Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 19 (1964)

Heft: 5

Artikel: Die Renaissance der Himmelsmechanik
Autor: Stiefel, E.

DOl: https://doi.org/10.5169/seals-23304

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-23304
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichis
Organ fiir den Verein Schweizerischer Mathematik- und Physikiehrer

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El. Math. Band XIX Nr. 5 Seiten 97-120 Basel, 10. September 1964

Die Renaissance der Himmelsmechanik *)

Es kommt in der Entwicklung der mathematischen Wissenschaften gelegentlich
vor, dass Forschungen, die einzig und allein dem Streben nach mathematischer Er-
kenntnis entstammen, plétzlich und unbeabsichtigt in der Physik oder Technik an-
wendbar werden. Mit Erstaunen, aber auch Genugtuung stellt man dann oft fest, dass
die tn abstracto entwickelten Methoden der mathematischen Analyse auch durchaus
den Bediirfnissen der Praxis gerecht werden, was eben daran liegt, dass die theoreti-
sche Untersuchung den Kern des Problems herausgeschilt hat. Es ist reizvoll, dieser
pristabilisierten Harmonie im folgenden konkreten Beispiel etwas nachzugehen.

Unter dem Dreik6rperproblem der Himmelsmechanik versteht man die Aufgabe,
die Bewegung von drei frei beweglichen punktférmigen Massen zu studieren, die sich
gegenseitig nach dem Newtonschen Gravitationsgesetz anziehen. LAGRANGE stellt
1772 in seinem «Essai sur le probleme des trois corps» entscheidend die Weiche fiir die
mathematischen Methoden, mit denen das Problem im nachfolgenden Jahrhundert
angepackt wird. Es handelt sich um die Stérungsrechnung, der folgender Gedanke
zugrunde liegt. Sind nur zwei Koérper vorhanden, etwa ein schwerer Zentralkorper und
ein Mobil von verschwindender Masse, so beschreibt das Mobil eine geometrisch ein-
fach zu beschreibende Keplerbahn, nimlich einen Kegelschnitt, der einen Brennpunkt
im Zentralkorper hat, und wir wollen etwa an eine Ellipse denken. Wird nun ein dritter
Korper, der Storkirper hingesetzt, dessen Masse klein gegeniiber der Zentralmasse sei,
so wird die Keplerellipse des Mobils nicht mehr im Raum feststehen, sondern infolge
der Wirkung des Stérkorpers ihre Lage dndern und sich deformieren. Diese Ande-
rungen sind aber langsam im Vergleich zur Eile, mit der das Mobil diese verdnderliche
Bahn durchliuft.

Das 19. Jahrhundert bringt die Durcharbeitung des Sonnensystems auf Grund
dieser Stérungsmethoden. Immer feinere analytische Hilfsmittel werden erfunden,
um durch Reihenentwicklungen die Stérungen der Keplerbahn zu erfassen. Die Tat-
sache, dass wir in einem System leben, wo die Sonne als einziger und entscheidend
iiberwiegender Zentralkorper herrscht, erméglicht dieses Vorgehen. In einem Doppel-
sternsystem mit zwei gleichberechtigten Zentralkorpern hitte die Himmelsmechanik
von vornherein andere Wege einschlagen miissen. Als Hohepunkt und Ausklang

*) Vortrag an der Jahresversammlung 1963 des Vereins Schweizerischer Mathematik- und Physiklehrer.
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dieser klassischen Periode der Himmelsmechanik kann PoINCARES Werk «Les méthodes
nouvelles de la mécanique céleste» gelten.

Aber niemand war eigentlich mit dieser Sachlage zufrieden. Denn die Lagrange-
schen Methoden funktionieren nur, wenn der Zentralkorper wirklich bedeutend gros-
sere Masse hat als alles, was sich um ihn bewegt; das allgemeine Dreikérperproblem,
das heisst die Bewegung von drei beliebigen gleichberechtigten Massen, blieb ungelést.
Darum hat der damalige Konig von Schweden und Norwegen auf Anregung des
Mathematikers MiTTAG-LEFFLER einen Preis fiir die Losung dieses Problems gestiftet.
Leider hat K. F. SUNDMAN fiir seine wesentliche Férderung der Losungsmethoden den
Preis nicht erhalten. In seiner Studie « Mémoire sur le probléme des trois corps» (Acta
mathematica 36, 1913) packt er das Problem an der Wurzel. Als Angehoriger der
nordischen funktionentheoretischen Schule weiss er nimlich genau, dass funktionale
Zusammenhinge an den Singularititen der beteiligten Funktionen studiert werden
miissen, die natiirlich von naiven mathematischen Methoden 4ngstlich vermieden
werden. Im Dreikoérperproblem entstehen solche Singularititen, wenn zwei der
Korper zusammenstossen, was zwar fiir die Bewohner dieser Korper unangenehm, aber
mathematisch dusserst fruchtbar ist. Nachdem nidmlich die Natur der Singularititen
und ihre Lage in der komplexen Ebene abgeklirt ist, kann SUNDMAN Aussagen iiber
die analytische Fortsetzung seiner Funktionen machen, und er gelangt so zu Reihen-
entwicklungen, welche die Bewegungen fiir alle Zeiten darstellen. Obwohl die Reihen
langsam konvergieren, ist doch damit das Dreikérperproblem prinzipiell gelost.

Nach 1914 flaut das Interesse der Mathematiker an der Himmelsmechanik ab und
diese Wissenschaft verschwindet aus den Studienplinen mancher Hochschulen, bis
dann der erste Satellit um unsere Erde kreist und wir vor das Problem gestellt werden,
unsere ktinstlichen Himmelskoérper in ihrer Bahn zu lenkern und nicht nur die natiir-
lichen Himmelskorper in ihren Bahnen zu verfolgen. Wahrend es kaum notwendig war,
Kollisionen im natiirlichen Sonnensystem zu studieren, wollen wir nun Kollisionen
erzwingen, indem wir zum Beispiel ein Raumfahrzeug auf den Mond schiessen wollen.
Und damit bin ich bei dem angelangt, was ich eingangs auseinandersetzte, ndmlich bei
der plétzlichen und sich ungezwungen einstellenden Anwendbarkeit rein theoretisch
konzipierter Methoden. Wenn nidmlich unser Raumfahrzeug in die Ndhe des Mondes
gelangt (vielleicht ohne ihn exakt zu treffen), so kdnnen wir die von SUNDMAN und
anderen erfundenen Methoden einsetzen, um in der Nihe dieser Singularitit die
numerische Integration der Bahn sicherer und 6konomischer zu machen. Denn die
normalen numerischen Methoden versagen bei einer exakten Kollision und werden
unzuverlissig bei einer Fastkollision.

Es soll nun im folgenden versucht werden, die von SunpMAN, LEVI-CiviTA und
anderen Autoren erfundene Regularisierung der Kollision im Dreikérperproblem in
ihren Grundziigen auf elementarem Weg zu schildern. Wir beginnen mit dem gerad-
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Figur 1

linigen Sturz eines Mobils 7 auf einem Zentralkorper M (Figur 1). Der Koérper M ist
fest im Nullpunkt einer x-Achse, wihrend m eine Bewegung x(f) in Funktion der Zeit ¢
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ausfithrt. Die auf m wirkende Gravitationskraft betrdgt unter Ausserachtlassung
eines durch die Massen bestimmten Proportionalitdtsfaktors (1:x2) und hat das
Potential (—1: x). Ist endlich v die Geschwindigkeit des Mobils, so liefert der Energie-

satz die Relation
LA N A YY) 1)
2 x o )

Die Energiekonstante 4 hat hier offenbar die Dimension einer reziproken Linge; wir

setzen daher
1 2 1
2h=——, also v*=-—>——, 2)
a X a

Diese Differentialgleichung der Bewegung ldsst sich wie folgt lésen.

LA
T [t [ VT g
g a I / l/ 2 1 V x
L 1 -~
x a 2a
Offenbar entsteht hier ein arc sin-Integral, man substituiert daher
X ) X ) .
55 = sin®s, = = asin’s, dx = 4 a sins coss ds 4)
und findet
t=+4 aslzfsin2s ds = 2 a3/2/(1 —cos2s)ds =ad? (25 —sin2s). (5)

Zusammenfassend sind nun x und ¢ als esndeutige regulire Funktionen eines untformi-
sterenden Parameters s dargestellt, den wir fiktive Zeit nennen wollen:

x=2asin?s, ¢=a%%(2s—sin2s). (6)

Aus der ersten Gleichung (5) folgt {ibrigens noch der Zusammenhang zwischen realer
und fiktiver Zeit in der Form

t=4a3/2/sin23ds=2}/a_/xds,

W__zV_ & 2‘1/;—}. (7)

oder

Hieraus wird deutlich, dass die Einfithrung der fiktiven Zeit das Verwenden einer
Zeitlupe bedeutet. Eine konstante Schrittlinge in s bewirkt bei Anndherung an die
Singularitit (x - 0) immer kleinere Schrittlinge in ¢. Fiir spiter merken wir uns noch,
‘dass — abgesehen von einem Proportionalititsfaktor — (7) auch geschrieben werden
kann

L _ U . (8)

Dabei bedeutet U das Potential der wirkenden Gravitationskraft. Der graphische
Fahrplan unseres Mobils kann nun sehr einfach konstruiert werden, wenn man auf
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einer Zeitachse die Variable

T= Va (9)

abtrigt (Figur 2). Aus (6) folgt dann ndmlich
x=a(l—cos2s), T=a(2s—sin2s), (10)

und dies ist die Parameterdarstellung einer Zykloide, die entsteht, wenn man einen
Kreis vom Radius a auf der Zeitachse abrollen lisst. Das Dreieck der Figur 2 beweist
dies; 2 s ist der Winkel, um den sich der Kreis gedreht hat. Man erkennt, dass die

X

208

Figur 2

Bewegung vor dem Stoss symmetrisch zur derjenigen nach dem Stoss verlduft und
dass das Mobil am Zentralkorper reflektiert wird. Man versteht dies besser, wenn man
unsere geradlinige Bewegung hin und zuriick als Grenzfall einer Keplerschen Ellipse
auffasst, die den Zentralkorper sehr eng umliuft.

Unser Schlussresultat (6) leidet noch unter dem Umstand, dass zwar x eine regulire
Funktion der fiktiven Zeit s ist, aber nicht umgekehrt. Denn

s=arcsin|/_*_

2a
ergibt einen Verzweigungspunkt in der Singularitit x = 0. Man kann dem abhelfen,
indem man nun mittels

E=)x (11)

auch einen anderen LidngenmaBstab einfiihrt. So ergibt sich als endgiiltiges Bewegungs-
gesetz

& == Vﬂ sins, (12)

und dies ist eine harmonische Schwingung mit der Amplitude }/2a. Der Punkt £ ist
also durch ein elastisches Gummiband an den Zentralkérper gebunden, der nun keine
Singularitdt mehr ist. In der Tat lautet ja die Differentialgleichung der harmonischen
Schwingung (12) ‘ '

a2
S +E=0. (13)

Es ist dies eine lineare Differentialgleichung mit konstanten Koeffizienten, also
reguldr in allen Punkten der komplexen s-Ebene.

Levi-CiviTA hat in den Zwanziger-Jahren diese Regularisierung des eindimensio-
nalen Stosses in sehr eleganter Weise auf die zweidimensionale Bewegung eines Mobils
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unter dem Einfluss eines Zentralkorpers iibertragen, woriiber kurz ohne Herleitungen
und Beweise berichtet werden soll.

Die Ebene des physikalischen Geschehens sei die x, y-Ebene, die auch als komplexe
z-Ebene (z = x + ¢ y) aufgefasst wird (Figur 3). Der Zentralkérper sitzt im Nullpunkt,

7
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Figur 3

und das Mobil m bewegt sich in dieser Ebene, wobei 7 seine Entfernung vom Ursprung
sei. Das Potential der Zentralkraft ist jetzt

1
U=——,
(4

und die Gleichung (8) legt uns nahe, die fiktive Zeit s durch

ds 1 dt
@ S=/7” (14)

zu definieren. Da nun ein Stoss in jeder radialen Richtung stattfinden kann, wird ge-

mdss (11) die Variable g = ]/r— eingefiihrt werden miissen. Es war LEvI-Civitas Idee,
dass dies am einfachsten durch die konforme Abbildung

t=Vz, (C=é&+in

der z-Ebene auf eine {-Ebene geschieht. Wir haben also jetzt in der {-Ebene ein Bild-
mobil m’, dessen Entfernung vom Nullpunkt wie gewiinscht = p ist. Man bestitigt mit
Hilfe des Newtonschen Gravitationsgesetzes, dass die Bewegungsgleichungen des
Bildmobils wieder lauten

ax¢ d?n
‘a;z—'*”ﬂ.‘fzoy _d§2'+l77=0’ (15)

wobei A eine Konstante ist, die durch die Anfangsbedingungen festgelegt ist. Wiederum
sind diese Differentialgleichungen vollstindig reguldr und besagen, dass das Bildmobil
sich so bewegt, wie wenn es durch ein Gummiband mit dem Ursprung verbunden wire.
Es fiihrt also eine zweidimensionale harmonische Schwingung aus, falls 4 positiv ist.
Die Bahnkurve ist eine Ellipse mit dem Zentrum im Ursprung. Nun lernt man aber in
der Funktionentheorie, dass das Bild einer im Nullpunkt zentrierten Ellipse unter der
konformen Abbildung z = {2 eine Ellipse ist, die einen Brennpunkt im Nullpunkt der
z-Ebene hat. Das Mobil » in der z-Ebene beschreibt diese Ellipse, und somit kann mit-
tels der Levi-Civitaschen Transformation das erste Keplersche Gesetz hergeleitet
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werden. Der Vollstindigkeit halber sei erwdhnt, dass die fiktive Zeit s im wesentlichen
die aus der Astronomie bekannte exzentrische Anomalie der elliptischen Bewegung ist.

Wird nun ein Stérkérper als dritter Korper in unsere z-Ebene gebracht, so werden
die Differentialgleichungen (15) natiirlich modifiziert, sie bleiben aber regulir durch
einen Stoss des Mobils mit dem Zentralkérper hindurch. Auch hier nennen wir den
Ubergang von den Variabeln x, , ¢ zu den Variabeln &, 4, s die Regularisierung des
Stosses von Mobil und Zentralkérper.

Nun sind wir weit genug fortgeschritten, um den Grundgedanken der Sundman-
schen Losung des Dreikorperproblems verstehen zu konnen. Die cartesischen Koordi-
naten der drei Kérper seien x,, y,, 2, (R = 1, 2, 3). SUNDMAN zeigt nun, dass man statt
dessen regularisierende Variable &, #,, {, und eine fiktive Zeit s so einfiihren kann,
dass die Differentialgleichungen fiir die Funktionen &,(s), 7,(s), {i(s) regulir bleiben,
wenn zwel der Korper kollidieren. (Der Fall, dass alle drei Kérper zusammenstossen,
lasst sich auf andere Weise erledigen.) Er zeigt ferner, dass die genannten Funktionen
als Funktionen der reellen Variabeln s fiir alle Werte von s und iiber alle Stésse hinweg
stetig und beliebig oft differenzierbar sind. Entscheidend ist aber, dass die Funktionen
sogar in die komplexe s-Ebene analytisch fortgesetzt werden kénnen und dort holo-
morph regulir sind in einem Parallelstreifen mit der reellen s-Achse als Mittellinie
(Figur 4). Der Einfachheit halber geben wir diesem Streifen die Breite 7.

[
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Figur 4

Seine Reihen gewinnt nun SUNDMAN, indem er den Streifen konform auf das
Innere des Einheitskreises einer o-Ebene abbildet, etwa mittels der Transformation

e — 1

C= w11

=Th. (16)

(Th ist der hyperbolische Tangens.) Jede unserer Funktionen — zum Beispiel &, — wird
damit eine Funktion der komplexen Variabeln ¢, die im Einheitskreis regular ist.
Thre Taylor-Entwicklung o
5 1 = 2 a,, 0‘"
n=0

konvergierf daher im Innern des Einheitskreises und speziell fiir die reellen Werte
von ¢ mit —1 < ¢ < 1. In der s-Ebene bedeutet dies, dass die Reihe

§ = ’2': a, (Th ";”)n

fir alle Werte der reellen Variabeln s konvergiert. Die regularisierten Variabeln
&k, M, & sind also durch bestidndig konvergente Reihen in s dargestellt. Damit wird
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es auch moglich, die cartesischen Koordinaten x,, y,, 2, fiir jeden Wert der realen
Zeit ¢ zu berechnen.

Ohne Regularisierung der Stosse wire es unmoglich, ein solches Resultat herzu-
leiten. Denn auf Grund der gegebenen Anfangsbedingungen eines Dreikérperproblems
kann man nicht voraussagen, ob nicht doch nach geniigend langer Zeit eine Kollision
stattfinden wird.

Wie schon erwdahnt wurde, haben nun diese theoretischen Regularisierungsmetho-
den eine Wiederbelebung in der’ Praxis der numerischen Flugbahnberechnung ge-
funden. Figur 5 stellt als Kostprobe die Bahn eines Raumfahrzeuges dar, das extrem

xg} 10%km

.020 4

Ji325 =t

.015 1

0101

0051

Figur 5

nahe am Mondmittelpunkt vorbeifliegt und somit die Mondoberfliche (den Kreis
rechts unten) trifft. Das Koordinatensystem %, x, hat den Ursprung im Schwerpunkt
von Erde und Mond, und die x,-Achse geht dauernd durch das Mondzentrum. Zur
numerischen Integration wurden regularisierende Variable beziiglich des Mondes als
Zentralkérper benutzt ; die fiktive Zeit s beginnt oben mit dem Wert 4.8 und lduft mit
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gleichmissigem Schritt 0.1 bis 7.7. Auch die Werte der realen Zeit sind angegeben,
wobei die Zeiteinheit so gewahlt wurde, dass der Mond in seiner Bahn die Geschwindig-
keit Eins hat. (Lingeneinheit = Radius der als kreisférmig angenommenen Mond-
bahn.) Man erkennt, wie die Regularisierung eine feinere Zeiteinteilung in der Nihe
des Mondmittelpunktes bewirkt. Natiirlich ist die Bahn annidhernd ein Hyperbelast,
jedoch ist der Einfluss der Erde als Stérkérper genau beriicksichtigt.

Zum Schluss soll noch gezeigt werden, dass man allein mit Hilfe der drei Kepler-
schen Gesetze manche wichtige Aufgabe der Astronautik 16sen kann. Diese Aufgaben
liegen daher durchaus in der Wurfweite des Mittelschulunterrichts und sind geeignet,
um auf dieser Stufe zu zeigen, welche grundlegende Rolle die Mathematik bei den
neuesten Unternehmungen der Menschheit spielt. Es bereitet sicherlich Freude, sich
zum Beispiel selbst auszurechnen, wie lange ungefihr eine Rakete von der Erde zum
Mond unterwegs ist.

Zur Vorbereitung formulieren wir den Energiesatz fiir die elliptische Bewegung
um einen Zentralkérper (Figur 6). Das Mobil » habe in allgemeiner Lage die Distanz »

v V'

Figur 6
und die Geschwindigkeit v. In den Ellipsenscheiteln sollen diese Gréssen beziehlich
r,, v; und 7,, v, sein. Da das Potential (—1: #) betrigt, besagt der Energiesatz

v? 1 2 _ 2
=5 =h, v——r+2h, (17)

mit einer Energiekonstanten 4, deren Bedeutung wir folgendermassen abkldren. Aus
dem Flidchensatz folgt 7 vy =ty vy, 7R0E—130R.
Indem man hier fiir die Geschwindigkeit (17) eintrigt, ergibt sich

27, +2hvi=27,+2h7
und daraus Wt 1 e
T - r+r, 2a’

wobei a die grosse Halbachse der Ellipse ist. Der Energiesatz (17) ldsst sich nun
schreiben 2 1
== — = (18)

4 a’
und dies ist die Grundgleichung fiir alle Geschwindigkeitsprobleme der Astronautik.

Ist die Keplerbahn speziell ein Kreis um den Zentralkorper, so ergibt sich wegen
a = r fiir die (konstante) Bahngeschwindigkeit

(19)

9y = ——
0 V; ¢ |
Aufgabe 1. Ein Raumfahrzeug befindet sich auf einer kreisférmigen Parkierungs-
bahn (Radius ;) um die Erde. Es soll durch eine tangentiale Geschwindigkeitsidnde-
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rung auf eine Keplerellipse transferiert werden, die bis zur Mondbahn hinausreicht.
(Von den Stérungen durch den Mond wird abgesehen; die Mondbahn sei als Kreis
vom Radius 7, angenommen.)

Die Figur 6 kann als Illustration dienen. Der Transfer finde im Punkt P statt.
Dort ist die elliptische Geschwindigkeit nach (18)

s 2 1 2 2
V) == — — — =| —— —

Vo%y e vy vt

Die Kreisbahngeschwindigkeit ist nach (19)
v ! ¥ =
Ty T
somit
(h)zz e e R e [ (20)
Vo vy + 7y ri+7ry’ v, rit 7y

Dieses Resultat ldsst sich auf mancherlei Transferprobleme anwenden. Es sei zum
Beispiel die Sonne der Zentralkérper und die Kreise r,, 7, beziehlich die Erd- und
Marsbahn. Man hat dann 7,: 7, = 1,524, und (20) ergibt v, : v, = 1,099. Ein Raum-
fahrzeug, das sich auf der Erdbahn ausserhalb des Anziehungsbereichs der Erde be-
wegt, muss also nur einen Geschwindigkeitszuwachs von 9,99, erhalten, um zum Mars
hinaus zu gelangen.

Aufgabe 2. Ein Raumfahrzeug befindet sich auf einer Kreisbahn (Radius ) um
einen Zentralkdrper. Es wird im Punkt P auf eine andere Bahn transferiert, indem
(im Gegensatz zu Aufgabe 1) die Richtung der Geschwindigkeit, aber nicht deren

Figur 7

Grosse gedandert wird. Wie sieht die neue Bahn aus ? (Figur 7) Ist v, wieder die Kreis-
bahngeschwindigkeit, so liefert die Grundgleichung (18) fiir die Achse a der neuen
Bahn
: 2

1 o
— TR i v“
a v 0

und unter Beriicksichtigung von (19)
= —-—, also a=r.
14

Die Halbachse der entstehenden Keplerellipse ist also gleich dem Radius der
Kreisbahn. Weiter hat P die Distanz » = @ vom Zentrum. Wenn aber die Distanz
eines Ellipsenpunktes P vom Brennpunkt der Ellipse gleich der Halbachse ist, so
ist P der Nebenscheitel der Ellipse. Die Achse der Keplerellipse liegt daher parallel
zur neuen Geschwindigkeitsrichtung. Damit kann die Ellipse gezeichnet werden.
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Nach dem dritten Keplerschen Gesetz sind iibrigens auch die Umlaufzeiten auf
dem Kreis und auf der Ellipse gleich. Dies hat praktische Bedeutung. Wird namlich
vom Raumschiff eine Raumsonde in die elliptische Bahn abgeschossen, wihrend das
Raumschiff auf der Kreisbahn bleibt, so kehrt die Sonde wie ein Bumerang nach
einem Umlauf zum Schiff zuriick.

Unser Anliegen der Betonung der plétzlichen Anwendbarkeit mathematischer
Theorien sollte auch im Unterricht beachtet werden. Vor noch nicht langer Zeit waren
Bestrebungen im Gange, den Unterricht in den elementargeometrischen Eigenschaften
der Kegelschnitte zu reduzieren. Ein Ziel des Mathematikunterrichts muss aber sein,
die Einheit von Mathematik, Physik, Naturwissenschaft und Technik anzustreben, und
dies empfiehlt dusserste Vorsicht bei solchen Reduktionen. Denn genau das, was wir
heute abbauen wollen, kann morgen eine lebenswichtige Grundlage eines neuen
Zweiges der Wissenschaften werden. Dies lehren unsere beiden Aufgaben, welche die
Brennpunktseigenschaften der Kegelschnitte ganz wesentlich benutzen.

Die Schweiz zahlt jahrlich hohe Summen an die ESRO (European Space Research
Organisation) und dokumentiert damit ihr Interesse an der Raumforschung. Dies ver-
pflichtet die Lehrer der héheren Schulstufen, den Blick ihrer Schiiler in diese Richtung
zu lenken, damit in einigen Jahren auch junge schweizerische Wissenschaftler in der
Raumforschung mitreden kénnen. E. STiEFEL, Ziirich

Kleine Mitteilungen
Sur les nombres a4+ 1

La solution de M. O. REUTTER donnée & mon probléme 430 [El. Math. 78, 89-90 (1963)]
m’a suggéré le théoréme suivant:

Théoréme. a étant un entier donné >1, il existe une infinité de nombres naturels n tels
que n | a® + 1. k
Démonstration. Vu le théoreme de M. O. REUTTER (voir L c.), il suffira de démontrer

notre théoréme pour les entiers impairs ¢ > 1. Dans ce cas on a évidemment 2 | a% + 1 et
les nombres 2 et a? + 1 sont tous les deux doubles de nombres impairs.

Lemme. Si a est un nombre impair > 1, m et a™ + 1 sont doubles de nombres impairs et
m | a™ + 1, il existe un nombre m, > m, tel que m, et a™ + 1 sont doubles de nombres impairs
et que m, | a™ + 1.

Démonstration du lemme. Si m |a™ + 1 et si m et a™ + 1 sont doubles de nombres
impairs, ona a™ + 1 = k m, ol & est un nombre impair. Il en résulte quea™ + 1 [a™* + 1,
donc . m
et, a étant impair et a™ + 1 pair, le nombre

aa’”+l + 1

est double d’un nombre impair. Pour m, = a™ + 1 nous aurons donc m, |a™ + 1, et m,
et am + 1 seront doubles de nombres impairs et, va que a > 1, on auram; = a™ + 1 > m.
Le lemme se trouve ainsi démontré.

Notre théoréme (pour @ impairs > 1) résulte tout de suite de notre lemme et de la
remarque que pour 4 impairs on a 2 [a® + 1. W. SierPINSKI, Varsovie



	Die Renaissance der Himmelsmechanik

