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Nach dem dritten Keplerschen Gesetz sind iibrigens auch die Umlaufzeiten auf
dem Kreis und auf der Ellipse gleich. Dies hat praktische Bedeutung. Wird namlich
vom Raumschiff eine Raumsonde in die elliptische Bahn abgeschossen, wihrend das
Raumschiff auf der Kreisbahn bleibt, so kehrt die Sonde wie ein Bumerang nach
einem Umlauf zum Schiff zuriick.

Unser Anliegen der Betonung der plétzlichen Anwendbarkeit mathematischer
Theorien sollte auch im Unterricht beachtet werden. Vor noch nicht langer Zeit waren
Bestrebungen im Gange, den Unterricht in den elementargeometrischen Eigenschaften
der Kegelschnitte zu reduzieren. Ein Ziel des Mathematikunterrichts muss aber sein,
die Einheit von Mathematik, Physik, Naturwissenschaft und Technik anzustreben, und
dies empfiehlt dusserste Vorsicht bei solchen Reduktionen. Denn genau das, was wir
heute abbauen wollen, kann morgen eine lebenswichtige Grundlage eines neuen
Zweiges der Wissenschaften werden. Dies lehren unsere beiden Aufgaben, welche die
Brennpunktseigenschaften der Kegelschnitte ganz wesentlich benutzen.

Die Schweiz zahlt jahrlich hohe Summen an die ESRO (European Space Research
Organisation) und dokumentiert damit ihr Interesse an der Raumforschung. Dies ver-
pflichtet die Lehrer der héheren Schulstufen, den Blick ihrer Schiiler in diese Richtung
zu lenken, damit in einigen Jahren auch junge schweizerische Wissenschaftler in der
Raumforschung mitreden kénnen. E. STiEFEL, Ziirich

Kleine Mitteilungen
Sur les nombres a4+ 1

La solution de M. O. REUTTER donnée & mon probléme 430 [El. Math. 78, 89-90 (1963)]
m’a suggéré le théoréme suivant:

Théoréme. a étant un entier donné >1, il existe une infinité de nombres naturels n tels
que n | a® + 1. k
Démonstration. Vu le théoreme de M. O. REUTTER (voir L c.), il suffira de démontrer

notre théoréme pour les entiers impairs ¢ > 1. Dans ce cas on a évidemment 2 | a% + 1 et
les nombres 2 et a? + 1 sont tous les deux doubles de nombres impairs.

Lemme. Si a est un nombre impair > 1, m et a™ + 1 sont doubles de nombres impairs et
m | a™ + 1, il existe un nombre m, > m, tel que m, et a™ + 1 sont doubles de nombres impairs
et que m, | a™ + 1.

Démonstration du lemme. Si m |a™ + 1 et si m et a™ + 1 sont doubles de nombres
impairs, ona a™ + 1 = k m, ol & est un nombre impair. Il en résulte quea™ + 1 [a™* + 1,
donc . m
et, a étant impair et a™ + 1 pair, le nombre

aa’”+l + 1

est double d’un nombre impair. Pour m, = a™ + 1 nous aurons donc m, |a™ + 1, et m,
et am + 1 seront doubles de nombres impairs et, va que a > 1, on auram; = a™ + 1 > m.
Le lemme se trouve ainsi démontré.

Notre théoréme (pour @ impairs > 1) résulte tout de suite de notre lemme et de la
remarque que pour 4 impairs on a 2 [a® + 1. W. SierPINSKI, Varsovie
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A Note on the Order of an Element in a Ring

The following «anwendungsreiche Satz» [1]1) is due to H.MiNnkowsK1: The only rational
integral matrix that has a positive power equal to the identity matrix and is congruent to the
identity matrix modulo some integer greater than two is itself the identity matrix. In this note
we establish the more general

Theorem. Let R be a ring with an identity. Let a be an element of finite order in the unit
group of R, and let n be a positive integer. If theve exists a divisor m > 1 of n such that

(1) either m is odd or m? divides n ,
() be R and mb=0 implies b=0,
(i) bem*R, e=1,2,...implies b=0,

then the order of a + nR in the unit group of R/nR is equal to the order of a in the unit
group of R.

In other words, if 4(0) is the least positive integer d such that a4 = 1 and d(») is the
least positive integer d such that @’ = 1 modulo #R, then d(n) = §(0) provided, of course,
some divisor m > 1 of #n satisfies the three conditions above. That this conclusion may fail
without the stated conditions is evidenced by the following examples, (where in each case,
m = n is the only possible choice for the divisor).

First, let R be the ring of integers, a = —1, and » = 2. In this case (ii) and (iii) are
satisfied for m = 2. But (i) is not satisfied and §(0) = 2, §(2) = 1. _ '
Second, let R be the ring {0, 1, ..., 8} of integers modulo 9, @ = 2, and » = 3. For

m = 3, conditions (i), (iii) but not (ii) are satisfied. Also, 6(0) = 6 but §(3) = 2 because
2%1and 22 =1+ 3:-1=1 (mod 3R).

Third, let R be a ring of rational numbers, @ = —1, and #» = 3. For m = 3, (i) and (ii)
are satisfied, but not (iii). Again 6(0) = 2 but §(3) =1 since —1 =14 3 (-2/3) =1
(mod 3 R).

The theorem itself is a consequence of the following

Lemma. Let R be a ving with an identity. Let a have finite ovdey in the unit group of R and
let m be a positive integey salisfying (ii) above. If 8(m¢) is the ovder of a in the unit group of
R/meR, then 8(me) < 8(me+Y) implies S(me+t) < d(me+2), provided e > 1in case m is even.

Proof. Let 6(m?) < d(metl). Since adm’) =1 (mod met'R) implies d(me+1) | d(me),
which is impossible, we have
adm®) = 1 4+ meb

with b %= 0 (mod mR). Also, since m > 1 and ¢ > 1 in case m is even,
amdm®) =1 4+ metlh  (mod m*t2R) .

Thus, by (ii), d(me+2) + m d(me). But d(me+t1) | m é(me). Consequently &(me+?) 1 &(me+1).
inally, since d(me+1) | §(me+2), it follows that d(me+?) < d(me+?).
We now give a proof of the theorem. Thus, let m > 1 divide » such that (i), (ii), and
(iii) are satisfied. Suppose first that m is odd. Since d(m?) | 6(0) it is clear from the lemma
that §(m¢) = d(m) for e = 1, 2, .... That is,

adm) =1 (mod m*R), e=1,2,....
Hence, by (iii), aé(m = 1 and (0) | 8(m). Therefore, d(m) = 6(0). Similarly, if.m is even
then by the lemma and (iii), 8(m?) = §(0). Consequently since m | # and, by (i), m* | » if
m is even, 6(0) | 6(n). Finally, since d(z) | 6(0), it follows that d(n) = 6(0).

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 108,
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The theorem itself can be extended. Indeed, let a be an element of an arbitrary ring R.
1f there exists a term of the sequence a, a2, ..., a%, ... that 1s equal to a preceding term,
then a is said to have finite period. Specifically, if a»(0)+6(0) = a¥(0), where y(0) + 6(0) >
»(0) > 0, is the first such term, then a»0), a¥(0)+1, ... is a periodic sequence of period §(0).
Moreover, if » is a positive integer, then there is a first term a»(*) +4(») that is congruent to
a preceding term a¥(») modulo »R, and the reduced sequence av(»), ar(m+1, ... is periodic
of period d(n). Clearly the period 6(n) of a + R in R/nR divides the period §(0) of a
in R. In fact, we have the following

Corollary. Let R be a ving. Let a be an element of finite peviod in R and let n be a positive
integer. If there exists a divisor m > 1 of n satisfying conditions (i), (ii), and (iii) above, then
the period of a + nR in R/nR is equal to the period of a in R.

Proof. This result may be demonstrated by a direct extension of the proof of the
theorem above. However, by adopting a suggestion to the author from E. C. DADE, the
result may also be obtained as follows. First, if a4 is of finite period in R, then it is clear
from the results above that av+¢ = av if and only if y(0) < y and §(0 ) | 6. Hence the
element 1 = a»(0)4(0) is idempotent and is an identity of the subring R=1R1in R.
Moreover, since (1a 1)6(0) = 1ad0) =1, the element ¢ = 1 a1 is a member of the unit
group of R with order (0 0) | 6(0). Furthermore, av(0)8(0)+3(0) = 1 g3(0) =1 1 = 1 = a»(0) 8(0)
implies 4(0) |6(O Therefore 6( ) = 8(0). In a similar manner it may be shown that
the order of @ + nR in the unit group of R/nR is the period of @ + nR in R/nR. Conse-
quently,.since conditions (i), (ii), and (iii) are valid for the subring R provided they are
valid for R, the corollary is now an immediate consequence of the theorem.

D. W. RoBinsoN, Brigham Young University
Provo, Utah, USA

REFERENCE

[1] HErRMANN MiNKOWSKI, Gesammelte Abhandlungen, vol. I (B. G. Teubner, Leipzig,
1911), p. VIII.

Uber die n-dimensionalen Axonometrien

1. Unlidngst untersuchte G. SzAsz!) im 3-dimensionalen euklidischen Raum R, die
Summe und die Quadratsumme der Verkiirzungsverhéltnisse in der normalen und schiefen
Axonometrie. Er bewies, dass die Quadratsumme der Verkiirzungsverhiltnisse nur im
Falle einer normalen Axonometrie gleich 2 ist und im Falle einer schiefen Axonometrie
immer grosser als 2. Weiterhin gibt er }/6 als obere und 2 als untere Schranke fiir die Summe
der Verkiirzungsverhédltnisse der normalen Axonometrie, und vermutet, dass diese untere
Schranke auch im Falle der schiefen Axonometrie giiltig sei.

Das Ziel dieses Aufsatzes ist einerseits die Ausdehnung obiger Untersuchungen in den
n-dimensionalen euklidischen Raum R,, und die elementare Berechnung der oberen
Schranke der Summe der Verkiirzungsverhiltnisse der normalen Axonometrie, anderseits
die Bestimmung der unteren Schranke der Summe der Verkiirzungsverhéltnisse der schiefen
Axonometrie. Damit wird die SzAszsche Vermutung bestitigt.

2. Es ist bekannt, dass im R, drei paarweise aufeinander senkrechte Achsen ein Achsen-
kreuz und seine Projektion auf die Bildebene eine Axonometrie bestimmen.

Steht die Projektionsrichtung senkrecht zur Bildebene, so entsteht eine normale
(orthogonale) Axonometrie, im anderen Falle eine schiefe Axonometrie. Das Verhiltnis
der Bildlinge zur wahren Linge einer auf einer Achse liegenden Strecke ist das Verkiir-
zungsverhiltnis beziiglich dieser Achse. Ohne Beschrinkung der Allgemeinheit konnen wir
voraussetzen, dass die Bildebene den gemeinsamen Punkt der drei Achsen — den Ursprung
des Achsenkreuzes — nicht enthilt.

1y G. Szhsz, Uber die normale Axomometrie, El. Math. 18, 58-60 (1968).
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Es gibt noch etliche Einschrinkungen beziiglich der gegenseitigen Lage von Achsen-
kreuz, Bildebene und Projektionsrichtung, um die Entartung der Axonometrie zu ver-
meiden. In den folgenden Untersuchungen werden wir hievon nur eine einzige ausniitzen,
ndamlich dass die Projektionsrichtung zu keiner Koordinatenachse parallel sein darf; mit
anderen Worten, jedes Verkiirzungsverhiltnis muss grosser als null sein.

Analogerweise wird im R, (» > 1) eine Axonometrie durch die Projektion von » paat-
weise auf einander senkrechten Achsen (n-dimensionales Achsenkreuz) auf eine (» — 1)-
dimensionale Hyperebene (Bildhyperebene) bestimmt. Wir kdnnen ohne Beschrinkung
der Allgemeinheit voraussetzen, dass die Bildhyperebene den Ursprung nicht enthilt. Das
Verkiirzungsverhiltnis beziiglich einer Achse ist das Verhdltnis der Projektionslinge auf
der Bildhyperebene zur wahren Linge der auf dieser Achse liegenden Strecke.

3. Um die Quadratsumme der Verkiirzungsverhiltnisse zu bestimmen, folgen wir der
Methode von SzAsz.

Wir bezeichnen mit O den Ursprung des n-dimensionalen (# = 2) Achsenkreuzes, mit
A; (1 =1,...,n) die Schnittpunkte der Koordinatenachsen #; mit der Bildhyperebene
R,_,, und mit S den Spurpunkt des Projektionsstrahles durch O in R,,_;. Es sei weiterhin
0 A; = a;, und a; = S A; die Projektion auf R, , (¢ =1,...,#n), und O S = ¢ Die Glei-
chung der Bildhyperebene beziiglich des Achsenkreuzes lautet

DIEEES 1)

t=1

wo & (1 =1,...,n) die Koordinaten eines beliebigen Punktes der Bildhyperebene be-
deuten. Hat O von R,_, den Abstand d, so gilt bekanntlich die Beziehung

1 1
2aa @

Geben wir nun dem Spurpunkt S die Koordinaten &;, so wird das Quadrat des Verkiir-
zungsverhiltnisses ¢; beziiglich der Achse x;

n n
. (&—@P+(23)-& e
g 4 _ d=1 :1+£L__2§_i_
. % a? a? a? a;
Hieraus folgt
n n n 1 n 5
1§ ) (1;' ' 1=1 a 1=1 A

und mit Riicksicht auf (1) und (2) ‘

n t2

Wegen ¢ = d ist

1\
B
|
[uy

P (3)
i=1
Gleichheit tritt nur dann ein, wenn ¢ = d, das heisst, wenn die Projektionsrichtung
senkrecht zur Bildhyperebene ist, also im Fall der normalen Axonometrie.
Damit haben wir den folgenden
1. Satz. Im #n-dimensionalen Raum ist die Quadvatsumme dev Verkiivzungsverhdltnisse
in der normalen Axonometrie — und nuy in der noymalen Axonometrie — gleich n — 1, und in

der schiefen Axonometrie immer grosser als n — 1. . .
Dieser Satz enthilt den ersten Satz von SzAsz, dass im R d@ Q\{adra‘fsumme Fler Ver-
kiirzungsverhéltnisse genau im Falle der normalen Axonometrie gleich 2 ist, und im Falle

der schiefen Axonometrie immer grosser als 2. o -
4. Es lisst sich leicht einsehen, dass die Summe der Verkiirzungsverhéltnisse nur im

Fall der normalen Axonometrie eine obere Schranke hat.
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- Wenden wir die bekannte Ungleichung zwischen arithmetischem und quadratischem

Mittel n ” 1
2 P E)
RN Wil N

n

auf die Verkiirzungsverhiltnisse an, so ergibt sich mit Riicksicht auf Satz 1

gqigx/nw—l). (4)

Es gilt also der folgende

2. Satz. Im n-dimensionalen Rawm ist die Summe der Verkiirzungsverhiltnisse einer
normalen Axonometrie nicht grisser als Yn (n — 1).

Dieser Satz enthilt den 2. Satz von SzAsz, der aussagt, dass im R, die obere Schranke

der Summe der Verkiirzungsverhiltnisse einer normalen Axonometrie gleich /6 ist.

5. Um die untere Schranke der Summe der Verkiirzungsverhdltnisse einer beliebigen
Axonometrie festzustellen, untersuchen wir zuerst die Fille, in denen keine Koordinaten-
achse zur Bildhyperebene parailel liegt. Es liegen also simtliche Schnittpunkte A;
(¢ =1, ..., n) des Achsenkreuzes mit der Bildhyperebene im Endlichen.

Fall a. Sind simtliche Verkiirzungsverhiltnisse kleiner als 1, das heisst ¢; < 1 (¢ =
1, ..., n), so gilt offenbar ¢; > ¢?% also

” n
Z, 9 > 2, g2
i=1 i=1

n
2q,~>n-—l. (5)
1=1

Fall b. Es seien nun von den »n Verkiirzungsverhéltnissen ¢, die ersten m (1 < m < #n)
kleiner, und die iibrigen n — m grosser oder gleich 1, also

fq,cgn—m.
1

k=m+

und infolge (3)

Die Achsen #; (j = 1, ..., m) bilden ein m-dimensionales Achsenkreuz. Wir fassen die
durch die Punkte 4; (j = 1, ..., m) bestimmte (m — 1)-dimensionale Hyperebene R,,_, als
Bildhyperebene auf, und wéhlen O S’ als Projektionsrichtung, wo S’ die Normalprojektion
des Punktes S auf R,,_, bezeichnet.

So entsteht eine m-dimensionale Axonometrie mit den Verkiirzungsverhéltnissen

Aus S 252 N Aj fOlgt q;’ < q; = S Aj/a,-.
Mittels (5) folgt weiterhin

und damit " m
Gz a4 >m—1
=1 i=1

7

n

” "
2a=2 2 o >m—1.
=

=1 k=m4+1

Wir haben bisher den Fall m = 1 bzw. m = 0 ausgeschlossen. Fiir m = 1 wird wegen
>0

” ”n
=+ ez +tn-1>n-1,
k=2

1=1

Im Falle m = 0 gilt (5) trivialerweise,
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6. Liegen nun von den Schnittpunkten 4, (¢ = 1, ..., n) des Achsenkreuzes mit der
Bildhyperebene nur m (1 < m < %) im Endlichen, so sind » — m Koordinatenachsen zur
Bildhyperebene parallel.

Die Summe der Verkiirzungsverhiltnisse beziiglich der zur Bildhyperebene nicht paral-
lelen Achsen ist nach Fall b grosser als m — 1.

Da jedes Verkiirzungsverhiltnis auf einer zur Bildhyperebene parallelen Achse gle1ch
1 ist, ergibt sich

Y'qz> m— 1 + 2 g >n—1.
t«l k=m+1

Der Fall m = 0 schliesst sich von selbst aus, da die Bildhyperebene nicht zu simtlichen

Koordinatenachsen parallel sein kann. Fiir m = 1 wird wegen ¢, > 0

n
Zqi=q1+n—1>n—1.
i=1

Damit haben wir den folgenden Satz bewiesen:

3. Satz. Im n-dimensionalen Raum ist die Summe dev Verkiivzungsverhdltnisse einer be-
liebigen Axonometrie immer grosser als n — 1.

Satz 3 enthilt fiir den R, die Verschirfung der SzAsz'schen Behauptung fiir normale
Axonometrie, sowie den Beweis und die Verschiarfung seiner Vermutung, dass die Summe
der Verkiirzungsverhiltnisse einer beliebigen Axonometrie im gew6hnlichen Raum nicht
kleiner als 2 ist. J. Scuopp, Budapest

Ein Beweis des Pascalschen Satzes
Fig. 1 zeigt die Aussage des Pascalschen Satzes: Wenn die mit 1 bis 6 bezeichneten

Punkte auf einem Kegelschnitt — in der Abbildung ein Kreis — liegen, dann liegen die
Schnittpunkte 12 X 45, 23 X 56, 34 X 61 auf der Pascalschen Geraden p.

Figur 1

Den Betrachtungen sei ein bekannter Satz vorausgeschickt, der Vollstandlgkext halber
mit Beweis.

Zwei Flichen 2.0. [Fl] [F,] sollen den Kegelschmtt (K) gemeinsam haben. Die Ebene
dieses Kegelschnittes sei die Ebene z = 0 eines #, y, z-Koordinatensystems. Die Gleichun-
gen der beiden Flichen lauten dann nach Potenzen von z geordnet

a2+ zbyx+c,y+d)+ Ky =0, (1)
g2+ z(bgx+cyy+dy) + K (9 =0, (2)
wobei eine der beiden Gleichungen bereits mit einem passenden Faktor multipliziert ist.
Zieht man (2) von (1) ab, so ergibt sich
z(@—a)z+ (by —b)x+(cr—c)y+dy—dy) =2-¢(x92=0,
das heisst die Schnittkurve der beiden Flichen besteht aus dem in der Ebene z = 0 ge-

legenen Kegelschnitt K = 0 und einem weiteren in der Ebene ¢ = 0 gelegenen Kegel-
schnitt, der speziell auch mit K = 0 zusammenfallen kann.
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Figur 1 kann nun wie folgt gelesen werden: Die Zeichenebene (= Grundrissebene) ist
Symmetrieebene einer Fldche 2.0. [F] - in der Figur etwa einer Kugel — und schneidet aus
[F] den gezeichneten Kegelschnitt aus. 25 ist Grundriss eines Kegelschnittes (25) auf [F].
S; = 12X 56 und S, = 23X 45 sind die Spitzen von zwei Kegeln mit der gemeinsamen
Basiskurve (25). Nach obigem Satz wird die Fliache [F| vom Kegel S, in den Kegelschnitten
(25) und (16) geschnitten, vom Kegel S, in den Kegelschnitten (25) und (34). Ebenfalls
nach obigem Satz haben die beiden Kegel ausser dem Kegelschnitt (25) noch einen weite-
ren Kegelschnitt gemeinsam, der durch die Schnittpunkte von (34) x (61) auf [F] und die
Schnittpunkte der Kegelumrissmantellinien 12 x 45 und 23 X 56 gehen muss. Wegen der
Symmetrie ist der Grundriss dieses Kegelschnittes geradlinig und enthilt die Punkte
12x 45, 23X 56, 34 x 61.

Es kann vorkommen, dass sich die Kegelschnitte (61) und (34) nicht reell auf [F]
schneiden (vergleiche Figur 2). Der gezeichnete Kreis braucht dann nur als Kehlkreis eines
einschaligen Hyperboloids [ F*] gelesen zu werden und simtliche Schliisse bleiben erhalten.

Der Pascalsche Satz braucht seiner projektiven Natur wegen bekanntlich nur fiir den
Kreis bewiesen zu werden. Auf dem geschilderten Weg kommt man jedoch bei jedem ge-
gebenen Kegelschnitt zum Ziel, wenn als Flichen [F], [F*] im Fall der Hyperbel ein-
beziehungsweise zweischalige Hyperboloide gewihlt werden, im Fall der Parabel ellip-
tische beziehungsweise hyperbolische Paraboloide, im Fall des Geradenpaares zwei
Kegel beziehungsweise Zylinder.

Duale Betrachtungen ergeben, allerdings nicht ebenso anschaulich, den Brianchonschen
Satz, fiir den sich ein einfacher, ebenfalls rAumlicher Beweis in Hilbert & Cohn-Vossen,
Anschauliche Geometrie, S. 92 findet. O. Baler, Miinchen

Aufgaben

Aufgabe 461. a) Die variable Sehne 4B eines Kreises vom Radius » ist Basis eines
Quadrates. Wenn A4 B in paralleler Lage die ganze Kreisfliache iiberstreicht, so iiberstreicht
die Quadratseite CD eine Fliche, deren Inhalt zu berechnen ist.

b) Der Schnittkreis K einer variablen Ebene mit einer Kugel vom Radius » ist Basis
eines geraden Zylinders, dessen Hohe gleich dem Durchmesser von K ist. Wenn diese
Ebene sich parallel verschiebt und dabei die ganze Kugel iiberstreicht, so iiberstreicht die
Deckfliche des Zylinders einen Raum, dessen Volumen zu berechnen ist.

C. BINDSCHEDLER, Kiisnacht

Lésung: a) Wird ein rechtwinkliges Koordinatensystem zugrunde gelegt, dessen
Ursprung der Kreismittelpunkt ist, und wird die Lage der Kreissehne (Quadratbasis) 4 B
parallel zur »-Achse gewihlt, dann liegen die Endpunkte der Quadratseite CD auf der
achsensymmetrischen, einfach geschlossenen Kurve S mit der Gleichung '

y=2|x|+ Vr—x; lz|<7.



	Kleine Mitteilungen

