = a® und

PQ*+QR*+RP*—2PQ*-QR*—2QR:*-RP2—2RP:-PQ:=01).
I11. Es gibt drei Punkte P,, P,, P; so dass

1) In der Bezeichnungsweise der Elementargeometrie bedeutet das 16s (s —a) (s—b) (s—¢) = 0.
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IV. Fiir vier (nicht notwendigerweise verschiedene) Punkte P,, P,, P,, P, giit
immer
2 PP PP PP - PP P FPP =~ 3P PP P=0.
(Die Summen sollen iiber alle Permutationen von ungeordneten Paaren ausgedehnt
werden2).)
Die Ebene soll quast-reell heissen, wenn ausserdem noch

V. PQ*=0 (dann und) nur dann, wenn P = Q

gilt. Wir behandeln nur solche Ebenen; jedoch soll bemerkt werden, dass P P2 =0
aus den vorhergehenden Axiomen folgt und dass verschiedene unserer Sitze auch ohne
Axiom V giiltig bleiben.

D.1. Drei Punkte P, Q, R sind kollinear, wenn fiir sie die Relation von Axiom II
gilt. Die Gerade P ( ist die Menge aller Punkte, welche mit zwei nicht zusammen-
fallenden Punkten P, (, kollinear sind.

D.2. Gerichteter Abstand P Q ist jedes a € K, fiir welches a2 = P (2.

S.1. Drei Punkte P, Q, R sind kollinear dann und nur dann, wenn die Abstinde so
gewdhlt werden kénnen, dass PQ + Q R+ R P = 0.

Setzen wir P Q% = p2, Q R? = ¢%, R P? = r?, so wird die Bedingung der Kollinearitit

74__2(p2+q2)r2+p4+q4_2752q2=0’
oder
2= p% 4 g2 4 2242,

Daraus folgt der Satz, da wegen der Kommutativitdt der Multiplikation 2 und — a die
einzigen Wurzeln von 42 sind.

Falls die Relation von Satz 1 erfiillt ist, so nennen wir die Abstinde normalisiert.
Fiir normalisierte Abstande setzen wir die Konvention Q@ P = — P Q fest.

S.2. Es seien. A ein beliebiger Punkt der Ebene und P, Q, R drei kollineare Punkte,
deren Abstinde normalisiert seien. Dann gilt der Satz von STEWART:

AP*-QR+AQ*RP+AR-PQ+PQ-QR-RP=0.

Fiir den Beweis beniitzen wir die vorher eingefithrten Abkiirzungen p, g, 7, und
a*= A P2 b2 = A Q2 c*= A R2 Die Formel von Axiom IV lautet ausgeschrieben

a2p2 g%+ a2 gRr® 4 B2 P2 o2 4 B2 g2 0% 4 22 g2 4 B P22
+a202g% + a2 b29% 4 a2 c2 g% + a® c? p? + b2 2 PP 4 B2 212

— b2 p? — b2 g — R a2 — pRgPe2
—atg?—atgt — b2 — B2t — ot PP — P ph
= a2 (g2 + 72 — %) + B2 R (r® + p% — %) + c2a? (P2 + g% — 1?)
+ a2 q® (P2 + 12 — g?) + D292 (P? + g — 7%) + 2 P2 (¢ + 7% — p?)
—at @ — b — A p2 — pRgEp?

%) Die erste Summe enthilt 12 Summanden, die zweite 4, und die dritte 6. P Q4 bedeutet (P Q%)%.
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=—2a%b%qr—2a2c2pq—202C2pr—2a2q2pr— 20212 pqg—2c2p2qr
=—(a2q+b2r+c2p+pqr)2=0.

S3.PP=0.

Nach Axiom II definieren zwei Punkte immer eine Gerade. Wenn P = (, so folgt
aus S.1. fiir normalisierte Abstinde PP + PR 4+ R P =0, also entweder PP =0
oder P P = —2 P R fiir beliebiges R. Der zweite Fall wird durch Axiom II ausge-

schlossen.

S4. Wenn P, Q, R (P + R) kollinear sind und A solcherart, dass P A2 = P (2,
R A% = R Q?, dann ist A = Q.

Von hier an verwenden wir ausgiebig die quasi-reelle Eigenschaft. Die Formel von
STEWART reduziert sich hier zu 4 Q*« R P = 0. R + P impliziert 4 = (.

S.5. Wenn P, Q, R sowie P, Q, S kollinear sind und P =+ Q, so sind Q, R, S kollinear.

Nach S.1. kann die Voraussetzung formuliert werden als

PQ+QR+RP=0, +4+PQ+QS+SP=0.
Ausserdem gilt der Satz von STEWART in der Form
© SP2-QR+QS*-RP+SR2-PQ+PQ-QR-RP=0.

Wird hierin S P? durch die zweite Kollinearitatsbedingung eliminiert, so erhilt man
durch eine leichte Umformung mit Hilfe der ersten Gleichung

PQ(SR*4+2QS-QR—QR2—-QS?)=0.
Da nach Voraussetzung P Q + 0, so folgt S R = 4 (Q R 4 Q S) und die drei Punkte

sind kollinear nach S.1.

Korollare: 1. Eine Gerade ist durch zwei ihrer Punkte eindeutig festgelegt.
2. Zwei verschiedene Geraden haben héchstens einen Punkt gemein.
3. In Axiom II kann «wenigstens» durch «genau» ersetzt werden.

D.3. Zwei sich in einem Punkt P schneidende Geraden g, % sind senkrecht, wenn
Aeg, Beh, A+ P, B+ P existieren, sodass A P2+ P B*= A B2
S.6. Die Definition des Senkrechistehens ist unabhingig von der Wahl der Punkte

A und B.
Es geniigt, zu zeigen, dass die pythagordische Formel fiir einen beliebigen Punkt
C e h anstelle von B giiltig bleibt. In normalisierten Abstinden gilt

AP:-BC+AB*-CP+AC*-PB+PB-BC:-CP=0,
und also, nach unseren Voraussetzungen
—AP:-PB—AP:-CP+AP-CP+PB:-CP+AC*-PB-—
~PB(PB+CP)CP=PB(—AP>—PC*+A4C?=0.

Der Satz folgt aus P B + 0.
S.7. Zwei Senkrechte zu einer gemeinsamen Tramsversalen sind entweder identisch

oder disjunkt.
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Esseia | g,b | g,anb=A,ang=P,bNg=Q.Dannist 4 Q*=4 P2+ P Q?,
AP2=A4Q%*+ P@? also 2 P Q% =0und P = Q nach Axiom V.
S.8. Aus jedem Punkt P, welcher nicht auf einer gegebenen Geraden g liegt, gibt es eine
Senkrechte (Lot) 2u g.
Eine Gerade enthilt mindestens zwei Punkte 4, B nicht verschwindenden Ab-
standes nach Definition. Man priift leicht nach, dass PX | g, falls X € g durch
PA*— PB?— B A? P B*— PA*— B A?

XB= 2BA , AX= 2B A4

gegeben ist. Nach S.4. ist X eindeutig bestimmt und unabhingig vom Vorzeichen, das
fir B A gewdhlt wird. Nach S.7. ist das Lot eindeutig bestimmt.

D.4. Ein Winkel P (g, h) ist gegeben durch zwei Geraden g, 4 welche sich in einem
Punkt P, dem Schestel, schneiden.

D.5. Zwei Winkel P, (g, 4,), Pj(gs, hg) sind komgruent, falls es Punkte G; e g;,
H;eh; (1 =1, 2) gibt, sodass G; + P, H; + P und

P,Gi=P,G}, P H:=P,H:, G, H}=G,H:.

S.9. Die Winkelkongruenz ist unabhingig von der Wahl der Punkte G, Gy, H,, H,.
Es geniigt, zu zeigen, dass die definierenden Relationen bestehen bleiben, wenn
ein Punkt aufs Mal gedndert wird. Fiir K, € 4,, K; + P, gibt es nach Axiom II und
S.4. ein einziges K, € h,, fiir welches P, K3 = P, K: und H, K? = H, K3 gilt. Dann

ist auch
SHAUCt ¢ P2 H, K, + G, H? K,P,+ G K} -P,H,+ P H, -H K, K, P, =0
und durch Subtraktion (G, K? — G, K2) K, P, = 0, also ergibt sich die noch fehlende
Gleichung G, K? = G, K2.

Korollare: 1. Winkelkongruenz ist eine Aquivalenzrelation.

2. Alle rechten Winkel sind kongruent.

3. Kongruenzsitze s s s und s w s.

4. Die Basiswinkel im gleichschenkligen Dreieck sind kongruent.
5. P(g, h) ist kongruent P(k, g).

S.10. Es seien m, n zwet Geraden, welche die Geraden eines Winkels P (g, h) treffen,
aber nicht durch P gehen. Es ses A=g0m, B=gOn, A’=h0Om, B'=h0On.
Wenn es normalisierte Abstinde auf g und h gibt, fiir die

PB=cPA PB =c¢cPA’ ce K

so gilt auch B B'? = ¢2 4 A'2.
Nach Voraussetzung gilt auch

AB=(c—-1PA A B =((c—1) PA’
und nach STEWART
PB’-A’B’+BA’2-B’P+BB'Z-PA'—]—PA’-A'B’-B’P=O,'
PA2-AB+AA?-BP+BA?-PA+PA-AB-BP=0.
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Nach den Voraussetzungen kann in der ersten Gleichung P A’, in der zweiten P 4 vor
die Klammer genommen werden. Eine einfache Elimination gibt dann

BB2%2-c24A4%=0.

S.11. Es seten m, n senkrecht zur Geraden h eines Winkels P (g, h). Der Scheitel P sei
weder auf m noch auf n. M1t den Bezeichnungen von Satz 10 gilt

PB PP
P4~ P4

Wir setzen P B =c¢ P A und normalisieren die Abstinde wie fiir den Beweis von
S.10. Die zweite Stewart-Gleichung des vorhergehenden Beweises gilt auch hier und
kann in die Form

BA?4+ (c—1)PA2—-cAA2—c(c—1)PA: =0
gebracht werden. Nach Voraussetzung ist P A2= A4 A'* + P A%, daher
BA?24+ (2c—1)PA2—2PA2=0.

Die erste Stewart-Gleichung des vorhergehenden Beweises kann durch diese Bezie-
hung und P B? = B B’2 + P B’2 reduziert werden zu

—2PA" -B'P(cPA"+B P)=0.

Der Satz folgt sofort.

S.12. In jedem Punkt einer Geraden h existiert eine einzige Senkrechte zu h.

Die Existenz folgt sofort aus S.11. Nehmen wir jetzt an, dass zwei Senkrechte
P B und Q B durch B ¢k existieren. Nach II kénnen wir B Q% = B P? = b? annehmen.
Wir wihlen einen zweiten Punkt A € 4 und setzen A B% = 42 + 0. Dann ist

AP*=AQ*=a%+ b%.

Ausserdem sei P Q% = x2. Nach IV ist

PQ?-QA2-AB2+PQ2-QB2-AB:+P(Q?-PA*-AB2+ P(Q?-PB* A B?
+PA2-QA2-QB*+ PA2-AB:- QB2+ PA*-PB2-QB*+ PA2-P Q% QB
+PB2-QB2- QA+ PB2-AB2- QA2+ PB®-P Q% QA2+ P B2 P A% Q A?
—PB*-QB*P(Q*—PB2-AB-PA2— QA2-PQ*- PA2—- QA2%-Q B2- A B?
—~PQ*AB*—PQ"“AB*~PA*-QB*—PA?-QB*— P B*(Q A*— P B*- Q A?

= a2 (a2 + b%) 22 + a2 b2 2 + a? (a® + b2) 22 + a2 b2 42

+ (a2 + b2)2 b2 + a® b2 (a2 + %) + B* (a2 + b2) + b2 (a2 + B2) A2

+ b4 (% + b2) + a? b2 (a? + b2) + B2 (a2 + B2) 22 + b2 (a2 + b2)2

— b4 x® — a2 b2 (a2 + b?) — (a2 + b9)2 42 — a2 b2 (a® + B2)

—atx? — a® 2% — b4 (a® + b?) — b2 (4% + B2)% — B (a2 + b2) — B2 (a2 + b2)2

— @ (—a2+ 40 =0.

Also ist entweder x = 0, das heisst P = Q, oder 42 = 4 b% und P, Q, B sind kollinear
nach D.1, ‘ ~
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D.6. Disjunkte Geraden heissen parallel.

S.13. Zwei Geraden sind dann und nur dann parallel, wenn sie ein gemeinsames Lot
besitzen.

Der erste Teil des Satzes ist in S.7. enthalten.

Gegeben seien die Geraden g und 4. Wir wihlen P € g und ziehen das Lot # von P
auf 4. Der Schnittpunkt von » und % sei Q. Wir zeigen: Ist g nicht senkrecht zu #, so
schneiden sich g und 4. Es sei R + P ein zweiter Punkt auf g, und S der Fusspunkt
des Lotes von R auf #. Nach Voraussetzung ist S + P. Nach S.11. ist Q der Fuss-
punkt des Lotes auf # aus einem Punkt X eg definiert durch PS/PQ = P R/P X.
Nach Konstruktion ist X = g0 A.

Korollare: 1. Durch einen nicht auf einer Geraden g liegenden Punkt P existiert
genau eine Parallele zu g.

2. Die Gleichung einer Geraden in kartesischen Koordinaten ist linear.

3. Parallele sind dquidistant.

4. Stufenwinkel an Parallelen sind kongruent.

Die bisher bewiesenen Sitze sind so formuliert, dass die Verifikation der Hilbert-
schen Axiome der Inzidenz, Kongruenz, und des Parallelismus sofort ausgefiihrt
werden kann. Die einzige Ausnahme ist das Axiom der Winkeladdition, welches in der
Hilbertschen Formulierung auf den Axiomen der Anordnung beruht. Der Grund fiir
diese Ausnahme ist leicht einzusehen.

Nach unserer Definition ist die Eindeutigkeit der Winkeladdition gleichbedeutend
damit, dass die vier Seiten und eine Diagonale eines Vierecks eindeutig das Quadrat
der Lange der zweiten Diagonale bestimmen. Axiom IV fiihrt aber auf eine biquadra-
tische Gleichung, von deren zwei Losungen wir die «gréssere» auslesen sollen. Das ist
aber nur moglich, wenn K ein angeordneter Korper, und daher von der Charakteristik
Null, ist. In diesem Fall ist es leicht, eine Zwischen-Relation, Halbebenen, und kon-
vexe Polygone zu definieren. Die Axiome der Anordnung und der Winkeladdition
werden dann leicht zu beweisende Sitze. Hier kam es uns hauptséichlich darauf an, zu
zeigen, dass ein wesentlicher Teil der metrischen euklidischen Geometrie ebenso leicht
wie die projektive Geometrie iiber einem beliebigen Korper entwickelt werden kann.

Bemerkungen: Bei Charakteristik 2 muss die Bedingung der Kollinearitdt durch
P Q%+ Q R?2+ R P? =0 ersetzt werden. Parallelismus und Orthogonalitdt kénnen
nicht unterschieden werden, und Existenzsitze bereiten betridchtliche Schwierig-
keiten.

Die Rolle der Formel von STEWART als Universalhilfsmittel wird in der elliptischen
Geometrie von

cosA PsinQ R+ cosA QsinR P + cosd RsinPQ =0,
in der hyperbolischen Geometrie von
coshd4 PsinhQ R + coshAd Qsinh P R + cosh4d RsinhP Q=0
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