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Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Förderung der wissenschaftlichen Forschung

El. Math. Band XIX Nr. 5 Seiten 97-120 Basel, 10. September 1964

Die Renaissance der Himmelsmechanik*)
Es kommt in der Entwicklung der mathematischen Wissenschaften gelegentlich

vor, dass Forschungen, die einzig und allein dem Streben nach mathematischer
Erkenntnis entstammen, plötzlich und unbeabsichtigt in der Physik oder Technik
anwendbar werden. Mit Erstaunen, aber auch Genugtuung stellt man dann oft fest, dass
die in abstracto entwickelten Methoden der mathematischen Analyse auch durchaus
den Bedürfnissen der Praxis gerecht werden, was eben daran liegt, dass die theoretische

Untersuchung den Kern des Problems herausgeschält hat. Es ist reizvoll, dieser
prästabilisierten Harmonie im folgenden konkreten Beispiel etwas nachzugehen.

Unter dem Dreikörperproblem der Himmelsmechanik versteht man die Aufgabe,
die Bewegung von drei frei beweglichen punktförmigen Massen zu studieren, die sich
gegenseitig nach dem Newtonschen Gravitationsgesetz anziehen. Lagrange stellt
1772 in seinem «Essai sur le probleme des trois corps» entscheidend die Weiche für die
mathematischen Methoden, mit denen das Problem im nachfolgenden Jahrhundert
angepackt wird. Es handelt sich um die Störungsrechnung, der folgender Gedanke

zugrunde hegt. Sind nur zwei Körper vorhanden, etwa ein schwerer Zentralkörper und
ein Mobil von verschwindender Masse, so beschreibt das Mobil eine geometrisch
einfach zu beschreibende Keplerbahn, namhch einen Kegelschnitt, der einen Brennpunkt
im Zentralkörper hat, und wir wollen etwa an eine Ellipse denken. Wird nun ein dritter
Körper, der Störkörper hingesetzt, dessen Masse klein gegenüber der Zentralmasse sei,

so wird die Keplerellipse des Mobils nicht mehr im Raum feststehen, sondern infolge
der Wirkung des Störkörpers ihre Lage ändern und sich deformieren. Diese

Änderungen sind aber langsam im Vergleich zur Eile, mit der das Mobil diese veränderliche
Bahn durchläuft.

Das 19. Jahrhundert bringt die Durcharbeitung des Sonnensystems auf Grund
dieser Störungsmethoden. Immer feinere analytische Hilfsmittel werden erfunden,
um durch Reihenentwicklungen die Störungen der Keplerbahn zu erfassen. Die
Tatsache, dass wir in einem System leben, wo die Sonne als einziger und entscheidend

überwiegender Zentralkörper herrscht, ermöglicht dieses Vorgehen. In einem
Doppelsternsystem mit zwei gleichberechtigten Zentralkörpern hätte die Himmelsmechanik

von vornherein andere Wege einschlagen müssen. Als Höhepunkt und Ausklang

*) Vortrag an der Jahresversammlung 1963 des Vereins Schweizerischer Mathematik- und Physiklehrer.
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dieser klassischen Periode der Himmelsmechanik kann Poincarijs Werk «Les methodes

nouvelles de la mecanique Celeste» gelten.
Aber niemand war eigentlich mit dieser Sachlage zufrieden. Denn die Lagrangeschen

Methoden funktionieren nur, wenn der Zentralkörper wirklich bedeutend grössere

Masse hat als alles, was sich um ihn bewegt; das allgemeine Dreikörperproblem,
das heisst die Bewegung von drei beliebigen gleichberechtigten Massen, blieb ungelöst.
Darum hat der damalige König von Schweden und Norwegen auf Anregung des

Mathematikers Mittag-Leffler einen Preis für die Lösung dieses Problems gestiftet.
Leider hat K. F. Sündman für seine wesentliche Förderung der Lösungsmethoden den
Preis nicht erhalten. In seiner Studie «Memoire sur le probleme des trois corps» (Acta
mathematica 36, 1913) packt er das Problem an der Wurzel. Als Angehöriger der
nordischen funktionentheoretischen Schule weiss er namhch genau, dass funktionale
Zusammenhänge an den Singularitäten der beteiligten Funktionen studiert werden
müssen, die natürlich von naiven mathematischen Methoden ängstlich vermieden
werden. Im Dreikörperproblem entstehen solche Singularitäten, wenn zwei der
Körper zusammenstossen, was zwar für die Bewohner dieser Körper unangenehm, aber
mathematisch äusserst fruchtbar ist. Nachdem nämlich die Natur der Singularitäten
und ihre Lage in der komplexen Ebene abgeklärt ist, kann Sundman Aussagen über
die analytische Fortsetzung seiner Funktionen machen, und er gelangt so zu
Reihenentwicklungen, welche die Bewegungen für alle Zeiten darstellen. Obwohl die Reihen
langsam konvergieren, ist doch damit das Dreikörperproblem prinzipiell gelöst.

Nach 1914 flaut das Interesse der Mathematiker an der Himmelsmechanik ab und
diese Wissenschaft verschwindet aus den Studienplänen mancher Hochschulen, bis
dann der erste Satellit um unsere Erde kreist und wir vor das Problem gestellt werden,
unsere künstlichen Himmelskörper in ihrer Bahn zu lenken und nicht nur die naturhchen

Himmelskörper in ihren Bahnen zu verfolgen. Während es kaum notwendig war,
Kollisionen im naturhchen Sonnensystem zu studieren, wollen wir nun Kollisionen
erzwingen, indem wir zum Beispiel ein Raumfahrzeug auf den Mond schiessen wollen.
Und damit bin ich bei dem angelangt, was ich eingangs auseinandersetzte, namhch bei
der plötzlichen und sich ungezwungen einstellenden Anwendbarkeit rein theoretisch
konzipierter Methoden. Wenn nämlich unser Raumfahrzeug in die Nähe des Mondes

gelangt (vielleicht ohne ihn exakt zu treffen), so können wir die von Sundman und
anderen erfundenen Methoden einsetzen, um in der Nähe dieser Singularität die
numerische Integration der Bahn sicherer und ökonomischer zu machen. Denn die

noraialen numerischen Methoden versagen bei einer exakten Kollision und werden

unzuverlässig bei einer Fastkollision.
Es soll nun im folgenden versucht werden, die von Sundman, Levi-Civita und

anderen Autoren erfundene Regularisierung der Kollision im Dreikörperproblem in
ihren Grundzügen auf elementarem Weg zu schildern. Wir beginnen mit dem gerad-

Figur 1

linigen Sturz eines Mobils m auf einem Zentralkörper M (Figur 1). Der Körper M ist
fest im Nullpunkt einer x-Achse, während m eine Bewegung x(t) in Funktion der Zeit t
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ausführt. Die auf m wirkende Gravitationskraft beträgt unter Ausserachtlassung
eines durch die Massen bestimmten Proportionalitätsfaktors (1: x2) und hat das
Potential (— 1: %). Ist endlich v die Geschwindigkeit des Mobils, so liefert der Energiesatz

die Relation
v2 1 2l-ihÄ> *2=4 + 2*. (i)

Die Energiekonstante h hat hier offenbar die Dimension einer reziproken Länge; wir
setzen daher

2A=—L, also v2 ~--. (2)
a x a v '

Diese Differentialgleichung der Bewegung lässt sich wie folgt lösen.

dx
~dt

n.l/I-T, _*__,», «_/_£= /—___,*. (3)

V x a V x a V 2a

Offenbar entsteht hier ein are sin-Integral, man substituiert daher

—— sin25 —- a sin25 dx 4 a sins coss ds (4)
2a ' 2 ' v '

und findet

t 4 a3'2 Ain2s ds 2 a3/2 Al - cos2 s) ds a3'2 (2 s - sin2 s) (5)

Zusammenfassend sind nun % und t als eindeutige reguläre Funktionen eines uniformi-
sierenden Parameters s dargestellt, den wir fiktive Zeit nennen wollen:

x 2asin2s, t a*'2 (2 s - sin2 s) (6)

Aus der ersten Gleichung (5) folgt übrigens noch der Zusammenhang zwischen realer
und fiktiver Zeit in der Form

t 4 a3'2 fsin2s ds 2)ja fx ds

oder
dt i— ds 11 ,—
-r- 2\ax, -77 —f=~« (7)
ds f ' dt 2Ya *

Hieraus wird deutlich, dass die Einführung der fiktiven Zeit das Verwenden einer

Zeitlupe bedeutet. Eine konstante Schrittlänge in s bewirkt bei Annäherung an die

Singularität (x -> 0) immer kleinere Schrittlänge in t. Für später merken wir uns noch,
dass - abgesehen von einem Proportionalitätsfaktor - (7) auch geschrieben werden
kann

§ U(x) (8)

Dabei bedeutet U das Potential der wirkenden Gravitationskraft. Der graphische

Fahrplan unseres Mobils kann nun sehr einfach konstruiert werden, wenn man auf
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einer Zeitachse die Variable
t

Ya

abträgt (Figur 2). Aus (6) folgt dann nämlich

x a (1 — cos2 s) x a (2 s — sin2 s)

(9)

(10)

und dies ist die Parameterdarstellung einer Zykloide, die entsteht, wenn man einen
Kreis vom Radius a auf der Zeitachse abrollen lässt. Das Dreieck der Figur 2 beweist
dies; 2 s ist der Winkel, um den sich der Kreis gedreht hat. Man erkennt, dass die

2os

Figur 2

Bewegung vor dem Stoss symmetrisch zur derjenigen nach dem Stoss verläuft und
dass das Mobil am Zentralkörper reflektiert wird. Man versteht dies besser, wenn man
unsere geradlinige Bewegung hin und zurück als Grenzfall einer Keplerschen Ellipse
auffasst, die den Zentralkörper sehr eng umläuft.

Unser Schlussresultat (6) leidet noch unter dem Umstand, dass zwar x eine reguläre
Funktion der fiktiven Zeit s ist, aber nicht umgekehrt. Denn

are sin
V 2a

ergibt einen Verzweigungspunkt in der Singularität x
indem man nun mittels

f /*

0. Man kann dem abhelfen,

(ii)
auch einen anderen Längenmaßstab einführt. So ergibt sich als endgültiges Bewegungsgesetz

| j/2asins, (12)

und dies ist eine harmonische Schwingung mit der Amplitude ]/2 a. Der Punkt f ist
also durch ein elastisches Gummiband an den Zentralkölper gebunden, der nun keine

Singularität mehr ist. In der Tat lautet ja die Differentialgleichung der harmonischen
Schwingung (12)

**+f 0. (13)
ds2

Es ist dies eine lineare Differentialgleichung mit konstanten Koeffizienten, also

regulär in allen Punkten der komplexen s-Ebene.
Levi-Civita hat in den Zwanziger-Jahren diese Regularisierung des eindimensionalen

Stosses in sehr eleganter Weise auf die zweidimensionale Bewegung eines Mobils
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unter dem Einfluss eines Zentralkörpers übertragen, worüber kurz ohne Herleitungen
und Beweise berichtet werden soll.

Die Ebene des physikalischen Geschehens sei die x, jy-Ebene, die auch als komplexe
z-Ebene (z x + iy) aufgefasst wird (Figur 3). Der Zentralkörper sitzt im Nullpunkt,

© ©

l**z

Figur 3

und das Mobil m bewegt sich in dieser Ebene, wobei r seine Entfernung vom Ursprung
sei. Das Potential der Zentralkraft ist jetzt

U

und die Gleichung (8) legt uns nahe, die fiktive Zeit s durch

ds
~di -/¦dt

(14)

zu definieren. Da nun ein Stoss in jeder radialen Richtung stattfinden kann, wird
gemäss (11) die Variable q J/V eingeführt werden müssen. Es war Levi-Civitas Idee,
dass dies am einfachsten durch die konforme Abbildung

£ fz, (£ £ + *»
der 2-Ebene auf eine £-Ebene geschieht. Wir haben also jetzt in der f-Ebene ein
Bildmobil m', dessen Entfernung vom Nullpunkt wie gewünscht q ist. Man bestätigt mit
Hilfe des Newtonschen Gravitationsgesetzes, dass die Bewegungsgleichungen des
Bildmobils wieder lauten

dn
ds2 + X£ 0 0 (15)

wobei X eine Konstante ist, die durch die Anfangsbedingungen festgelegt ist. Wiederum
sind diese Differentialgleichungen vollständig regulär und besagen, dass das Bildmobil
sich so bewegt, wie wenn es durch ein Gummiband mit dem Ursprung verbunden wäre.
Es führt also eine zweidimensionale harmonische Schwingung aus, falls X positiv ist.
Die Bahnkurve ist eine Ellipse mit dem Zentrum im Ursprung. Nun lernt man aber in
der Funktionentheorie, dass das Bild einer im Nullpunkt zentrierten Ellipse unter der
konformen Abbildung z £2 eine Ellipse ist, die einen Brennpunkt im Nullpunkt der
2-Ebene hat. Das Mobil m in der z-Ebene beschreibt diese Ellipse, und somit kann mittels

der Levi-Civitaschen Transformation das erste Keplersche Gesetz hergeleitet
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werden. Der Vollständigkeit halber sei erwähnt, dass die fiktive Zeit s im wesentlichen
die aus der Astronomie bekannte exzentrische Anomalie der elliptischen Bewegung ist.

Wird nun ein Störkörper als dritter Körper in unsere 2-Ebene gebracht, so werden
die Differentialgleichungen (15) natürlich modifiziert, sie bleiben aber regulär durch
einen Stoss des Mobils mit dem Zentralkörper hindurch. Auch hier nennen wir den
Übergang von den Variabein x, y, t zu den Variabein f, rj, s die Regularisierung des
Stosses von Mobil und Zentralkörper.

Nun sind wir weit genug fortgeschritten, um den Grundgedanken der Sundmanschen

Lösung des Dreikörperproblems verstehen zu können. Die cartesischen Koordinaten

der drei Körper seien xk, yk, zk (k 1, 2, 3). Sundman zeigt nun, dass man statt
dessen regularisierende Variable £k, rjk, £k und eine fiktive Zeit s so einführen kann,
dass die Differentialgleichungen für die Funktionen ijk(s), rjk(s), fÄ(s) regulär bleiben,
wenn zwei der Körper kollidieren. (Der Fall, dass alle drei Körper zusammenstossen,
lässt sich auf andere Weise erledigen.) Er zeigt ferner, dass die genannten Funktionen
als Funktionen der reellen Variabein s für alle Werte von s und über alle Stösse hinweg
stetig und beliebig oft differenzierbar sind. Entscheidend ist aber, dass die Funktionen
sogar in die komplexe s-Ebene analytisch fortgesetzt werden können und dort
holomorph regulär sind in einem Parallelstreifen mit der reellen s-Achse als Mittellinie
(Figur 4). Der Einfachheit halber geben wir diesem Streifen die Breite tz.

©
W/MW/M WMM//MW/

0 B-

i

1 c

1

©

& 6 Je *

Figur 4

Seine Reihen gewinnt nun Sundman, indem er den Streifen konform auf das
Innere des Einheitskreises einer or-Ebene abbildet, etwa mittels der Transformation

e8 - 1

e8 + 1
Th (16)

(Th ist der hyperbolische Tangens.) Jede unserer Funktionen - zum Beispiel ^ - wird
damit eine Funktion der komplexen Variabein a, die im Einheitskreis regulär ist.
Ihre Taylor-Entwicklung ^

konvergiert daher im Innern des Einheitskreises und speziell für die reellen Werte
von o mit —1 < a < 1. In der s-Ebene bedeutet dies, dass die Reihe

h-£o.(T*i)m

für alle Werte der reellen Variabein s konvergiert. Die regularisierten Variabein
£ki %, Ck siftd Q^0 durch beständig konvergente Reihen in s dargestellt. Damit wird
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es auch möglieh, die cartesischen Koordinaten xk, yk, zk für jeden Wert der realen
Zeit t zu berechnen.

Ohne Regularisierung der Stösse wäre es unmöglich, ein solches Resultat herzuleiten.

Denn auf Grund der gegebenen Anfangsbedingungen eines Dreikörperproblems
kann man nicht voraussagen, ob nicht doch nach genügend langer Zeit eine Kollision
stattfinden wird.

Wie schon erwähnt wurde, haben nun diese theoretischen Regularisierungsmetho-
den eine Wiederbelebung in der* Praxis der numerischen Flugbahnberechnung
gefunden. Figur 5 stellt als Kostprobe die Bahn eines Raumfahrzeuges dar, das extrem

X2
I03km

71325

S'4,8

neu

71961

72153

72915

72414

72731

985 J2444

980
v 7245672484

Figur 5

nahe am Mondmittelpunkt vorbeifliegt und somit die Mondoberfläche (den Kreis
rechts unten) trifft. Das Koordinatensystem xv x2 hat den Ursprung im Schwerpunkt

von Erde und Mond, und die *rAchse geht dauernd durch das Mondzentrum. Zur
numerischen Integration wurden regularisierende Variable bezüglich des Mondes als

Zentralkörper benutzt; die fiktive Zeit s beginnt oben mit dem Wert 4.8 und läuft mit
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gleichmässigem Schritt 0.1 bis 7.7. Auch die Werte der realen Zeit sind angegeben,
wobei die Zeiteinheit so gewählt wurde, dass der Mond in seiner Bahn die Geschwindigkeit

Eins hat. (Längeneinheit Radius der als kreisförmig angenommenen Mondbahn.)

Man erkennt, wie die Regularisierung eine feinere Zeiteinteilung in der Nähe
des Mondmittelpunktes bewirkt. Natürlich ist die Bahn annähernd ein Hyperbelast,
jedoch ist der Einfluss der Erde als Störkörper genau berücksichtigt.

Zum Schluss soll noch gezeigt werden, dass man allein mit Hilfe der drei Keplerschen

Gesetze manche wichtige Aufgabe der Astronautik lösen kann. Diese Aufgaben
liegen daher durchaus in der Wurfweite des Mittelschulunterrichts und sind geeignet,
um auf dieser Stufe zu zeigen, welche grundlegende Rolle die Mathematik bei den
neuesten Unternehmungen der Menschheit spielt. Es bereitet sicherlich Freude, sich
zum Beispiel selbst auszurechnen, wie lange ungefähr eine Rakete von der Erde zum
Mond unterwegs ist.

Zur Vorbereitung formulieren wir den Energiesatz für die elliptische Bewegung
um einen Zentralkörper (Figur 6). Das Mobil m habe in allgemeiner Lage die Distanz r

Figur 6

und die Geschwindigkeit v. In den Ellipsenscheiteln sollen diese Grössen beziehlich

rx, vx und r2, v2 sein. Da das Potential (—1: r) beträgt, besagt der Energiesatz

.£ ___
-L * V2==l + 2h, (17)

2 r r ' v ;

mit einer Energiekonstanten h, deren Bedeutung wir folgendermassen abklären. Aus

r, v, r9 v9., r2v2 rl videm Flächensatz folgt
r1 v1 — r2 v% rx vx — r2 u2 '

Indem man hier für die Geschwindigkeit (17) einträgt, ergibt sich

2 rx + 2 h rf 2 r2 + 2 h r\
und daraus „ x tl r2 ~ ri x _ __

L

rl-r2 rx + r2 2a'
wobei a die grosse Halbachse der Ellipse ist. Der Energiesatz (17) lässt sich nun
schreiben 2 lv2 ~ - -i-, (18)r a v '

und dies ist die Grundgleichung für alle Geschwindigkeitsprobleme der Astronautik.
Ist die Keplerbahn speziell ein Kreis um den Zentralkörper, so ergibt sich wegen
a r iür die (konstante) Bahngeschwindigkeit

Yr

Aufgabe 7. Ein Raumfahrzeug befindet sich auf einer kreisförmigen Parkierungs-
bahn (Radius rx) um die Erde. Es soll durch eine tangentiale Geschwindigkeitsände-
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rung auf eine Keplerellipse transferiert werden, die bis zur Mondbahn hinausreicht.
(Von den Störungen durch den Mond wird abgesehen; die Mondbahn sei als Kreis
vom Radius r2 angenommen.)

Die Figur 6 kann als Illustration dienen. Der Transfer finde im Punkt P statt.
Dort ist die elliptische Geschwindigkeit nach (18)

2 _2_
__ £ _2 2

__1
*_ a rx rx + r2

Die Kreisbahngeschwindigkeit ist nach (19)

1
2

1

somit

(M2_. 2 *&_ 2-4-, ü - 1/_Z^T (20)\vj rx + r2 rx + r2 v0 \ rx + r2
'

Dieses Resultat lässt sich auf mancherlei Transferprobleme anwenden. Es sei zum
Beispiel die Sonne der Zentralkörper und die Kreise rx, r2 beziehlich die Erd- und
Marsbahn. Man hat dann r2: rx 1,524, und (20) ergibt vx: t;0 1,099. Ein
Raumfahrzeug, das sich auf der Erdbahn ausserhalb des Anziehungsbereichs der Erde
bewegt, muss also nur einen Geschwindigkeitszuwachs von 9,9% erhalten, um zum Mars
hinaus zu gelangen.

Aufgabe 2. Ein Raumfahrzeug befindet sich auf einer Kreisbahn (Radius r) um
einen Zentralkörper. Es wird im Punkt P auf eine andere Bahn transferiert, indem
(im Gegensatz zu Aufgabe 1) die Richtung der Geschwindigkeit, aber nicht deren

Figur 7

Grösse geändert wird. Wie sieht die neue Bahn aus (Figur 7) Ist v0 wieder die

Kreisbahngeschwindigkeit, so liefert die Grundgleichung (18) für die Achse a der neuen
Bahn

und unter Berücksichtigung von (19)

—, alsol _2^
a r

Die Halbachse der entstehenden Keplerellipse ist also gleich dem Radius der
Kreisbahn. Weiter hat P die Distanz r a vom Zentrum. Wenn aber die Distanz
eines Ellipsenpunktes P vom Brennpunkt der Ellipse gleich der Halbachse ist, so

ist P der Nebenscheitel der Ellipse. Die Achse der Keplerellipse hegt daher parallel
zur neuen Geschwindigkeitsrichtung. Damit kann die Ellipse gezeichnet werden,
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Nach dem dritten Keplerschen Gesetz sind übrigens auch die Umlaufzeiten auf
dem Kreis und auf der Ellipse gleich. Dies hat praktische Bedeutung. Wird nämlich
vom Raumschiff eine Raumsonde in die elliptische Bahn abgeschossen, während das
Raumschiff auf der Kreisbahn bleibt, so kehrt die Sonde wie ein Bumerang nach
einem Umlauf zum Schiff zurück.

Unser Anliegen der Betonung der plötzlichen Anwendbarkeit mathematischer
Theorien sollte auch im Unterricht beachtet werden. Vor noch nicht langer Zeit waren
Bestrebungen im Gange, den Unterricht in den elementargeometrischen Eigenschaften
der Kegelschnitte zu reduzieren. Ein Ziel des Mathematikunterrichts muss aber sein,
die Einheit von Mathematik, Physik, Naturwissenschaft und Technik anzustreben, und
dies empfiehlt äusserste Vorsicht bei solchen Reduktionen. Denn genau das, was wir
heute abbauen wollen, kann morgen eine lebenswichtige Grundlage eines neuen
Zweiges der Wissenschaften werden. Dies lehren unsere beiden Aufgaben, welche die

Brennpunktseigenschaften der Kegelschnitte ganz wesentlich benutzen.
Die Schweiz zahlt jährlich hohe Summen an die ESRO (European Space Research

Organisation) und dokumentiert damit ihr Interesse an der Raumforschung. Dies
verpflichtet die Lehrer der höheren Schulstufen, den Blick ihrer Schüler in diese Richtung
zu lenken, damit in einigen Jahren auch junge schweizerische Wissenschaftler in der
Raumforschung mitreden können. E. Stiefel, Zürich

Kleine Mitteilungen
Sur les nombres an + 1

La Solution de M. O. Reutter donn6e ä mon probleme 430 [El. Math. 18, 89-90 (1963)]
m'a suggerö le theoreme suivant :

Th6or£me. a itant un entier donni >1, il existe une infiniti de nombres naturels n tels

que n \an + 1.

Dimonstration. Vu le theoreme de M. O. Reutter (voir 1. c), il suffira de demontrer
notre thEor&me pour les entiers impairs a > 1. Dans ce cas on a Evidemment 2 | a2 + 1 et
les nombres 2 et a2 -f 1 sont tous les deux doubles de nombres impairs.

Lemme. Si a est un nombre impair > 1, m et am + 1 sont doubles de nombres impairs et

m\am + l,il existe un nombre mx > m, tel que mxet ami -f 1 sont doubles de nombres impairs
et que mx | am* -f 1.

Dimonstration du lemme. Si m | am -f 1 et si m et am + 1 sont doubles de nombres
impairs, on a am + 1 k m, oü k est un nombre impair. II en resulte que am + 1 | am * 4- 1,
donc

% i _am+l\aa +1+1

et, a Etant impair et am + 1 pair^le nombre

a*m+1-f 1

est double d'un nombre impair. Pour mx am -f 1 nous aurons donc mx | am\ -f 1, et mt
et a"** -f 1 seront doubles de nombres impairs et, vu que a > 1, on aura mx am -\- l > m.
Le lemme se trouve ainsi d£montre\

Notre tMor&me (pour a impairs > 1) rEsulte tout de suite de notre lemme et de la
remarque que pour a impairs on a 2 | d* 4- 1. W. Sierpinski* Varsovie
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