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Eine reguläre Horozyklenüberdeckung
der hyperbolischen Ebene im Poincare-Modell

1. Einleitung

In neuerer Zeit werden im Rahmen der diskreten Geometrie verschiedene Lage-
rungs-, Überdeckungs- und andere Extremalprobleme behandelt [l]1), [2]. Von ganz
besonderem Interesse sind dabei reguläre Anordnungen. Ein System diskreter Punkte
heisst regulär, wenn je zwei Punkte des Systems durch eine Bewegung so ineinander
übergeführt werden können, dass dabei das ganze System mit sich selbst zur Deckung
kommt.

Es ist nun besonders reizvoll, Probleme dieser Art aus dem Bereich der
hyperbolischen Geometrie in verschiedenen Modellen zu untersuchen. In der vorliegenden
Arbeit geht es darum, eine spezielle Horozyklenüberdeckung der hyperbolischen
Ebene anzugeben. Wir verwenden dabei ein Poincare-Modell, dessen Fundamentalkreis

zu einer euklidischen Geraden (Achse) entartet ist. Dabei bestätigt sich eine
Dichteabschätzung von Fejes Töth [3], [4]. Dartiber hinaus ergibt sich ein
Verfahren zur Konstruktion solcher Überdeckungen bei vorgegebener Dichte. Damit ist
dann gezeigt, dass das Minimum der Abschätzung tatsächlich eintreten kann. Es gibt
also keine grössere untere Grenze.

Wir setzen voraus, dass der Leser mit den Sätzen und Formeln der hyperbolischen
Geometrie und mit dem genannten Poincare-Modell vertraut ist. Bezüglich eines

genaueren Studiums verweisen wir auf die Literatur ([5], [6], [7], [8]).

2. Konstruktion einer regulären Horozyklenüberdeckung

Die Achse des Modells teilt die euklidische Ebene. Eine Halbebene ist als Träger
der Modellpunkte besonders ausgezeichnet.

Alle euklidischen Kreise, welche die Achse berühren, und alle euklidischen Geraden,

welche zur Achse parallel laufen, stellen, soweit sie in der genannten ausgezeichneten

Halbebene liegen, die Horozyklen des Modells dar. Die zweite Art dieser

Horozyklen nennen wir entartet.

x) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 77.
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Als Ausgangspunkt für die Konstruktion einer Horozyklenüberdeckung wählen
wir zwei spezielle, nicht entartete, sich schneidende Horozyklen Hlt H2 (Figur 1).
Die beiden euklidischen Kreise Hv H2 haben den gleichen euklidischen Radius r.

Soll der Schnittpunkt P0 von der Fläche einer dritten Horozyklenscheibe so
überdeckt werden, dass (von P0 selber abgesehen) höchstens zweifache Überdeckungen
von Flächenteilen vorkommen, so muss die Kurve H0 durch P0 hindurchgehen. Wir
wählen für H0 einen entarteten Horozyklus.

Zur Konstruktion weiterer Horozyklen verwenden wir hyperbolische Spiegelungen.
Durch Inversion an einem Kreis um den Mittelpunkt M3 der euklidischen Strecke

Mx M2 vom Radius 0,5 Mx M2 entsteht aus H0 der neue Horozyklus H3 (Figur 1).

Er geht durch den Schnittpunkt Pv
Spiegeln wir dann an einem Kreis um den Mittelpunkt der euklidischen Strecke

Mt M3 (Mx Mn) vom Radius 0,5 Mx Ms (0,5 Mx Mn), so wird aus H2 (Hn_x) der neue
Horozyklus H4 (Hn+1). Es zeigt sich, dass #4 (Hn+1) durch den Punkt P2 (Pn_i) geht.
H1 und die Gerade Pn_2 Pn-i (n 2,3, gehen bei der (n — l)-ten Inversion in sich

über. (Mit MXM2 2 a gilt MzMk =a(k~ 3)/(k-1), k 4,5....) Die Ausdrücke in
den Klammern lassen erkennen, wie das Verfahren fortzusetzen ist. Auf diesem Wege
wird der von der Achse und den Geraden gv g2 gebildete Streifen ganz mit Horozyklen
ausgefüllt. Dabei sind gv g2 die euklidischen Senkrechten zur Achse in den Horozyklen-
mittelpunkten Mlt M2. Spiegeln wir schliesslich den ganzen Streifen immer wieder
an diesen Begrenzungsgeraden, so erhalten wir eine Horozyklenüberdeckung der
gesamten hyperbolischen Ebene.

Nach der Art des Konstruktionsverfahrens muss es sich um eine reguläre Horo-
zyklenanordnung handeln.

Pk/M3^-"' M2

Figur 1

3. Der Inhalt spezieller HorozyMensektoren

In Figur 2 sind die drei Horozyklen H0, Hv H2 unserer Überdeckung nochmals
gezeichnet. Ihre Mittelpunkte M0, M1$ M% bestimmen ein dreifach asymptotisches
Dreieck (gestrichelt gezeichnet). Dieses Dreieck schneidet aus den drei Horozyklen-
scheiben Sektoren aus, deren Inhalt jetzt bestimmt werden soll. Wir verwenden zur
Berechnung eine bekannte Formel. Für den Inhalt des zur Sehne s gehörigen Horo-
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zyklensektors gilt nämlich:
F 2sinh|. (1)

Der Sektor mit den Eckpunkten A0, B0, M0 wurde in der Figur schraffiert gezeichnet.
Für die hyperbolische Länge aQ der hyperbolischen Strecke _40 BQ ergibt sich mit

den Bezeichnungen der Figur:

<Po

Daraus folgt:

und schliesslich:

n _
1

?„
1 + cos9?0 #

1 + cos(n - (p0)
T

1 + cos<p0an — —— in—j «-. — r — m2 1 — cosg?0 1 — cos(tt — q>0) 1 — cos<pn

^ t/J± cosg?0

cos9?0

smh-f ^2 2 cot^. (2)

Damit erhalten wir mit den Bezeichnungen der Figur nach (1) als Inhalt des ersten
Horozyklensektors:

F0 2 sinh ao _ o ™+™ _ 2~2 cot<p0 (3)

w

Figur 2

Zur Bestimmung des Inhalts Fx — F2 der beiden anderen Horozyklensektoren führen
wir eine Inversion an einem Kreis um Mx mit dem Radius Mx Ax 2 r durch (Figur 3).
Aus Hx wird dabei eine euklidische Gerade durch Ax parallel zur Achse, aus dem
euklidischen Kreis durch Mx Bx M2 eine euklidische Gerade senkrecht zur Achse

durch den Bildpunkt Bt von Bv Die euklidische Gerade durch MXAX geht in sich über.

Nach den Gesetzen der Inversion gilt für die Länge der euklidischen Strecke AXBX\

also weiter:
A1B1-2a 4r

11 a
(4)

Hyperbolisch gesehen, handelt es sich um eine Spiegelung. Der fragliche Horozyklen-
sektor mit dem Inhalt Fx geht in einen entarteten Sektor gleichen Inhalts über (beide
schraffiert gezeichnet).
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Ist ax die Länge der hyperbolischen Strecke Ax Bx, so gilt nach (2) und (4):

also mit (1);

sinh-f cotö?, — : 2 r -—.2 T1 a 2 a

Fi F* 2 sinh-^ 2 cotcpx — (5)

0

Figur 3

4. Die Überdeckungsdichte

Aus Gründen der Regularität genügt es, die Überdeckungsdichte d lediglich im
Bereich des asymptotischen Dreiecks M0 Mx M2 zu bestimmen. Dort gilt:

rf
Fx + F2 + F0

(6)

Dabei sind Fx, F2, F0 die im letzten Abschnitt berechneten Inhaltsmasszahlen, F der
Inhalt des Dreiecks MQ Mx M2. Letzterer hat bekanntlich den Wert n. Für die
Überdeckungsdichte im asymptotischen Dreieck und damit in der ganzen hyperbolischen
Ebene erhalten wir also mit (3) und (5):

d

~ r -, a
2 \- 2 —

a ^ h

Wegen

(h - r)2 + a2

können wir mit hfa X schreiben:

oder er*'
_A

a

1 3 + A2

71 X
(7)

Eine genaue Untersuchung dieser Funktion zeigt, dass an der Stelle A V3 das

Dichteminimum Vl2ln vorliegt. Damit bestätigt sich die von Fejes Töth
angegebene Abschätzung:



J. Mall Herleitung der hyperbolischen Trigonometrie aus dem allgemeinen Pomcaremodell 77

Ist d gegeben, so errechnet sich aus (7) sofort ein bestimmter Wert für X. Damit aber
können die drei speziellen Horozyklen H0, Hx, H2 und davon ausgehend die gesamte
Überdeckung der hyperbolischen Ebene konstruiert werden.

Für A < 1 und X > 2 -f- V3 fuhrt diese Konstruktion auf eine mehr als zweifache
Überdeckung Beschranken wir uns auf zweifache Überdeckungen, so erhalten wir für
die Dichte unserer Horozyklenanordnung die Abschätzung.

•i^___L___l.
n

H. Zeitler, Weiden (Oberpf.), Deutschland
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Herleitung der

hyperbolischenTrigonometrie aus dem allgemeinen Poincaremodell

Den folgenden Betrachtungen soll das allgemeine1) Poincaremodell für die
hyperbolische Geometrie zugrundegelegt werden. Das Innere des sogenannten Fundamentalkreises

sei die hyperbolische Ebene. Die im Innern dieses Fundamentalkreises
befindlichen Bögen der zu diesem Kreis gehörigen orthogonalen Kreise stellen
bekanntlich die hyperbolischen Geraden dieses Modells dar. Im folgenden soll nun für
ein allgemeines Dreieck ohne Umweg über das rechtwinklige Dreieck die hyperbolische

Trigonometrie abgeleitet werden. Insbesondere werden hergeleitet: Sinussatz,

Seitencosinussatz und Winkelcosinussatz. Die Herleitung dieser Sätze gelingt relativ
einfach durch Wahl eines günstig gelegenen Dreiecks mit Hilfe einer einzigen Figur.

*) Eine Herleitung fur das spezielle Poincaremodell, bei dem die hyperbolischen Geraden durch auf
einer Fundamentalgeraden senkrechte Halbkreise realisiert smd, hat der Verfasser in MNU 16, 311-314

(1063) gegeben.
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