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II est k remarquer qu'il existe des nombres pseudopremiers carres. Deux tels
nombres sont 10932 et 35112. On ne sait pas s'il en existe une infinite.

Or, on peut demontrer qu'il existe une infinite des nombres pseudopremiers
divisibles par 10932, respectivement par 35112*).

A. Rotkiewicz (Varsovie)

Kleine Mitteilungen

Über ein Tetraederproblem

In Aufgabe 458 der «Elemente» [1]*) ist gezeigt worden, dass die Summe der Quadrate
der Kantenprojektionen auf eine Ebene dann und nur dann von der Lage der Ebene
nicht abhängt, wenn das Tetraeder regulär ist. In dieser Arbeit behandeln wir für den
Fall der Nichtregularität das allgemeine Problem der Abhängigkeit von der Lage der
Ebene.

Wir verlegen eine Ecke des Tetraeders in den Nullpunkt o des der Betrachtung
zugrunde liegenden Koordinatensystems, auf den wir auch die vorkommenden Vektoren
beziehen. pi1), p(2), pi3) seien die drei anderen Ecken des Tetraeders, genauer ihre auf o

bezogenen Ortsvektoren. Die Projektionsebene (£ denken wir uns durch o gelegt, sie ist
durch ihren Stellungsvektor x charakterisiert, der zugleich ein Einheitsvektor ist, so dass

* (*!)> *i + *_ + **=!.

Ist nun a ein beliebiger Vektor mit der Länge a | a |, q die Länge der Projektion von
a auf (E und / die Länge der Projektion von a auf x, so ist

g2 a2-/2, f^ <ax>2,

wo <a x> das innere Produkt der beiden Vektoren a und x bedeutet; somit ist

q* a*- <a x}2 (1)

Wenden wir diese Formel auf die Tetraederkanten an, die durch die Vektoren pi1), pi2),

pi*)t p(i) _ 0(2), p(2) — pi3), pi1) — pi3) gegeben sind, und bezeichnen mit S(x) die Quadratsumme

der Kantenprojektionen auf (E, die ja eine Funktion des Stellungsvektors x ist,
mit K die Summe der Kantenquadrate, so ist

S(x) K -£<?W *>2 ~£ <(pW - Viv)) *>2' A, /*, y 1, 2, 3 (2)

Für S(x) gilt
0 < S(x) < K.

S(x) ist eine Funktion von xx, x%, xz mit der Bedingung x\ + x\ + x\ - 1 0.

*) Voir, par exemple, A. Rotkiewicz: Sur les nombres composls tels que n |2n-2| et n * 3n-3,
Bulletin de la Soci6t6 des mathematiciens et physiciens de la R. S. de Serbie XV, Beograd 1963, p. 7-11.

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 87.
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Wir bestimmen zunächst die Extremwerte von S(x) und wenden zu dem Zweck die
Methode der unbestimmten Multiplikatoren auf die Funktion

S(x) K -£<pW x>* -^7<(pM - p«) x>2 + * (xf + x\ + xl - 1)

an. Hierin ist
<pw xy p[X) xx + pf> x2 + p^ xz,

(3)

da

»W:

und x ein zu bestimmender Faktor.
Für die Extremwerte muss gelten:

öS
d xx

0,
öS
d x.

\P^J

o,
öS
d x. ¦= 0.

Zum Beispiel ist
1 öS
2 dxx

oder

--£<vw *> Pi] + E <*{/<) - *w> *> ^ ~ *V) -«*i °

<p(l) X> pi1* + <p(2> 3E> p2* + <p<3> *> M3J + «p(X> X> - <P<2> X» (/»l1» - p{2)) +

+ «P<2> *> - <P<3> X» (M2) - PP) + «P« X> ~ <P<3> X» W1' - PP) -XXx=0,

<p(i) x> (3 pp ~ p[' *J»>. +

+ <P<2> X> (- M1} + 3 £<2) - £<8)) -f <p<3> X> (-/»l1» - p[2) + 3 £i3)) x xx

(pp *x + #i) *2 + ^ **) (3 mi} - M2) - pp) + (M2) % + pp h + rt»» *,) x

X (-/»p> + 3 M2) - M3)) + U>P *i + £(23) *2 + pP *.) (-M1' - PP + 3 M3)) * *l •

Ordnet man nach xx, x2, xz, so erhält man drei homogene Gleichungen für xx, x2, xz

txx xx -f* tX2 x2 -f /13 xz x xx,
*21 XX T* '22 X% -T *2Z Xz — X X2 (4)

*31 XX ~T '32 X2 -j- tgg #3 — # #3
Dabei ist

<* Pf (^ *>„
> - Pf - tf>) + >« (~Pf + 3 *f> - Pf) + Pf (~Pf - Pf + 3 Pf) ¦ (5)

Damit die Gleichungen (4) einen nicht verschwindenden Lösungsvektor

* \xt

besitzen, muss die Determinante

*n - *

h
*23

*3S "

0 (6)

sein. Da, wie man leicht durch Umstellung der Glieder erkennt,

ht* * fiix > Ä4=^,
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so ist (6) die charakteristische Gleichung der symmetrischen Matrix

z=u
Gleichung (6) hat bekanntlich [2] [3] drei reelle Wurzeln xx, x2, xz.

Diese drei Werte smd die Eigenwerte der Matrix X. Zu jedem x gehört ein Losungsvektor

von (4), und zu verschiedenen x gehören auch verschiedene Losungsvektoren x,
die zueinander orthogonal smd. Die Determinante (6) liefert entwickelt folgende Gleichung

x3-Kx* + Qx-\Z\ 0

K ist gleich txx -f /22 + tzz. Nun ist nach (5), wie leicht ersichtlich

t
daher

(8)

M1)ä + pf2 + pf2 + (pf - pf)2 + (pf - pf)2 + (pf - pf)(SH2

i- |p(1f+ |p(2)|2+ |p(3)|2+ |p(1>' p(2)|2+ |pM. P(3)|2 + n.W. «t»)|2

Summe der Kantenquadrate.

Weiter ist nach dem Multiphkationssatz fur Determinanten

Pf Pf Pf 3Pf -Pf -Pf 3 Pf -Pf -Pf 3 Pf -Pf -Pf
Pf Pf Pf • -Pf + 3pm -pf) -Pf + 3 pf -pf -Pf +3 Pf -Pf
Pf Pf Pf -Pf -Pf +3 Pf -Pf -Pf + 3Pf -Pf -Pf + 3Pf

Die zweite Determinante kann man durch wiederholte lineare Kombination der Zeilen
vereinfachen. Man findet, wenn wir nur die erste Spalte ausschreiben, nacheinander

Pf + Pf + Pf ¦

-pm + 3pf-pw..
-pf -pf + 3Pf

4p
4pf -4p

pf-pf^p

(3).

(3)
1 " •

(3)
1 * *

16

-pf.

Pf
Pf-Pf

-Pf + 3 Pf

16
Pf...
pf...

-pf...
16

Pf Pf Pf
Pf Pf Pf
Pf Pf Pf

Daher ist
£ =_ 16 \pM 2= 16-36F2,

wo V der Tetraedermhalt ist, also

| % | ___ Hl „2 Xz (24 V)\
1 1

V -14**1 ^2 ^3 ~ ü*'|X|. (9)

Die drei Eigenwerte sind daher alle positiv, oder es sind zwei negativ und einer positiv.
Wir werden noch zeigen, dass nur die erste Möglichkeit in Frage kommt. Wir gelangen so

zu folgendem.

Satz 1: Die Losungsvektoren

* \x.

der drei homogenen Gleichungen (4) ergeben drei paarweise zueinander senkrechte
Richtungen, zu denen die extremen Werte der Quadratsumme S(x) gehören. Dabei smd für



^11 ^12 *11 *13 ^22 ^23
4- +

^21 ^22 ^31 ^33 1 *32 *83
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x die Eigenwerte xx,x2, xz der symmetrischen Matrix X einzusetzen, die der Gleichung

x*-Kx* + Qx-\X\ 0

genügen. K ist die Summe der Kantenquadrate des Tetraeders, die Determinante | X | der
Matrix X hat den Wert (24 V)2, wobei V der Tetraederinhalt ist. Der Wert von Q ist

Wir betrachten noch einmal die quadratische Form

K - S(t) =£ <p« _>2 +2 <(pM - pW) «>».
A ß<v

Sie lässt sich bekanntlich [4], da die Matrix X symmetrisch ist, durch eine reelle Drehung
des Koordinatensystems

mittels einer orthogonalen Matrix & transformieren auf die Normalform

K - S(t)) xxy2x + x2 y\ + *, yl.
Der Einheitsvektor x geht nach der Transformation wieder in einen Einheitsvektor n über.
Der Ausdruck S(x)) ist also wieder gleich der Quadratsumme S(x) der Kantenprojektionen.
Es gilt also nach der Transformation für S(r)) der einfachere Ausdruck

S(V) ^K-xxy\-x2y\-xzyl. (10)

Satz 2: Hat die Projektionsebene (E den Stellungsvektor x, so hat die Quadratsumme
der Kantenprojektionen auf (E die Form

S(x) K-£ <pW *?-£ <(P(") - PW) *>\ K V, v 1, 2, 3
A ft<v

Sie lässt sich durch eine orthogonale Matrix S auf die Normalform

S(xj)^K-xxy2x-x2y22-xzyl
transformieren. Die Richtungen der drei neuen Koordinatenachsen fallen mit den drei
Projektionsrichtungen zusammen, zu denen die Extremwerte der Quadratsummen
gehören.

Um ein anschauliches Bild von der Abhängigkeit zwischen der Quadratsumme und
der Lage der Projektionsebene zu erhalten, nehmen wir folgende Konstruktion vor: Auf
dem durch 0 gehenden Einheitsvektor n tragen wir von 0 aus die Strecke

1

w
ab. Der Endpunkt sei

Dann verhält sich

K*-S(9)

"0
1

also

Dann geht (10) über in

Xi: -
¦. v .- - yt: 1,

Vi « ]/K - Sfo) x{, i 1, 2, 3

«1 X\ + «t X\ + «8 Xl 1 (11)

Der Punkt 1 liegt also auf einer Quadrik. Setzen wir die Länge des Vektors x

l»h^-r«! + 4Ä'»
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so ist yl + yl + y\ 1 (__ - S(t))) (*? + *1 + *f) (K - S(x))) r\
S(t)) K-±.

Die Quadratsumme der Kantenprojektionen, die zu dem Stellungsvektor n gehört, ist also
gleich K — 1/r2. Nun sieht man leicht, dass die Quadrik ein Elhpsoid sein muss. Wären
nämlich zwei Eigenwerte x negativ, so würde es sich bei der Quadrik um ein zweischahges
Hyperboloid handeln, das sich bis ins Unendliche erstreckt. Der Wert von 5(n) würde
also beliebig nahe an K herangebracht werden können. Nach (2) würde das aber die
Parallelität aller Tetraederkanten zur Projektionsebene erforderlich machen.

Weiter ist klar, dass die Richtungen der Hauptachsen des Ellipsoids mit der Gleichung
(11) die Projektionsrichtungen sind, zu denen die extremalen Werte der Quadratsumme
S(t)) gehören. Diese sind, wie sich aus (11) und (12) oder aus (10) ergibt

K — xx, K — x2 K — xz

oder, da K xx + x2 -f xz, gleich

x2 + xz, xx + xz, xx + x2.
Somit gilt

Satz 3: Legt man die Koordinatenachsen von Satz 2 zugrunde und trägt man auf den
durch den Nullpunkt gehenden Stellungsvektoren n der Projektionsebenen die Strecke

]/K-S(x>)

ab, so liegen die Endpunkte

auf dem Elhpsoid
xx x\ + x2 x\ + xz x\ 1

Seine Hauptachsen geben die Richtungen an, zu denen die Extremwerte x2 + xz, xx + xz,
xx + x2 der Quadratsummen gehören. Hat ein Punktvektor x des Ellipsoids die Länge
r | x |, so ist *

S(D)=#-7_-
W. Janichen, Berlin-Zehlendorf
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Note on a paper by J. Steinig

In a paper on inequalities concerning the inradius and circumradius of a triangle
J. Steinig observes that there does not exist an inequality between £ a{ andj )/T (R + r)
[1]1). This note is devoted to a brief discussion of the difference _£ a£ - 2 |/3 (R + r) d;
our notations are the same as those used by Steinig with the refinement that we number
the vertices of the triangle T such that ax ___ a2 _s a8.

x) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 88.
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1. As a{ 2 R sina,. and R + r i? 27cosat., we have

d 2 R 127sina^ —27cosat tan—-) ;

therefore

d 4 ÄJEsinJa, - -J) 16 i? /7sin (-J - y **) '

Hence we get the theorem: in a non-equilateral triangle one has d > 0, d — 0 or d < 0

accordingly as the middle angle is greater than, as great as or lesser than n/3.
In the first example given by Steinig a2 is the middle angle and

cosoc2 0,8 > 0,5
whence a2 < n/3 and d < 0.
In the second example cosa2 1/6 < 0,5 and therefore d > 0.

2. Clearly d has the same sign as

^ (2>t)2~ 12 (R + r)K
Since

(Zat)2=2Za2i + 4r(4R + r)
and

Ea\=* 9R2-OH2,
we are lead to

A 6R2-8Rr-Sr2-20H2
or

A 8 (R2 - 2 R r) - (2 R2 - 8 R r + 8 r2) - 2 O H2. (1)

Now O H 2 O N and N J xf2 (R — 2r), where iV denotes the centre of the nine-
pointcircle; from this and (1) we obtain

A 8 (0 J2 - N J2 - 0 N2)
We have thus proved:

d > 0 if and only if <£ / N O > n/2 ;

d 0 if and only if <£ / iV O n/2 ;

d < 0 if and only if <£ / JV O < n/2

It is easily seen that our result is equivalent to the theorem: d > 0, d 0, d < 0 ac-
cordingly asJO>JH,JO JH,JO<J H2).

G. R. Veldkamp, Technological University
Eindhoven, Netherlands

reference
[1] J. Steinig, Inequalities concerning the inradius and circumradius of a triangle, El. Math.

18, 127 (1963).

Aufgaben
Aufgabe 457. a) Wie gross ist das Achsenverhältnis einer Ellipse, der sich (unendlich

viele) Sehnensechsecke einschreiben lassen, deren Seiten abwechselnd zu den beiden
Winkelhalbierenden der Achsen parallel sind

b) Zu jeder Ellipse mit einem Achsenverhältnis a/b > j/3 gibt es zwei Scharen von
Sehnensechsecken, bei denen je zwei aufeinanderfolgende Seiten aufeinander senkrecht

*) Bemerkung der Redaktion: Herr Steinig teilt uns mit, dass dieses Resultat auch leicht mit den
Formeln (6) und (12) seiner Arbeit verifiziert werden kann.
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