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Kleine Mitteilungen 83

Il est & remarquer qu’il existe des nombres pseudopremiers carrés. Deux tels
nombres sont 10932 et 35112. On ne sait pas s'il en existe une infinité.
Or, on peut démontrer qu’il existe une infinité des nombres pseudopremiers
divisibles par 10932, respectivement par 35112%),
A. RoTkiEwIcz (Varsovie)

Kleine Mitteilungen

Uber ein Tetraederproblem

In Aufgabe 458 der «Elemente» [1]1) ist gezeigt worden, dass die Summe der Quadrate
der Kantenprojektionen auf eine Ebene dann und nur dann von der Lage der Ebene
nicht abhingt, wenn das Tetraeder reguldr ist. In dieser Arbeit behandeln wir fiir den
Fall der Nichtregularitit das allgemeine Problem der Abhingigkeit von der Lage der
Ebene.

Wir verlegen eine Ecke des Tetraeders in den Nullpunkt o des der Betrachtung zu-
grunde liegenden Koordinatensystems, auf den wir auch die vorkommenden Vektoren be-
ziehen. p®, p®), p@® seien die drei anderen Ecken des Tetraeders, genauer ihre auf o be-
zogenen Ortsvektoren. Die Projektionsebene & denken wir uns durch o gelegt, sie ist
durch ihren Stellungsvektor ¥ charakterisiert, der zugleich ein Einheitsvektor ist, so dass

Xy
= %), #B+ai+1i=1.
X3

Ist nun a ein beliebiger Vektor mit der Linge @ = | a|, ¢ die Ldnge der Projektion von
a auf € und f die Lange der Projektion von a auf %, so ist

¢*=a*—f, fr=<ax)?,
wo <a x> das innere Produkt der beiden Vektoren a und x bedeutet; somit ist
g® = a® — {ax)? (1)
Wenden wir diese Formel auf die Tetraederkanten an, die durch die Vektoren p®), p@®),
p®, p®) — p®, p® — p®), pM — p®) gegeben sind, und bezeichnen mit S(x) die Quadrat-

summe der Kantenprojektionen auf €, die ja eine Funktion des Stellungsvektors % ist,
mit K die Summe der Kantenquadrate, so ist

Six) =K __2@(1) 12 __Z {pw — p®) 2>2, A u,v=1,23. (2)
A u<r
Fiir S(x) gilt
' 0< S <K.

S(x) ist eine Funktion von #,, 4, #; mit der Bedingung #{ + 23 + 43 — 1 = 0.

*} Voir, par exemple, A. RoTKIEWICZ: Sur les nombres composés tels que |2"—2| et nt3"-3,
Bulletin de la Société des mathématiciens et physiciens de la R. S. de Ser.ble ?(V, }:%eograd 1963, p. 7-11.
1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 87.
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Wir bestimmen zunichst die Extremwerte von S(x) und wenden zu dem Zweck die
Methode der unbestimmten Multiplikatoren auf die Funktion

S@) = K — 3 phxy2 — 3 (p) — p0) 2> + x (v3 + 23 + 45 — 1) (3)
. A n<v
an. Hierin ist

<p(1) x> = P(ll) % + P(zl) % + P:(al) X3,

o)
2
p = <p§j’ ,
p
und x ein zu bestimmender Faktor.

Fiir die Extremwerte muss gelten:

0S
Oxlzo’

da

0S oS
A

Zum Beispiel ist
198

2 0xy

=2 W ey pP + 3T <(pt0 — po) 2> (p — pP)) — w2, = 0
A
oder
<pM x> U 4+ <p@ &) PR + (p® x> PP 4+ (KpM x> — (p® xD) (P — pi) +
+ (Kp® x> — (p@ x)) (PP — pP) + (Kp® x> — <P® %)) (P — pP) — %2, =0,

PN x> (3P — pi¥ — pP) +
+ @ x> (— PV + 3PP — pP) + p x> (=PI — PP + 3pP) = x 7y,
(B 1+ B0 1y + 0 7) (32 — P — BY) + (P2 3 + PR 7y + PR ) X
X (=) + 350 — p) + (P 21+ ) 2y + 25 20) (—p) — P + 3 pP) = w1,
Ordnet man nach x,, x,, ¥, so erhidlt man drei homogene Gleichungen fiir x,, x,, ¥,
by Xy + big Xg + big g = % %y,
Bgy Xy + Bgg Xg + byg X3 = % %, , (4)

Iy ¥y + lag X + U3 X3 = % X5 .
Dabei ist

bu= 0, (300 — 080 = 020) + 20 (=00 + 3600 — 27) + 20 (=210 — 227 + 3£7). (9)
Damit die Gleichungen (4) einen nicht verschwindenden Losungsvektor

¥y
X = xz
X3

besitzen, muss die Determinante

bp— % Iy lLis
a1 lag — % 1y =0 (6)
I3 293 byg — %

sein. Da, wie man leicht durch Umstellung der Glieder erkennt,

tﬁp:tyi' A*/A,
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so ist (6) die charakteristische Gleichung der symmetrischen Matrix

Ly tie his
I = la1 %39 las | -
l31 %39 33

Gleichung (6) hat bekanntlich [2] [3] drei reelle Wurzeln »x,, x,, x,.

Diese drei Werte sind die Eigenwerte der Matrix T. Zu jedem x gehért ein Losungs-
vektor von (4), und zu verschiedenen x» gehoéren auch verschiedene Losungsvektoren z,
die zueinander orthogonal sind. Die Peterminante (6) liefert entwickelt folgende Gleichung

W —Kx*+Qx—|T|=0 (8)
K ist gleich ¢,; + 5, + ;3. Nun ist nach (5), wie leicht ersichtlich,
= P(11)2+ p(12)2+ p(13)2+( (11) . P(12))2+ (pgz) . pgs))2+ (pgl) _ pgs))z’
daher
K= |pWE 4 [P 4 [pOF 4 [p®) — p@ 4 [p® — p@ [ 4 [p0 — pO2
= Summe der Kantenquadrate.

Weiter ist nach dem Multiplikationssatz fiir Determinanten
3 1 2 3 1 2 3
PO A0 | (3500 gl 350 gl gD 3 gl )
T = [ p) p@ p@® | . _p(ll) i 3P(12) —p® 4 32 — p® _Pgl) +3p® —p® |,
2) 2
P20 85 | |t =P+ 3 el -0+ 320 ) — P+ 32

Die zweite Determinante kann man durch wiederholte lineare Kombination der Zeilen
vereinfachen. Man findet, wenn wir nur die erste Spalte ausschreiben, nacheinander

P+ PP+ 6P | 4p ... P ..
—p{ 4 3p _pB ] = 4pB_4p® .| =16 p —p® .=
—p — pP 430 || P 30 —p - pP + 350
p?) L. p(ll) p(zl) P:(Bl)
=16| pP...|=16(p{ p p{|.
V... p® p® p®
Daher ist

= 16| P 1636 1
wo V der Tetraederinhalt ist, also
| T| = 2y %5 25 = (24 V)3,

V= Vi =5 VT ©)

Die drei Eigenwerte sind daher alle positiv, oder es sind zwei negativ und: .einer positiv.
Wir werden noch zeigen, dass nur die erste Moglichkeit in Frage kommt. Wir gelangen so

zu folgendem:
1
=17
¥3

der drei homogenen Gleichungen (4) ergeben drei paarweise zueinan.(.ler senkreqhtg Ric{l—
tungen, zu denen die extremen Werte der Quadratsumme S(x) gehoéren. Dabei sind fiir

Satz 1: Die Losungsvektoren
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x-die Eigenwerte x,, x,, %3 der symmetrischen Matrix ¥ einzusetzen, die der Gleichung
W— K24+ Qux—|T|=0

geniigen. K ist die Summe der Kantenquadrate des Tetraeders, die Determinante | ¥ | der
Matrix T hat den Wert (24 V)2, wobei V der Tetraederinhalt ist. Der Wert von Q ist

tll t12 tll tls t22 t23

Q=

t21 t22 t31 t33 t82 tss

Wir betrachten noch einmal die quadratische Form
K — S() = é\? PP 0%+ 3 < — p¥) £
u<v

Sie lasst sich bekanntlich [4], da die Matrix ¥ symmetrisch ist, durch eine reelle Drehung
des Koordinatensystems
xr=08y

mittels einer orthogonalen Matrix & transformieren auf die Normalform
K — S(p) = %, 91 + %2 ¥ + %3 93 .

Der Einheitsvektor x geht nach der Transformation wieder in einen Einheitsvektor 1 iiber.
Der Ausdruck S(py) ist also wieder gleich der Quadratsumme S(z) der Kantenprojektionen.
Es gilt also nach der Transformation fiir S(y) der einfachere Ausdruck

S(n) = K — 5,9} — %398 — %393 . (10)

Satz 2: Hat die Projektionsebene € den Stellungsvektor %, so hat die Quadratsumme
der Kantenprojektionen auf ¢ die Form

S(x) =K —2 <p(l) $>2—2 <(p(”) - p(v)) x>2: A, m, v = 1» 2: 3.
A

u<y
Sie ldsst sich durch eine orthogonale Matrix & auf die Normalform

S(n) = K — %, ¥ — %, ¥§ — %3 ¥}

transformieren. Die Richtungen der drei neuen Koordinatenachsen fallen mit den drei
Projektionsrichtungen zusammen, zu denen die Extremwerte der Quadratsummen ge-
héren.

Um ein anschauliches Bild von der Abhingigkeit zwischen der Quadratsumme und
der Lage der Projektionsebene zu erhalten, nehmen wir folgende Konstruktion vor: Auf
dem durch p gehenden Einheitsvektor n tragen wir von p aus die Strecke

1
VK — S(v)
ab. Der Endpunkt sei "
¥ = xz)~
X3
Dann verhilt sich
N 1
N =19, 1
VE—S@m)
also
yi=VK—S(y) »;, 1=1,23.
Dann geht (10) iiber in
H, XY+ 2 ¥+ wg a3 =1. (11)

" Der Punkt x liegt also auf einer Quadrik. Setzen wir die Linge des Vektors x

|l =Vat+ 23+ a2} =7,
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so ist +yi+yi=1=(K—S) (o1 + 21+ 4§ = (K- S(y)) r*,
' 1
S(y) =K ——5.

Die Quadratsumme der Kantenprojektionen, die zu dem Stellungsvektor 1 gehort, ist also
gleich K — 1/r2. Nun sieht man leicht, dass die Quadrik ein Ellipsoid sein muss. Wiren
namlich zwei Eigenwerte x negativ, so wiirde es sich bei der Quadrik um ein zweischaliges
Hyperboloid handeln, das sich bis ins Unendliche erstreckt. Der Wert von S(y) wiirde
also beliebig nahe an K herangebracht werden konnen. Nach (2) wiirde das aber die
Parallelitit aller Tetraederkanten zur Projektionsebene erforderlich machen.

Weiter ist klar, dass die Richtungen der Hauptachsen des Ellipsoids mit der Gleichung
(11) die Projektionsrichtungen sind, zu denen die extremalen Werte der Quadratsumme
S(py) gehoéren. Diese sind, wie sich aus (11) und (12) oder aus (10) ergibt

K——%l, K—xz, K—xa,
oder, da K = %, + %, + %3, gleich

. Ky + %3, 3+ g, Hp A Ky,
Somit gilt

Satz 3: Legt man die Koordinatenachsen von Satz 2 zugrunde und tridgt man auf den
durch den Nullpunkt gehenden Stellungsvektoren 1 der Projektionsebenen die Strecke

1
VK —S(y)
ab, so liegen die Endpunkte ”
1
: s= (%
X3

H X} Hg X + gl =1.

auf dem Ellipsoid

Seine Hauptachsen geben die Richtungen an, zu denen die Extremwerte x; + %3, %, + %,
#; + %, der Quadratsummen gehdren. Hat ein Punktvektor x des Ellipsoids die Linge

v = ||, so ist 1
S(p) =K ——5.

72
W. JAnicHEN, Berlin-Zehlendorf
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Note on a paper by J. STEINIG

In a paper on inequalities concerning the inradius and circumradius of a triangle
J. STEINIG observes that there does not exist an inequality between X a; and 2 /3 (R +7)

[1]1). This note is devoted to a brief discussion of the difference X' a; — 2 /3 (R+ 1) =d;
our notations are the same as those used by STEINIG with the refinement that we number

the vertices of the triangle T such that «; < a3 = a5,

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 88.




88 v' Aufgaben
l. Asa; = 2 Rsinea; and R 4+ v = R X cosa;, we have

d=2R (Zsina,- — 2 cosa, tanﬁ) :

3
therefore
. 7 . 11 1
d = 4R)_',‘sm(a,-— —3—) = 16Rl]sm(€———2—ai).

Hence we get the theorem: in a non-equilateral triangle one has d > 0, d=00r d < 0
accovdingly as the middle angle is gveater than, as great as ov lesser than n/3.
In the first example given by STEINIG «, is the middle angle and

cosa, = 0,8 > 0,5
whence a, < n/3 and d < 0.
In the second example cosa, = 1/6 < 0,5 and therefore d > 0.
2. Clearly 4 has the same sign as

4= (Xa;)?— 12 (R + 7).
Since
(XFa)2=22at+ 47 (4 R+ 7)

Sa}=9R*— OH

and

we are lead to )
A=6R:—8 Ry —8¢2— 20 H?
or
A=8(R*—2Rv)— (2R*—8Rv+ 8#%) — 20 H2 (1)

Now OH=20N and N J =1/, (R — 27), where N denotes the centre of the nine-
pointcircle; from this and (1) we obtain

A=8(0J*—~ N J2— ON?.
We have thus proved:
d>0ifandonlyif X JNO > n/2;
d=0ifandonlyif<x JNO = =/2;
d<oOifandonlyif < JNO < =/2.

It is easily seen that our result is equivalent to the theorem: d > 0, d =0, d < 0 ac-
cordingly as JO > JH, JO= JH, JO < J H?.

G. R. VELDkAMP, Technological University
Eindhoven, Netherlands
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Aufgaben

Aufgabe 457. a) Wie gross ist das Achsenverhiltnis einer Ellipse, der sich (unendlich
viele) Sehnensechsecke einschreiben lassen, deren Seiten abwechselnd zu den beiden Winkel-
halbierenden der Achsen parallel sind ?

b) Zu jeder Ellipse mit einem Achsenverhéltnis a/b > }/3 gibt es zwei Scharen von
Sehnensechsecken, bei denen je zwei aufeinanderfolgende Seiten aufeinander senkrecht

<

%) Bemerkung der Redaktion: Herr Steinig teilt uns mit, dass dieses Resultat auch leicht mit den
Formeln (6) und.(12) seiner Arbeit verifiziert werden kann.
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