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Aufgaben 37

Aufgaben

Aufgabe 448. Es sind jene logarithmischen Spiralen zu ermitteln, die ihre eigenen
Affinevoluten darstellen. W. WuNDERLICH, Wien

Lisung : Die ool Evolutoiden der in Polarkoordinaten (#, ) gegebenen logarithmischen
Spirale ¢ —
v =7,¢ (1)

sind gemeinsam mit ¢ invariant gegen eine eingliedrige kontinuierliche Ahnlichkeitsgruppe
und daher zu ¢ kongruent. Eine dieser Evolutoiden ist die Affinevolute von ¢. Als Verall-
gemeinerung der Aufgabe werden zundchst jene (abzdhlbar vielen) Evolutoiden von ¢
bestimmt, die mit ¢ zusammenfallen:

Nach (1) schneidet ¢ alle Polstrahlen unter dem Winkel e. Zieht man vom Punkt
P, (vo, 0) alle Tangenten ¢, (i =0, 1, 2,...) an ¢, so liegen ihre Beriihrpunkte P, (v;, ¢;),
(po = 0), also auf dem Fasskreis 2 des Winkels ¢ iiber O F, (Abb.) mit der Polargleichung

g ST H
=" sine ’ (2)
und es gilt < (¢, {,) = @;. Die Berithrpunkte P, geniigen (1) und (2), und daraus folgt

@ cote

e = sing cote 4 cosg . (3)

Jedes der transzendenten Gleichung (3) geniigende Wertepaar (¢, ) legt eine logarith-
mische Spirale ¢ fest, die mit ihrer durch den Winkel X (¢, #)) = ¢ bestimmten Evolutoide
zusammenfillt.

Ist eine der Tangenten ¢, speziell die Affinnormale von (B, c), so ist ¢ mit ihrer eigenen
Affinevolute identisch. Ist K die erste, K* die zweite Kriitmmungsmitte von (F,, ¢) und 4
der Schnittpunkt von [K K*] mit der Affinnormalen von (B, ¢), so teilt K die Strecke
K* 4 bekanntlich von innen im Verhiltnis 3:1 (Abb.). Da K* auf B, O liegt und K* 4 || ¢,
ist, gilt also (¢ = ¢,)

cote = 3 cotyp. 4)
Aus (3) und (4) erhilt man
37 — 4 cosp . (5)

Jede Losung von (5) bestimmt mit (4) eine logarithmische Spirale (1) der gesuchten Art.
Die absolut kleinste Lésung von (5) ist ndherungsweise | ¢, | = 4,792 und damit liefert (4)
cote = 4 0,239. Die iibrigen Losungen fiihren auf Kurven ¢, die ihre Affinnormalen erst
nach einer bestimmten Anzahl von Umliufen beriihren. H. ScuaaL, Stuttgart

Aufgabe 449. Die Dezimalbruchentwicklungen des Cosinus eines Winkels und des

doppelten Winkels lauten
cosa = 0, abbb...

cos2a = 0, baaa...,a +b.
Man bestimme a und b. W. Lissy, Winterthur
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Lésung: Gegeben ist cosa = A/90 und cos2a = B/90 (4 =9
Wegen cos2a = 2 cos?a —1 ist 42 = 0 (mod 45), also 4 = 0 (mod

cosa > 0,5 l/2~ ist, folgt hieraus schon cosa = 5/6, also a = 8, b = 3.
J. H. van LinT, Eindhoven

a+ b, B=9b+ a).
15). Weil aber auch

Weitere Losungen sandten C.-G. D’AMBLY (Jena), C. BINDsCHEDLER (Kiisnacht),
J. M. EBersoLD (Winterthur), H. GAEBELEIN (Helmstedt), G. GUTTLER (Frankfurt a. M.)
P. HoHLER (Olten), W. JANICHEN (Berlin), L. KierrFeErR (Luxemburg), F. LEUENBERGER
(Feldmeilen), A. MakowsKl (Warschau), H. MEiL1 (Winterthur), I. PaascHE (Miinchen),
O. REUTTER (Ochsenhausen), J. SPILKER (Freiburg i. Br.), CH. VuiLLE (La Sagne).

Aufgabe 450. Es sei 1 < a, < a, ... < a, eine Folge natiirlicher Zahlen < %, von
denen keine durch eine andere Zahl der Folge teilbar ist. Die Folge sei in dem Sinn ¢maxi-
mal», dass keine weiteren Zahlen < » hinzugefiigt werden konnen. (Ein Beispiel fiir
n=121ist 4, 6, 7, 9, 10, 11.) Man zeige:

min k = n(n) = Anzahl der Primzahlen < » . (1)
k n
. 1 1 \
mmz = i (2)
1=1 i 1=[nf2]+1

P. ErDOs

Lisung: a) Fiir jede Primzahl p; < #» sei g; = p% die hochste Potenz von p;, die =< = ist.
Sei weiter P, die Menge der Zahlen =< #, die entweder Potenz von p, oder Vielfaches von
g; sind. Weil alle ¢; > y# sind, ist P; 0 P, leer fiir ¢ + 7. Jede maximale Folge M enthilt
aus jedem P, mindestens ein Element, denn sonst kénnte man g, hinzufiigen, also £ = n(n).

Weil p,, p,, ..., Pn(n) €ine maximale Folge ist, ist jetzt (1) bewiesen.
b) Es sei M = {a,, a,, ..., a,} eine maximale Folge. Jede Zahl s mit [#/2] < s = =,
die nicht zu M gehort, ist ein Vielfaches von mindestens einem der a; < [#/2]. Da
1 1 1
— SR S it =
v+v+1+ +2v—1<1 fir v =22,

ist 1/a; schon grosser als die Summe aller Reziproken von Vielfachen von a; zwischen

[#/2] + 1 und =, also sicher
k ”n

iz 3 1
—t q. . g
1=1 "1 j—[n/21+1
Weil {[n/2] + 1, ..., n} eine maximale Folge ist, ist damit auch (2) bewiesen.
Bemerkung : Man sieht sofort ein, dass die in (b) erwdhnte maximale Folge die «grosste»
ist, das heisst max & = n — [n/2]. J. H. Va~ Lint, Eindhoven
Eine weitere Losung legte J. SPiLKER (Freiburg/Br.) vor.

Aufgabe 451. Auf einer schiefen Ebene ldsst man eine massive Kugel und eine massive
Pseudosphire lings einer Fallinie abrollen. vg und vp seien die Rollgeschwindigkeiten in
dem Punkt, dessen Hohenunterschied zum Ausgangspunkt % betrdgt. vyx bzw. vyp seien
die Rollgeschwindigkeiten fiir die entsprechenden Hohlkorper (Wandstarke - 0). Man
berechne die Verhiltnisse vg: vy, vp: vyp, Up: Uk, Vgp: VHK- K. WaNKA, Wien

Losung des Aufgabenstellers: Die Rollgeschwindigkeit v eines Rotationskoérpers der
Masse m nach Durchlaufen eines bestimmten Niveauunterschiedes % auf einer schiefen
Ebene berechnet sich nach der Formel

2 2
ke a0,

wobei [ das axiale Triagheitsmoment, w = v/r die Winkelgeschwindigkeit beim Rollkreis-
radius » und g die Erdbeschleunigung bedeutet.
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Fiir die Kugel ergibt sich mit Jx= 2 m 72/5 der Wert vk = /10 g h/7. Ist a = 7,/r, < 1
das Radienverhiltnis einer Hohlkugel, so ist

_ 10gh
PHK = Vs +2(1—o®)/(1— o)

Fiir & > 1 gilt vgy > V6 g h/5.
Die Traktrix, aus der durch Rotation die Pseudosphire entsteht, hat die Gleichung

2 __ 42 -
y
Hieraus ergibt sich als Volumen det Pseudosphire Vp = 2 n ¢3/3. Fiir das Tréigheits-

moment erhilt man
[

c o c
2 __ y2 —
]P=4n/xy3dy=4nc/y31n£—t—‘/—;——z—dy—4n/y3ch-y3dy.
o 0

0

¥ =cln

Durch partielle Integration geht das erste Integral iiber in

c

:rwz/ya (@ — y?3)~12dy = 2 7 c8/3 .
0
Das zweite Integral hat den Wert 8 @ ¢%/15 und damit ist Jp = 2 n ¢%/15 = m ¢?/5. Fiir die
Rollgeschwindigkeiten findet man analog wie bei der Kugel vp = }/5 g //3, vyp = V/3 g h/2.
Fiir die gesuchten Verhiltnisse ergeben sich bemerkenswert nahe bei 1 liegende Werte:

UK VUgK = S/VEi = 1,09; vp:vyp = [/25/3 = 1,05;
vp:vg = 7/6 = 1,08; vyp:vgx = J/5/2 = 1,12.

Aufgabe 452. Durch die Eckpunkte 4, (i = 1, 2, 3, 4) eines konvexen Vierecks wer-
den in der Ebene vier Geraden bestimmt. M, , = M, [i + 2 = k (mod 4)] sei der Fuss-
punkt des von einem Punkt P der Ebene auf A A, gefallten Lotes. Man bestimme den
geometrischen Ort der Punkte P, fiir die M, M M M, M,. (Ahnliche Aufgaben ergeben
sich, indem man dem Viereck M, M, M, M, a,ndere Elgenschaften vorschreibt.)

J. BrREJCHA, Brno

Solution: Si a, et a4 sont les angles du quadrilatére convexe en A, et A,, ona M, M, =
P 4, sina, puisque les points P, 4,, M,, M, sont sur une circonférence de diametre P 4,.
On a de méme My M, = P A4, sina,. La condition M, M, = M4 M, devient

P A,;sinay = P A,sina, ou bien P 4,: P A, = sino, : sina, .

Mais si 7, et #, sont les rayons des cercles circonscrits aux triangles 4, 4, Az et A, 4, 4,,
onad, Ay = 2r,sina, = 2 7, sina,, d’oll sina, : sina, = 7,:7,. On a donc PA, PA, =
7y: 74 = constante. Le lieu géométrique du point P est donc un cercle d’ Apollonius, lieu
géométrique des points, dont le rapport des distances aux points 4, et 4, est égal au
rapport des rayons des circonférences circonscrites aux triangles 4, A, A; et A, 4, A,.
CH. VUILLE, La Sagne
Weitere Losungen sandten C. BiNDscHEDLER (Kiisnacht) und G. GUTTLER (Frank-
furt a. M.).

Aufgabe 453. Démontrer qu'’il existe pour tout nombre naturel » un polynéme f(¥) aux

coefficients entiers tel que chacun des nombres f(1), f(2), ..., f(n) est premier et que
(1) < f(2) < - < f(n). W. SIERPINSKI, Varsovie

1. Losung : Sei n eine beliebige natiirliche Zahl. Mit Dirichlets Primzahlsatz findet man
sukzessiv natiirliche Zahlen g,, g, ..., g, So dass

= (m
=1+n!£(v)gv 1=m=mn)
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Primzahlen sind. Dann hat das Polynom

f(x) = 1+n!é"gp(f)

vom Grade n die gewiinschten Eigenschaften, denn seine Koeffizienten sind offenbar
ganzzahlig, und es ist f(m) = p, fir 1 <m < x Primzahl sowie p;, < p, < -+ < p,.

Zusatz: Es gibt kein nichtkonstantes Polynom f(¥) mit ganzzahligen Koeffizienten,
so dass f(1), f(2), ... Primzahlen sind (siehe PoLYA-SzEGO, Aufgaben und Lehrsitze aus
der Analysis 1I, Abschnitt VIII, Aufgabe 97). Denn ist n,, %, natiirlich, f(»,) = p,,
f(ny) = p, mit verschiedenen Primzahlen p; und p,, so gibt es ein natiirliches #; mit
ng = n, (mod p,) und n; = »n, (mod p,), und f(n,) ist durch p, p, teilbar, also keine Prim-
zahl. J. SPILKER, Freiburg i. Br.

2nde Solution: Soit #» un nombre naturel donné. D’aprés le théoréme de Lejeune-
Dirichlet sur la progression arithmétique (et méme d’aprés un cas particulier de ce théo-
réme pour les progressions m ¢ + 1 qui a été démontré récemment d’une fagon élémentaire
par M. A. Rotkiewicz?)) il existe pour tout nombre naturel 2 < » un nombre naturel 7,
tel que le nombre ¢, = (¢ — 1)! (v — k)! ¢, + 1 est premier et que ¢, > ¢,_;, si g,_, est
déja défini. Soit
x—1)(x—2)... (¥ —n)

: ¢
¥ =1

n
Fa) =1+ 3 (—yn-i | .
j=1
Ce sera un polyndme du degré < » — 1 aux coefficients entiers et, comme on le vérifie
sans peine, on aura f(B) =14+ (A — 1)! (n — k) {, =q, pourk =1, 2, ..., n.

Remarque: On démontre sans peine qu’il existe pour tout nombre naturel » un poly-
noéme f(x) aux coefficients rationnels, tel que, pour 2 =1, 2, ..., n, f(k) est le k-ieme
nombre premier. Or il n’existe aucun polyndéme f(x) aux coefficients entiers, tel que
f(1) = 2, f(2) = 3 et f(3) = 5. Il se pose le probléme, quels sont les nombres naturels » pour
lesquels il existe un binéme a ¥ + b qui pour ¥ =1, 2, ..., » donne » nombres premiers
distincts. Nous savons actuellement démontrer qu’il est ainsi pour » < 13. En effet,
M. V. GoLUBEV a communiqué que M. N. SEREDINSKY a trouvé que le bindme f(x) =
60060 ¥ — 55117 donne pour » = 1, 2, ..., 13 des nombres premiers (évidemment tous
distincts).

Or, il est encore a remarquer qu’il résulte de I’hypotheése de M. A. SCHINZEL sur les
nombres premiers (énoncée dans les Acta Arithmetica 4, 188 (1958)) qu'il existe tout nom-
bre naturel » des nombres naturels a et b tels que, pour ¥ = 1, 2, ..., n, les nombres
f(x) = a ¥ + b sont » nombres premiers consécutifs (Voir L.c.,p. 191, conséquence C, ,).

GEORGE BROWKIN, Varsovie

Eine weitere Losung sandte E. TEUFFEL (Stuttgart).

Bemerkung zur Aufgabe 434. Die (iibrigens allgemein bekannte) Behauptung von
BAGER iiber die Pascalmatrix: «Die beiden Gleichungssysteme

8o 1 ; 0 1 8o ; 0
G111 1] und -1 1 1) | /h
8e 121 fa 1 -21 82 /2
folgen auseinander» ist der Spezialfall # = 4 z = — 1 der sogar fiir unbestimmte z und
alle rationalen » (=0) giiltigen Formel
12° n 12050
121120 _[1#nt 120%° (1)
122221120 122n% 220wt 120%n°

1) A. Rotkiewicz: Démonsiration arithmétique de Uexistence d’une infinité de nombres prewiers de la
forme n k + 1, Enseign. math. 7, 277-280 (1961).
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Aufgabe 333 behandelte nur den Fall ganzrationaler #» nebst z = 4+ 1. Auf die Indices
(Argumente) 0, 1, 2, ... der f, und g, kommt es hier gar nicht an, denn man kann ja
footi fo .. =a,b,c, ... und gy, 8y, 85, ... = 4, B, C, ... setzen, und sogar von den f, g,
ganz absehen, ndmlich nur die zugrundeliegende Matrixidentitdt (1) betrachten. Aufgabe
434 ist also unnoétig kompliziert formuliert.

Beweis von (7): Vollstindige Induktion nach # zeigt sofort, dass (1) fiir alle ganz-
rationalen # (=0) gilt. Nun ist aber in (1) die rechte Seite wiederum vom Typus einer
Basismatrix der linken Seite, ndmlich mit z » statt z. Der Exponent # darf demnach auch
einen Nenner » besitzen, der sich durch beiderseitiges Erheben zur v-ten Potenz beseitigen
lasst. Daher gilt (1) fiir alle rationalen » (=0), qed. 1. PaascHE, Miinchen

Neue Aufgaben

Aufgabe 473. Einem Kreis vom Radius 7 sind drei kongruente Ellipsen einzubeschrei-
ben, die sich paarweise so beriihren, dass sie eine Figur mit drei Symmetrieachsen bilden.
Welche numerische Exzentrizitit miissen die Ellipsen haben, damit sie den grosstmégli-
chen Teil der Kreisfliche bedecken und wie gross wird dieser Bruchteil ?

C. BINDSCHEDLER, Kiisnacht

Aufgabe 474. Sind a,, ..., a, (n = 2) die aufeinanderfolgenden Seiten eines ebenen,
geschlossenen Polygons und o, (¢ = 1, 2, ..., n) die gleichsinnig orientierten Aussenwinkel
zwischen den Seiten g, und a,,, dann gilt die Ungleichung

"

E & 2n Zn g
k=1 k=1

in welcher Gleichheit dann und nur dann besteht, wenn das Polygon affin-regulir ist.
O. REUTTER, Ochsenhausen

Aufgabe 475. Fiir n, £ = 0, 1, 2, ... beweise man die Identitdt
N g ,,(n) (z+k+v)-1_ E+1 (z+k+n)—1
’é: (=1) v, R+1 Tz R+mn )
I. PaascHE, Miinchen

Aufgabe 476. Démontrer qu’il existe une infinité des entiers positifs, tels que si dans
leur développement décimal on change un seul chiffre, on n’obtient jamais un nombre
premier, et trouver le plus petit tel entier. W. SierPINSKI, Varsovie

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitit der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen

nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass

der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewshlt

werden soll, x-Achse nach rechts, y-Achse nach vorn, g-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrige sind zu senden an Prof. Dr. WiLLt Lussy, Biielrainstrasse 51, Winterthur.

1. Eine Kettenlinie mit kleinem Durchhang kann mit guter Naherung durch einen Kreis-
bogen ersetzt werden, der zwischen den beiden Aufhdngepunkten dieselbe Linge be-
sitzt. Berechne fiir die Aufhingepunkte 4 (0; 54), B (167; 26,8) und die Bogenlinge
b = 174 den Radius » des Kreisbogens, sowie die Koordinaten des tiefsten Punktes 7.

> r = 213,0; T (114,9; 20,3).

Fiir die Kettenlinie ergibt sich der Scheitelpunkt S (115,13; 20,07) und der Kriim-
mungsradius im Scheitelpunkt 2 = 200,72.
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2. P (x;y) sei ein Punkt der Kettenlinie y = # Cos(x/k). Die Strecke P U auf der Kurven-
normale von P bis zur x-Achse ist so lang wie der Kriimmungsradius in P.

p Ist Q der zu P gehorige Punkt der Evolvente (Tractrix), so besitzt das rechtwinklige
Dreieck P P’ Q mit der Hypotenuse P P’ = y die Katheten P Q == s in der Kurven-
tangente und P’ Q = A. Aus dhnlichen Dreiecken ergibt sich

_ ¥ _
P U= 7 = [g].

3. Welcher Punkt P (¥; y) der Kettenlinie y = Cosx liegt dem Punkt U (6; 0) am néchsten ?

Nach dem Ergebnis der vorangehenden Aufgabe erhdlt man aus dem Dreieck

P P’ U sofort
(6 — )% = Costx — Cos?xy = Cos?x Sin?x

12 - 2x=Sin2 x.
Mit 2 ¥ = z ist die Gleichung Sinz 4 z = 12 zu 16sen.
¥ =1,452; y = 2,253,
4, Zeige durch Reihenentwicklung beider Seiten, dass fiir kleine Werte von » gilt

Cosx ~ 4 — J/9 — 3%,

- ] _
3 4—]/9—3x9—Cosx=——13—;6+---,]x|<V3.

Eine Ellipse mit den Halbachsen a = }/3, b = 3 ist somit eine vorziigliche Anniherung
an die Cos-Kurve in der Umgebung des Scheitelpunktes. Fiir ¥ = 1 ergibt sich ein
absoluter Fehler von — 0,0073.

Entsprechend gilt

cosxm4——|/9+3x2.

Die Niherungskurve ist ein Hyperbelast. Fiir » = n/6 betrdagt der absolute Fehler
+ 0,0001.

5. Eine Kette mit der Gleichung y = & Cos(x/k) ist an zwei gleich hohen Punkten P (+ x,; ¥,)
aufgehingt.
a) Bestimme die Lage ihres Schwerpunktes S.
b) Ist N der Schnittpunkt der Kurvennormale in einem Aufhdngepunkt mit der
y-Achse, so ist S der Mittelpunkt der Strecke O N.

0N h Cosf%‘! Sin—%0 + %,
3 08 = =
2 ZSin%
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Pythagorean Tviangles. Von W. SiErpiNsk1. The Scripta Mathematica Studies Nr. 9,
107 Seiten. Graduate School of Science, Yeshiva University, New York 1962.

Die erste Auflage dieses Biichleins erschien 1954 in polnischer Sprache. Die vorliegende,
von A. SHARMA besorgte Ubersetzung enthiilt einige neue Paragraphen.

Der beriihmte Verfasser zeichnet in seiner bekannten klaren und anregenden Darstel-
lungsweise ein buntes Bild der verschiedenartigen zahlentheoretischen Resultate und
Probleme, die im Zusammenhang mit den pythagoridischen Zahlen stehen. Viele Beweise
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