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88 v' Aufgaben
l. Asa; = 2 Rsinea; and R 4+ v = R X cosa;, we have

d=2R (Zsina,- — 2 cosa, tanﬁ) :

3
therefore
. 7 . 11 1
d = 4R)_',‘sm(a,-— —3—) = 16Rl]sm(€———2—ai).

Hence we get the theorem: in a non-equilateral triangle one has d > 0, d=00r d < 0
accovdingly as the middle angle is gveater than, as great as ov lesser than n/3.
In the first example given by STEINIG «, is the middle angle and

cosa, = 0,8 > 0,5
whence a, < n/3 and d < 0.
In the second example cosa, = 1/6 < 0,5 and therefore d > 0.
2. Clearly 4 has the same sign as

4= (Xa;)?— 12 (R + 7).
Since
(XFa)2=22at+ 47 (4 R+ 7)

Sa}=9R*— OH

and

we are lead to )
A=6R:—8 Ry —8¢2— 20 H?
or
A=8(R*—2Rv)— (2R*—8Rv+ 8#%) — 20 H2 (1)

Now OH=20N and N J =1/, (R — 27), where N denotes the centre of the nine-
pointcircle; from this and (1) we obtain

A=8(0J*—~ N J2— ON?.
We have thus proved:
d>0ifandonlyif X JNO > n/2;
d=0ifandonlyif<x JNO = =/2;
d<oOifandonlyif < JNO < =/2.

It is easily seen that our result is equivalent to the theorem: d > 0, d =0, d < 0 ac-
cordingly as JO > JH, JO= JH, JO < J H?.

G. R. VELDkAMP, Technological University
Eindhoven, Netherlands
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Aufgaben

Aufgabe 457. a) Wie gross ist das Achsenverhiltnis einer Ellipse, der sich (unendlich
viele) Sehnensechsecke einschreiben lassen, deren Seiten abwechselnd zu den beiden Winkel-
halbierenden der Achsen parallel sind ?

b) Zu jeder Ellipse mit einem Achsenverhéltnis a/b > }/3 gibt es zwei Scharen von
Sehnensechsecken, bei denen je zwei aufeinanderfolgende Seiten aufeinander senkrecht

<

%) Bemerkung der Redaktion: Herr Steinig teilt uns mit, dass dieses Resultat auch leicht mit den
Formeln (6) und.(12) seiner Arbeit verifiziert werden kann.
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stehen. Alle Sechsecke derselben Schar sind schiefsymmetrisch in bezug auf denselben
Durchmesser der Ellipse. Man konstruiere ein solches Sechseck in eine gegebene Ellipse.
C. BiNpscHEDLER, Kiisnacht

Losung: Beschreibt man einem Kreis £(O; » = a) einen Polygonzug Py P, P, P, P, ...
ein, dessen Sehnen abwechselnd zu zwei festen Richtungen parallel sind, so haben die
orientierten Zentriwinkel <P, 0 P,, <P,0 P,,... gleiche Grosse 2« mit sine =
P, P,: 2a. Der Polygonzug schliesst sich demnach genau dann nach 2# Ziigen mit
Py, = Byund F; + P, fiir 1 <i < 2#n — 1, wenn o die Bedingung

o = % w, #,q ganz und relativ prim (1)

erfiillt. Dies gilt unabhédngig von der Lage der Anfangssehne P, P,. Fiir » > 2 kann man
sich auf die Werte 0 < a < n/2 beschranken, denn im Fall #/2 < « < z kann « durch den
Nebenwinkel ersetzt werden, und fiir diesen gilt (1) ebenfalls. Es geniigt also
0<q<% (2)

zu betrachten.

Die Sehnensechsecke der Aufgabe sind affin zu den geschlossenen Polygonziigen
Py P, ... Py (Py = P,) im Kreis k. Fiir diese ist speziell # = 3, und damit folgt aus (2) und
(1) eindeutig g = 1, o = 60°. In der Affinitit zwischen dem Originalkveis k und der Bild-
ellipse ¢ sind also jene 60°-Winkel zu betrachten, deven Bilder vechte Winkel sind: Wahlt man
eine zur grossen Achse (@ > b) der Ellipse ¢ im Abstand b/2 parallele Sehne 4 B als Affini-
titsachse (Figur), so fasst der gréssere Bogen von £ iiber der Sehne 4 B den Winkel 60°.
Die Scheitel der Bildwinkel von 90° ergeben sich dann als Schnitte von ¢ mit dem Thales-
kreis % iiber 4 B.

O
yl
Figur

Die von 4 und B verschiedenen Schnittpunkte C und D von ¢ und £ sind genau dapn
reell getrennt, wenn beide Nebenscheitel von ¢ im Innern von # liegen. Da & den Radius
(1/2) AB = (a/2) J/3 hat, gilt dann (3/2) b < (a/2) /3, also a > b }/3. Die beiden Scharen
der ¢ einbeschriebenen Sehnensechsecke ergeben sich nun durch Ziehen von Parallelen zu
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AC und BC bzw. zu AD und BD in der angegebenen Weise; die allen Sechsecken einer
Schar gemeinsame schiefe Symmetrie folgt aus der Symmetrie der affinen Schar im Kreis £.
Fiir a = b J/3 fallen C und D in einem Nebenscheitel von ¢ zusammen; AC und BC sind
dann zu den Winkelhalbierenden der Ellipsenachsen parallel, wie in a) verlangt ist.

Das Kegelschnittbiischel mit den vier reell getrepnten Grundpunkten 4, B, C, D
schneidet auf dem Mittellot / von 4B eine hyperbolische Punktinvolution aus, die durch
die Schnittpunkte X, X’ und Y, Y’ von ¢ bzw. & mit ! bestimmt ist. Das Parallelenpaar
AB, CD schneidet als zerfallende Biischelkurve die Triagergerade / in einem Punktepaar
Z, Z’ dieser Involution. Da Z als Mitte von 4 B gegeben ist, kann Z’ bekanntlich durch
Ziehen von 6 Gevaden bestimmt werden, die als Seiten eines vollstindigen Vierecks auf der
Geraden ! die Involution X, X’; Y, Y’; Z, Z’ ausschneiden.

Zur konstruktiven Durchfiihrung wird man dieses vollstindige Viereck so anlegen,
dass die Schlussgerade mit CD zusammenfillt: Eine beliebige Gerade durch Z (+ A B, * [)
schneidet die Parallelen zu AB durch X und Y in U bzw. V; die Parallele zu 4 B durch
den Schnittpunkt W von X’V und Y’U schneidet / in Z’ und somit % in den gesuchten
Punkten C und D, denn das durch U, V, W und den Fernpunkt von 4 B bestimmte voll-
stindige Viereck scneidet auf / die vorliegende Involution aus.

Fiir » > 3 erhilt man die ¢ einbeschriebenen rechtwinkligen Sehnen-2 #-Ecke in der-
selben Weise; der Abstand der Affinitdtsachse 4 B von der Ellipsenhauptachse ist dabei
nur so einzurichten, dass 4B = 2 g sina wird, wobei auch mehrere Werte ¢ bzw. « als
Losung von (2), (1) auftreten kénnen. H. ScraAL, Stuttgart

Der Aufgabensteller verwendet zur Losung des zweiten Teils den orthoptischen Kreis
der Ellipse (Radius = }/a? + ?). Einem Punkt P auf diesem Kreis muss bei der Affinitit
(Affinitdtsverhdltnis = b : a) ein Punkt P’ entsprechen, von dem aus der Hauptkreis der
Ellipse unter dem Winkel 60° erscheint. P’ liegt also auf dem konzentrischen Kreis mit
dem Radius 2 a. Fiir die gemeinsame Abszisse von P und P’ ergibt sich sofort

x=4el)a?— 302 mit e?= (a%— b?%/a®.

Die Tangenten von P an die Ellipse geben die Richtungen der Seiten der gesuchten

Sechsecke.
Eine weitere Losung sandte G. GEISE (Dresden).

Aufgabe 458. Man zeige, dass fiir ein Tetraeder die Summe der Quadrate der Kanten-
projektionen auf eine Ebene dann und nur dann von der Lage der Ebene nicht abhingt,
wenn das Tetraeder reguldr ist. W. JANICHEN, Berlin

Losung: Das Tetraeder habe die Ecken O, 4, B, C, so dass es durch die (linear unab-
hingigen) Vektoren OA = q, OB = b, OC = ¢ schon beschrieben ist. Wir betrachten O als
Ursprung eines kartesischen Koordinatensystems und setzen A (a,, a,, ag), B (b,, by, by),
C (¢, €4, C3).

Das Tetraeder ist genau dann regulidr, wenn die Vektoren

[=a+b—-¢, Mm=a—-b+¢, n=—-—a+b+c

Kantenvektoren eines Wiirfels sind. (Das erkennt man als unmittelbar anschaulich klar
an oder man leitet aus den notwendigen und hinreichenden Bedingungen

=== (a—-bt=(b— )= (c— a)t
fiir ein regulidres Tetraeder die genauen Bedingungen
B=m?=n% [Tm=mln=nTl=0%)
fiir ein orthonormiertes Dreibein her.)

*) aT (1 x 3-Matrix) ist die Transponierte zu q (3 x 1-Matrix). Red.
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Nach dem Satz von PoHLKE sind I, m, n genau dann Wiirfelkanten, wenn ihre Normal-
risse auf die x, x,-Ebene folgender Bedingung geniigen:

0=1[(a,+ by —¢) +i(a+ by — )12+ [(a; — by + ¢y) + @ (@ — by + ¢,)]2
+ [(— a1+ b+ ¢1) + 6 (— ag + by + ¢,p)]?

oder
0=3(a}+0i+ci—af —0f—c3) —2(a, b, +byc;+ ¢ a)
. + 2 (ay by + by ¢y + ¢y ay)
=4(at+bl+ci—af—0f —cl) — (a1 + by + 1) + (3 + by + €9)?, L (1)

0=3(aya;+ byby+¢c16) — (@ by + ag by + by ¢y + by ¢y + ¢y a5 + ¢4 ay)
=4(ayay + by by + ¢y 65) — (ay + by + ¢4) (ag + by + ¢y) . }

Analog erhdlt man durch Normalprojektion auf die iibrigen Koordinatenebenen die
(notwendigen und hinreichenden) Bedingungen

0= 4 (a + B} + cf — af — B3 — ) — (@ + by + )t + (g + by + o), } "
0 =4 (ay a3+ by by + 3 05) — (a3 + by + €5) (a5 + by + ¢4) ;
O=4(af+ b8+ —af — b —cl) — (@ + by + ca)* + (@1 + by + )%, } 3)
0=4(aga, + b3+ ¢36) — (a5 + bg+ ¢5) (a1 + by +¢y) .

Nun legen wir durch O eine Ebene ¢ mit der Gleichung
O=7r 4+ 7%+ r303=2Tx=0, |r|=1.

Ist dann % die Summe der Quadrate der Lingen aller Kanten und s die Summe der
Quadrate der Kantenprojektionen auf ¢, dann ist klar, dass die in der Aufgabe angegebene
Summe s durch die Summe % — s ersetzt werden kann. Wir erhalten

R—s=(0Ta)?24+ (tTH)?2+ Tc)2+ T (a—06)2+ (xT (b — ¢))? + (2T (¢ — a))?.
Wegen (r7 x)2 = (17 ) (x7 ) =17 (x xT) ¢ ergibt sich
Chk—s=1tTMr
mit
M=aalT +00T+ccT+(a—0)(a—BT+(B—-¢ (b—)T+ (c—a)(c—a)T
=3(aalT + BbBT + ¢ ¢T) — a (bT + ¢T) — b (¢T + aT) — ¢ (aT + b7)
=4(aalT+b0b7+ceT)—(a+b+c)(a+b+ )T
= (4 (a; a; + by b; + ¢; ¢5) — (a; + b; + ) (4 + b; + ¢5))s,9) -

Ersichtlich ist I eine symmetrische (3, 3)-Matrix.

Wird angenommen, dass die Summe % — s von der Stellung der Ebene ¢ unabhéngig
ist, dann hat T M ¢ = c fiir ein gewisses ¢ + 0 jeden Einheitsvektor r als Losung. Dies ist
bekanntlich genau dann der Fall, wenn M = ¢ € ist. Dies fiihrt auf die sechs Bedingungen

4(a;a;+ bsby+cic;) — (@ + b+ ¢ (ag+bj+¢)=céy (6,7=123),

die man unschwer als mit den Bedingungen (1), (2), (3) gleichwertig erkennt.
G. GEIsE, Dresden

Im Fall des reguliren Tetraeders sei K die Kantenlinge. Addiert man die drei Gleichun-
gen mit i = j aus der letzten Formelgruppe und beachtet, dass 2 a b = a* = K* usw,,
sofolgt 3c=4-3K3— 2+3K?=6K3 Somitistc=2K*und s =4 K2
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Ist 2 — s als Summe der Quadrate der Kantenprojektionen auf die Ebenennormale von
der Stellung dieser Normalen unabhingig, so kann man nach C. BINDSCHEDLER folgender-
massen schliessen: *

Projiziert man auf eine Kérperhdhe H;, sowird# — s = 3 H2,alsoH, = H, = H; = H,.
Die vier Seitenflichen sind daher flichengleich und damit bekanntlich auch kongruent.
Je zwei Gegenkanten des Tetraeders sind somit gleich lang. Durch Projektion auf eine
gemeinsame Normale d; zweier Gegenkanten erhdlt man wegen %k — s = 4 d? sofort
d, = dy = dy = d. Fasst man das Tetraeder als Prismatoid der H6éhe d auf, so wird der
Mittelschnitt ein Rhombus mit der Seite a/2, wenn die als Grund- und Deckfliche ge-
nommenen Gegenkanten die Linge a haben. Bedeutet %, die Seitenflichenhéhe auf die
Kante a, so hat der Rhombus die Hohe }/42 — d?. Die Mittelschnitte miissen nach der
Prismatoidformel gleich sein. Aus

alfh—ad*=byht —dt =c)n2—a?

folgt dann a = b = ¢ und damit die Regularitit des Tetraeders.

Aufgabe 459. Man zeige, dass jede ganze Zahl auf unendlich viele Weisen als Summe
von achtzehn fiinften Potenzen ganzer Zahlen darstellbar ist. E. KRATZEL, Jena

A. Makowskr und A. ScHINZEL (Warschau) weisen darauf hin, dass in der Aussage der
Aufgabe die Anzahl 18 durch 11 ersetzt werden kann. Das folgt unmittelbar aus Satz 407
in HARDY-WRIGHT, An Introduction to the Theory of Numbers, 4th ed., Oxford 1960,
P. 328, der aussagt, dass jede ganze Zahl N als Summe von 10 fiinften Potenzen ganzer
Zahlen dargestellt werden kann. Das gilt auch fiir die Zahl N — #5 fiir jedes ganze =.
Somit ldsst sich N auf unendlich viele Weisen in 11 fiinfte Potenzen zerlegen.

Der Beweis des obengenannten Satzes verwendet die Identitit

+3)85—2@Fx+2)84+254+ (xr—1)5—2(x— 3)84 (¥ — 4)5=720x — 360

sowie die durch Rechnung zu verifizierende Tatsache, dass jeder Rest (mod 720) als Summe
von zwei fiinften Potenzresten (mod 720) dargestellt werden kann.

Aufgabe 460. a,, a,, ..., a, seien natiirliche Zahlen <# mit der Eigenschaft, dass a, a,
fiir » # s keine Quadratzahl ist. Man zeige, dass 2 hochstens gleich der Anzahl der quadrat-
freien Zahlen < # ist. P. ErD6s, Budapest

Lésung: Sei f die Funktion, die jedem a, (1 < » < k) seinen quadratfreien Kern zu-
ordnet. Dann ist f eine Abbildung von {a,, ..., a,} in die Menge der quadratfreien Zahlen
<mn. Sie ist eineindeutig, denn aus f(a,) = f(a,) = b folgt a, = bc? a, = bd? also
a,a, = (bcd)® und damit » = s. Folglich ist die Anzahl % der a, hochstens gleich der
Anzahl der quadratfreien Zahlen <. J. SPiLKER, Freiburg/Br.

Weitere Losungen sandten W. JANICHEN (Berlin), H. ME1L1 (Winterthur), O. REUTTER
(Ochsenhausen, BRD).

Neue Aufgaben

Aufgabe 481. In einem Dreieck A seien a; die Seiten, k; die Héhen und »; die Ankreis-
radien (¢ = 1, 2, 3). Ist F die Fliche, R der Umkreisradius und » der Inkreisradius von A,
so beweise man die Giiltigkeit der Ungleichungskette

42}1{}15 g 12FV§_§ 54 Ry = 32aiaj§427,-rj.
i<j 1<i i<j
(Die aus dem Anfangs- und Endglied der Kette bestehende Ungleichung hat kiirzlich

A. MaxowsKI angegeben (Problem E 1675 Amer. Math. Monthly 77, 317 (1964)).
F. LEUENBERGER, Feldmeilen
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Aufgabe 482. Es sei | e | die Linge des Vektors e, und e, (v = 1, 2, ..., %) seien die
Einheitsvektoren des R". Man deute die Grosse

n

Iy =) (—1y+1 P | em+ - + e |

r=1 =< - <pp=n

geometrisch und beweise, dass /,, ,, ... eine streng monoton fallende Folge mit positiven
Gliedern ist. J. SPILKER, Freiburg/Br.

Aufgabe 483. Démontrer d’une fagon élémentaire qu’il existe pour tout nombre entier
a une infinité des nombres naturels x pour lesquels le nombre #2 + a est divisible par un
carré d’un nombre naturel >1. W. SierPINSKI, Varsovie

Aufgabe 484. Let G be the centroid of a triangle 4, 4, 4,
and o; = ¥ A4;_ 3 A; Ajyq, Pi=¥4i-1GA;4, (=1,23).
Prove the formula

where p is the perimeter and 7 the inradius of the triangle. C. KARANICOLOFF, Sofia

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitit der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen

nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass

der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewihlt

werden soll, x-Achse nach rechts, y-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrige sind zu senden an Prof. Dr. WiLL1 LUssy, Biielrainstrasse 51, Winterthur.

1. Auf einem geraden Kreiszylinder vom Radius 7 ist eine Schraubenlinie der Ganghohe
2 n a gezeichnet. Sie wird von einem ihrer Punkte Z aus auf eine Normalebene I7 zur
Zylinderachse projiziert. Das Resultat ist eine Kochleoide. Beziiglich eines geeignet
gewihlten Polarkoordinatensystems in I7 lautet ihre Gleichung

sing
=ny ;
Q 2

Die Kochleoide ist eine Spirale, die unendlich oft durch den Ursprung geht und dort
den Nullstrahl beriihrt.

2. Die Radienvektoren der Punkte der Kochleoide g = n 7 sing/p, die auf einem Strahl
@ = konst. liegen, bilden eine harmonische Reihe. Die Tangenten in diesen Punkten
gehen durch einen festen Punkt T (2 ¢; m 7).

p Beweis analytisch, oder sehr einfach stereometrisch: Den Punkten auf dem Strahl
@ = konst. entsprechen die Punkte auf einer Mantellinie des Zylinders. Alle Tangenten
in diesen Punkten sind parallel, ihre Projektionen miissen also durch einen Punkt 7,
den Fluchtpunkt dieser Richtung, gehen. T ist der Spurpunkt der zu den Tangenten
parallelen Gerade durch Z. (Alle projizierenden Ebenen durch die Tangenten haben
diese Gerade gemeinsam.)

3. Zeichne die Kurve '
0= S‘:"’ fir —n<g¢s<+a(la10cm),
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und bestimme ihre Breite b senkrecht zum Nullstrahl, sowie die eingeschlossene Fliche.
3 b= 1,4492; f—= 141814,

4, Tragt man auf allen Kreisbogen, die den Nullstrahlin O beriihren, von O aus im positiven
Drehsinn die Linge 1 ab, so liegen die Endpunkte auf der Kochleoide ¢ = sin ¢/p.

p Daraus folgt, dass die Kochleoide eine Quadratrix ist, und zwar zeigt es sich, dass
sie durch Inversion der Quadratrix des Nikomedes am Einheitskreis entsteht. Liegt
die in Aufgabe 3 zu zeichnende Kurve vor, so konnen folgende Aufgaben konstruktiv
gelost werden: (Beachte, dass alle Kochleoiden g = k& sin /g perspektiv-dhnlich sind.)
Einen beliebigen Kreisbogen zu strecken.

Auf einem Kreis eine beliebige Strecke abzutragen.

Einen beliebigen Winkel in beliebig viele gleiche Teile zu teilen.

5. Der geometrische Ort des Schwerpunkts aller Kreisbogen mit den Endpunkten 4 (0; 1)
und B (2 ¢; 1) (Polarkoordinaten) ist die Kochleoide p = sing/p.

p Einfachster Beweis mittels der Guldinschen Regel.

Treppenhaus in Ziirich (Photo W. Gubelmann, Ziirich 11)
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