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Ist d gegeben, so errechnet sich aus (7) sofort ein bestimmter Wert für X. Damit aber
können die drei speziellen Horozyklen H0, Hx, H2 und davon ausgehend die gesamte
Überdeckung der hyperbolischen Ebene konstruiert werden.

Für A < 1 und X > 2 -f- V3 fuhrt diese Konstruktion auf eine mehr als zweifache
Überdeckung Beschranken wir uns auf zweifache Überdeckungen, so erhalten wir für
die Dichte unserer Horozyklenanordnung die Abschätzung.

•i^___L___l.
n

H. Zeitler, Weiden (Oberpf.), Deutschland
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Herleitung der

hyperbolischenTrigonometrie aus dem allgemeinen Poincaremodell

Den folgenden Betrachtungen soll das allgemeine1) Poincaremodell für die
hyperbolische Geometrie zugrundegelegt werden. Das Innere des sogenannten Fundamentalkreises

sei die hyperbolische Ebene. Die im Innern dieses Fundamentalkreises
befindlichen Bögen der zu diesem Kreis gehörigen orthogonalen Kreise stellen
bekanntlich die hyperbolischen Geraden dieses Modells dar. Im folgenden soll nun für
ein allgemeines Dreieck ohne Umweg über das rechtwinklige Dreieck die hyperbolische

Trigonometrie abgeleitet werden. Insbesondere werden hergeleitet: Sinussatz,

Seitencosinussatz und Winkelcosinussatz. Die Herleitung dieser Sätze gelingt relativ
einfach durch Wahl eines günstig gelegenen Dreiecks mit Hilfe einer einzigen Figur.

*) Eine Herleitung fur das spezielle Poincaremodell, bei dem die hyperbolischen Geraden durch auf
einer Fundamentalgeraden senkrechte Halbkreise realisiert smd, hat der Verfasser in MNU 16, 311-314

(1063) gegeben.
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Bekanntlich sind zwei hyperbolische Dreiecke, die durch Inversion an einem Kreis
ineinander übergehen, kongruent. Diese Tatsache wird hier benützt. Im folgenden
werde zunächst gezeigt, wie das für die Rechnung geeignete Dreieck gewonnen wird.

Figur 1

ABC (Figur 1) ist ein hyperbolisches Dreieck innerhalb des Fundamentalkreises
mit Mittelpunkt M. Die beiden Kreise durch B schneiden sich ein zweites Mal in B'.
B' werde nun als Mittelpunkt eines zum Fundamentalkreis orthogonalen Kreises ge-

CAt
ca9

Figur %

wählt und das Dreieck ABC an diesem Kreis gespiegelt. Dann geht zunächst der
Fundamentalkreis in sich über. Die Kreise durch B (hyperbolische Geraden durch B)
gehen in zwei Gerade über. Da die Kreise durch B den Fundamentalkreis senkrecht
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schneiden, müssen die beiden Geraden den Fundamentalkreis wegen der Winkeltreue
ebenfalls senkrecht schneiden und daher durch den Kreismittelpunkt hindurchgehen.
Das neue Dreieck hat also eine Ecke im Mittelpunkt des Fundamentalkreises. Die von
dieser Ecke ausgehenden Seiten sind euklidische Geraden. Da man jedes hyperbolische

Dreieck m diese Lage bringen kann, wird den folgenden Betrachtungen ein
Dreieck in dieser speziellen Lage zugrundegelegt und aus ihm die hyperbolische
Trigonometrie abgeleitet. Gemäss der Längendefinition gilt (Figur 2, Dreieck C AXA2):

^-.-*-(3_:$i).
lca, ~a.+i ÄlnTf__7 (*' 1.2; «» «1)

k ist eine durch Wahl der Längeneinheit festsetzbare Konstante, über die hier nicht
verfügt werden soll. Mit Hilfe von Figur 2 und den dort eingeführten Bezeichnungen
folet:

a, kln£±± (.- 1,2).

Hieraus folgt für i 1, 2:

Sb£-i(^-.-V»)_.^. (1)

Ebenso ergibt sich

CosA gi___!. (la)h p* — ut*

Aus Dreieck SAtC folgen für i 1, 2 und u3 ux die Beziehungen:

______ _________•
sin^i q '

oder

oder

p2 + q2 uf+1 + q2 + 2 u,+l q sina,

q2 p2 + _2 + «f+1 - 2 «,+1 ]ji>2 + q2 cos?,

p%+u*+l

(2)

(3)

cos9^
2«, + 1|/£iT?

Da <p, < n/2 ist, folgt ausserdem

sin9,t _ ___ y -—.-j

mit positiver Wurzel.

(4)

(5)
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Weiter folgt aus den Dreiecken U3A2C, UZAXC, VBA2C und V3AXC:

U~a?= p2 + u\-2pux cos(£ + cp2)

U3 Ax p2 -f u\ - 2 p u2 cos (ß - cpx)

V3 A2 p2 + u\ — 2 p ux cos (ß — cp2)

Vz Ax p2 + u\- 2 p u2 cos(/? + <px)

Unter Berücksichtigung von cos/? pjtfp2 -f q2 und sin/? ^/l/^2 + q2 und Formel (4)

f°lgt: TTT*- &* + "» g2
4. ^g%siny2

f7~F2_= (P2 + *4) g2 2 ft g t,, sinyi
t/3^1 £2 + <_2 Vt^T?
FT2- &* + «?) q2

__
2pquxsmcp2

32 £2 + <72 ]fp^V¥
2_ (^2 + Kj) q2 2pqu2sin(Pl

P2 + ?2 Yp*TY

W

1/ J _. vr n- "g;

Aus der Definition von LA% A% c folgt:

rnQ-i -1 / ^ü2- *v^2+ tyi;2- OT^".2 \
^°*k 2\ UZA2-VZAX>VZA2-UZAX )'

Mit Hilfe der Formeln (6) erhält man:
2 2

Ü7Ä?- K*7+ ^T22- Ü^_T= ^iS^TJ^« + «?) + ^f-IZ"«,- sin?,-

und ebenso mit Hilfe von (6) und (5)

CT, .1, • Vs Ax ¦ V3 A, • U3 Ax -p3L_]~[W - «*).

Daraus folgt weiter:
2 2

_*n (p* + «J) + 4 />* (£* + ?*) /7 m, sin»»,
~ C t' l t l /^\Cos-r- g (7)

**=1

Nunmehr ergeben sich rasch die Hauptsätze der hyperbolischen Trigonometrie.

/. Der Sinussatz

Aus (1) und (3) folgt:

Sm(ajk) __
ux(p* — ul) sin^ __

p2 — u\
Sin(«a/ß) u2(p%~~ u\) ' sinaa uz p% — u\ *

womit alles bewiesen ist.
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2. Der Seitencosinussatz

Unter Berücksichtigung von (1), (la), (4), (7) und

cosy coscpx cos9?2 — sin9?x sincp2

folgt:

Cos-r1 Cos-—- — Sin-r^ Sin-r2- cosy

2 >>2 i „,2 2

[ 4 fe»+ *¦)/{ «, sm^ sin^j/-. ^-«: püp*-<
2 2 2

(£2 +- ?a)77 (*>» + «J) - />2i7 (jOa + «?) + 4 /.i (p* + j«)_J «, smy»,
* i i t i r«oC

t l

- ___A

was zu beweisen war.

3. Der Winkelcosinussatz

Mit Hilfe von (2), (3) und (4) folgt:

cosy + cosax cosa2 _ cos^ cosg?2 — sin^ singp2 + coso^ cosa2
sma.x sma2 sin^ sm<x2

2 2 2

q2 n (p2 + u*) + 4 (p* + qyn ut smq>t - 4 g» (/>* + g2) ü «t sin^
* i * i » i _

t i
2 2

?2 27 (£a + «*) + 4 />• fe» + ?») 77 «, sxny,

Cosy,
(^,+.i)_7 (/»»-«:)

* 1

was zu beweisen war.
Aus diesen 3 Sätzen ergeben sich teils als Spezialfälle und teils durch einige Umrechnungen

sofort auch die Formeln für das rechtwinklige hyperbolische Dreieck.
Auf dem Weg über das rechtwinklige Dreieck wurden diese Sätze abgeleitet von

Herrn Meschkowski1). Der in diesem Aufsatz eingeschlagene Weg dürfte jedoch
infolge der speziellen Dreieckswähl etwas einfacher sein. Einen einfachen Beweis des

Winkelcosinussatzes gab Herr Zeitler2).
Einen Beweis von nur zwei trigonometrischen Formeln für das rechtwinklige

Dreieck im allgemeinen Poincar&nodell lieferten Howard Eves und V. E. Hoggat8).

J. Mall, Weiden, BRD

*) H. Meschkowski, Nichteukhdische Geometrie (Friedrich Vieweg & Sohn, Braunschweig, Berlin,
Stuttgart 1954).

a) H. Zeitler, Hyperbolische Trigonometrie im Potncardschen Kreismodell (Acta Math. Acad. Sei.

Hung. Ii (1963).
8) Howard EVes and V. T. Hoggat, Hyperbolic Tngonometry derived from the PoincarS Model. The

American Mathematicai Monthly 58 (1951).
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