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Si E est un ensemble de nombres naturels de densite superieure > 1/2 tout nombre
naturel est d'une infinite de manieres une difference de deux nombres de Vensemble E

Or, d'apres une remarque de M A Schinzel notre theoreme peut etre de*duit sans

peme de la proposition suivante, demontre*e par M T Nagell dans son travail Zur
Arithmetik der Polynome, Abhandlungen aus dem Math Seminar Umv Hamburg
/ (1922), p 188

Si les nombres (at, bt) (i — 1, 2, 3) ne sont pas divisibles par aucun carre d'un nombre

premier, il existe une infinite de nombres naturels x pour lesquels les nombres ax x + bx,

a2 x -j- b2, a3 x + b3 sont depourvus de diviseurs premiers carres

Pour en deduire notre theoreme, il suffit de prendre ax a2 1, bx 0

W Sierpinski, Varsovie

Über die gruppenalgebraische Struktur der Elementargeometrie
(Fortsetzung)

4. Aufbau der Geometrie auf dem Spiegelungsbegriff

Wir wollen uns jetzt noch einer Entwicklungshnie in der geometrischen Grundlagenforschung

zuwenden, die aus den soeben dargelegten Gedankengangen herausgewachsen

ist Es hat sich gezeigt, dass von der gruppenalgebraischen Seite her em
axiomatischer Aufbau der Kongruenzgeometrie möglich ist Im Vordergrund steht
dabei eine Gruppe mit einem invarianten Erzeugendensystem aus mvolutorischen
Elementen Als Axiome werden einige Gesetze uber mvolutonsche Gruppenelemente
postuliert Wir sind damit bei der reinen gruppentheoretischen Geometrie angelangt,
die mit Arbeiten von Hjelmslev und Reidemeister aus den Jahren um 1930 ihren
Anfang nahm und die seither von der Kieler Geometerschule Bachmanns wesentlich
gefordert worden ist

Wir wollen hier kurz auf das Bachmannsche Axiomensystem eingehen Es geht
von einer abstrakten Gruppe © aus, in der ein invariantes Erzeugendensystem S aus
mvolutorischen Elementen gegeben ist Wir bezeichnen die Elemente von S als

Gruppen-Geraden, mvolutonsche Elemente aus ©, die als Produkt von zwei Gruppen-
Geraden darstellbar sind, sollen Gruppen-Punkte heissen4) Der Leser halte sich die
Gruppe Ä mit den Geraden- und Punktspiegelungen als Beispiel vor Augen Fur die
Gruppen-Geraden und die Gruppen-Punkte behalten wir die Symbole Hg bzw ZG

aus der Gruppe 51 bei
In © werden nun eine Inzidenz- und eine Orthogonahtatsrelation eingeführt

Die Gruppen-Gerade Eg und der Gruppen-Punkt £A heissen Inzident, wenn

Die beiden Gruppen-Geraden Zf und Sg heissen orthogonal, wenn (Ef o Zg)2 /
Diese Festlegungen erinnern uns an die beiden Äquivalenzen (1) und (2) in der

Figur 7

4) Bei Bachmann werden die Gruppenelemente als Geraden und Punkte bezeichnet Wir wollen diese
Begriffe hier ausschliesslich fur geometrische Objekte reservieren
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Axiome

I. Zu zwei Gruppen-Punkten EA und EB gibt es eine Gruppen-Gerade Eg, die mit ihnen
inzident ist.

IL Wenn die Gruppen-Punkte EA und EB mit den Gruppen-Geraden Eg und Eh inzident
sind, dann ist entweder EA — EB oder Eg Eh.

III. Wenn die drei Gruppen-Geraden Ef, Eg, Eh mit dem Gruppen-Punkt EA inzident
sind, dann gibt es ein Ep, so dass Ef o Eg o Eh Ep.

IV. Wenn die drei Gruppen-Geraden Ef, Eg, Eh zur Gruppen-Geraden Eq orthogonal sind,
dann gibt es ein Ep, so dass EfoEgoEh Ep.

Der Leser wird wohl sofort die beiden letzten Axiome mit der Äquivalenz (5) aus der
Gruppe Ä in Verbindung bringen.

V. Es gibt Gruppen-Geraden Ef, Eg, Eh, die ein rechtwinkliges Dreiseit bilden) Ef und

Eg sind orthogonal, und Eh ist nicht inzident mit dem Gruppen-Punkt Ef o Eg

(Figur 10).

Figur 10

Die durch dieses Axiomensystem gegebene Theorie nennt Bachmann die ebene
metrische Geometrie. Ein Modell, das dem Axiomensystem gentigt, heisst eine metrische
Ebene. Offensichtlich liefert die Kongruenzgruppe 51, von der wir ausgegangen sind,
ein solches Modell. Das Erzeugendensystem & ist der Komplex der Geradenspiegelungen.

Das Axiom V garantiert gewissermassen die Zweidimensionalität unserer
metrischen Geometrie. Diese Tatsache wird durch das folgende Modell beleuchtet, das
den Axiomen I bis IV genügt, V hingegen nicht befriedigt: Man nehme für © die

Gruppe der kongruenten Abbildungen, die das (unbegrenzt zu denkende) Ornament
in der Figur 11 in sich selbst überführen. <5 ist der Komplex der Geradenspiegelungen
mit den strichpunktierten Achsen.

Figur 11

Zahlreiche Sätze der Elementargeometrie bestehen bereits in der metrischen
Geometrie. Wir erwähnen als Beispiel den Satz über die Inzidenz der Mittelsenkrechten

in einem Dreieck, der für die Gruppe 51 durch Spiegelungsrechnen bewiesen wurde.
Definiert man die Mittelsenkrechte zu zwei Gruppen-Punkten in Anlehnung an die
festgestellte Beziehung in der Gruppe 51, so können wir den Beweis aus 51 wortwörtlich

für die allgemeine metrische Geometrie tibernehmen.
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5. Metrische Ebenen

Mit den folgenden Beispielen soll der durch das Bachmannsche Axiomen-System
vorgezeichnete Spielraum grob abgesteckt werden.

Wir betrachten zuerst die ebene hyperbolische Geometrie am Kleinschen Modell.
Als Masskegelschnitt nehmen wir den Kreis k; hyperbolischer Lebensraum ist das

Innere von k. Die hyperbolische Bewegungsgruppe © besteht aus den Projektivi-
täten, die k fest lassen. Dazu gehören zum Beispiel die Perspektivitäten mit der
Charakteristik % — 1, bei denen Zentrum und Achse in der Lage von Pol und Polare
bezüglich k sind5). Diese involutoriscfien Abbildungen spielen nun in © eine ähnliche
Rolle wie die Geraden- und Punktspiegelungen in der Gruppe ft. In Anlehnung an die
Verhältnisse in der Gruppe & unterscheiden wir in © die beiden folgenden Typen von
Involutionen:

a) Involutionen, bei denen das Zentrum ausserhalb von k liegt. Die Perspektivachse

geht dann durch das Kreisinnere; die Abbildung hat also eine eigentliche
Fixgerade. Man spricht in diesem Falle von einer hyperbolischen Geradenspiegelung. Die
beiden Involutionen mit den bestimmenden Elementen (G, g) und (H, h) in der

Figur 12 sind hyperbolische Geradenspiegelungen; wir bezeichnen sie mit Eg und Eh.

b) Involutionen, bei denen das Zentrum innerhalb von k liegt. In diesem Falle hat
die Abbildung genau einen hyperbolischen Fixpunkt, und wir nennen sie eine
hyperbolische Punktspiegelung. In der Figur 12 legen (P, p) die hyperbolische Punktspiegelung

Ep fest.

Figur 12

Die Geradenspiegelungen bilden nun ein invariantes Erzeugenden-System von ©,
und jede Punktspiegelung ist als Produkt von zwei Geradenspiegelungen darstellbar.
So gilt für die drei Spiegelungen in der Figur 12 Ep Eg o Eh. Diese Beziehung
besteht genau dann, wenn die Zentren und Achsen der drei Perspektivitäten in der
Situation eines Polardreiecks zum Kreis k sind6).

Nimmt man die hyperbolischen Geraden- und Punktspiegelungen als Gruppen-
Geraden und Gruppen-Punkte in ©, so befriedigt dieses System die Bachmannschen

6) Perspektivitäten mit der Charakteristik % « - 1 werden als harmonische Spiegelungen bezeichnet.
8) Bilden die Achsen und Zentren von drei harmonischen Spiegelungen Wx, W%, Wz ein Dreieck, so ist

*PX o Wi o W% I. Man bestätigt dies sofort, wenn man durch eine projektive Abbildung die eine Dreieckseite

zur unendlichfernen Geraden macht.
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Axiome I bis V, die ebene hyperbolische Geometrie ist ein Spezialfall der ebenen
metrischen Geometrie

Dasselbe gilt auch fur die ebene elliptische Geometrie Eine Besonderheit der
elliptischen Bewegungsgruppe hegt dann, dass jedes mvolutonsche Element gleichzeitig

Gruppen-Gerade und Gruppen-Punkt ist Zur Illustration ziehen wir als Modell
die Kugel mit Diametralpunkt-Identifikation heran Die Gruppen-Geraden smd die
Spiegelungen an Grosskreisen die Gruppen-Punkte die Spiegelungen an
Kugelpunkten Aus der Figur 13 ist sofort ersichtlich, dass EG Eg ist wenn G Pol zum
Grosskreis g ist

T

*B

Figur 13

Die metrischen Ebenen smd von recht allgemeiner Natur Die bis jetzt erwähnten
Modelle zeigen uns, dass zum Beispiel uber die Parallelenfrage das zu Grunde gelegte
Axiomen-System keine Entscheidung enthalt Das Fehlen von Anordnungs-Aussagen
m den Axiomen macht verständlich dass die metrische Geometrie eine auffallend
breite gemeinsame Basis der euklidischen Geometrie und der beiden nichteukhdischen

Geometrien darstellt Man kann diese drei Falle leicht durch geeignete Zusatz-
Axiome von der allgemeinen metrischen Geometrie abspalten Fur die euklidische
Geometrie benutzt Bachmann die folgenden Zusatz-Axiome

Ex Es existieren Gruppen-Rechtecke, das heisst es gibt Gruppen-Geraden Ea, Eb, Ec, Ed,
so dass Ea, Eb J_ Ec, Ed

E2 Je zwei Gruppen-Geraden haben entweder einen Gruppen-Punkt oder eine Gruppen-
Senkrechte gemeinsam

Die Figur 14 zeigt die durch die Zusatz-Axiome umschriebenen Situationen fur die
Gruppe 51

T
\ / oder

-^ -£--*-

Figur 14

Das Bachmannsche System enthalt auch keine Stetigkeits-Aussagen Dadurch
steht die Möglichkeit endlicher metrischer Ebenen durchaus offen Tatsächlich gibt
es sogar endliche euklidische Ebenen Da endliche geometrische Systeme immer einen
besondern Reiz ausüben, wollen wir unsere Aufzählung mit der Konstruktion einer
endlichen euklidischen Ebene beschhessen
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Wir betrachten die 9 Punkte A B C D E FG H J in der Figur 15 und die 12
eingezeichneten Verbindungslinien Um zum angekündigten Modell zu gelangen, fassen wir
zwei Arten von mvolutorischen Permutationen der 9 Punkte ms Auge

Permutationen 1 Art Sie lassen die 3 Punkte auf einer Linie p fest (Fixpunkte)
Die verbleibenden 6 Punkte werden paarweise ausgetauscht, entsprechend ihrer Inzidenz
auf Linien, die zu p «senkrecht» sind (durch 'jeden Fixpunkt gibt es eine zu p senkrechte

Linie)
Permutationen 2 Art Ein Punkt F bleibt fest, und die verbleibenden 8 Punkte werden

paarweise ausgetauscht, entsprechend \hrer Inzidenz auf Linien durch F

A(02) BW C22)

010,1) EU) mn

m hw J(20

x+y=0

Figur 15

Zu den Permutationen 1 Art gehören etwa

Figur 16

\ABCDEFGHJ\
\HBEJCFGAD\'

Z<
\ABCDEFGHJ\

__ \ABCDEFGHJ\
r~ \GHJDEFABC\'

Zh \ABCDEFGHjy)
\FEDCBAJHG) '

\AGDCJFBHE\'
und als Beispiele von Permutationen 2 Art nennen wir

2 _ \ABCDEFGHJ\
__ \ABCDEFGHJ\

F ~~
]HGJEDFBAC)' G " |DFEACBGJHJ'

Die Permutationen 1 Art erzeugen nun eine endliche Gruppe ©*, die auch die
Permutationen 2 Art enthalt Man bestätigt zum Beispiel leicht auf Grund der Permuta

üonsschemen, dass EF Epo Eq ist Nennen wir jetzt die Permutationen 1 Art
Gruppen-Geraden, die Permutationen 2 Art Gruppen-Punkte, so befriedigt die
Gruppe ©* mit diesen ausgezeichneten -Elementen die Bachmannschen Axiome und
gleichzeitig auch die beiden euklidischen Zusatz-Axiome

Die Struktur der Gruppe ©* ist leicht übersehbar, sie umfasst 72 Abbildungen,
und zwar neben der Identität,

8 Translationen (4 Richtungen mit je 2 Schieb-Vektoren),
27 Drehungen (9 Drehzentren mit je 3 Drehwinkeln),
12 Geradenspiegelungen (Permutationen 1 Art),
24 Schubspiegelungen (zu jeder Linie gibt es 2)

Man kann unsere euklidische Ebene mit 9 Punkten und 12 Geraden auch auf
analytischem Wege gewinnen Wir betrachten dazu den Korper Kz der Restklassen

7) Das Permutations Schema gibt an wie die Bilder der 9 Punkte hegen Bei Efj geht etwa A an die
Stelle von F, B an die Stelle von E und C an die Stelle von D
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mod 3; seine Elemente seien mit 0, 1 und 2 bezeichnet. Die affine Geometrie über Kz
besteht aus den Punkten (alf a2) mit aj e Kz; es gibt 9 derartige Zahlenpaare, da für
ax und a2 je drei Möglichkeiten offenstehen. Andererseits sind die Geraden durch
lineare Gleichungen

gi % + g* y + gz 0 mit gj g Kz und (gx, g2) #= (0, 0)

gekennzeichnet. Hiezu bestehen 3 (32 — 1) 24 Möglichkeiten, wobei aber zu
beachten ist, dass die Multiplikation einer Gleichung mit dem Element 2 zu einer
neuen Gleichung für dieselbe Gerade führt. Bei unserer Aufzählung wird also jede
Gerade zweimal gezählt. Die affine Geometrie über dem Körper Kz besteht aus 9 Punkten
und 12 Geraden.

Wir ziehen jetzt aus den linearen Substitutionen über Kz

x anx + a12y + a19 ^ ^
y a21 x + «22 y + #23

jene heraus, deren Matrix

* 0

M: an a12

a9-t a9.*21

orthogonal ist. Sie bilden die sog. orthogonale Gruppe über Kz. Ihre Anzahl lässt sich
leicht abwählen, wenn wir von der folgenden Zusammenstellung aller orthogonalen
zwei-reihigen Matrizen über Kz ausgehen8):

1 0\ [2 0\ /0 2\ /0 V
• ("o>0 \y \o 2/' \i o/' \2 0

1 0\ (2 0\ /0 1\ /0 2

0 2/' \0 ij* \1 Oj' \2 0

Aus jeder dieser 8 Matrizen gehen nun je 9 orthogonale Substitutionen hervor, da für
aiz und a2Z in Kz 9 Kombinationsmöglichkeiten offen stehen. Man bestätigt ohne
weiteres, dass unsere Bewegungsgruppe ©* isomorph ist zur Gruppe der orthogonalen
Substitutionen über dem Körper Kz. Die Figur 16 zeigt eine mögliche Identifikation
der 9 Punkte unseres Modells mit den Punkten über Kz.

Es sei noch darauf hingewiesen, dass in unserer endlichen euklidischen Ebene die
freie Beweglichkeit fehlt. Es gibt zum Beispiel Geraden, die sich in der Bewegungsgruppe

©* nicht ineinander überführen lassen. So ist sofort ersichtlich, dass p nicht
in r transformierbar ist, da in ©* 45°-Drehungen fehlen. Die gesuchte Transformation
ist erst in der übergeordneten affinen Gruppe möglich.

Der an früherer Stelle bewiesene Satz über die Mittelsenkrechten im Dreieck ist in
unserem Modell trivial; es enthält nämlich nur rechtwinklige Dreiecke.

Mit der Existenz von endlichen euklidischen Ebenen stellt sich natürlich sofort
die Frage nach endlichen nichteuklidischen Ebenen. Ein diesbezügliches Modell hätte
unsere Betrachtungen zur metrischen Geometrie in gewissem Sinne abgerundet. Wir
müssen aber leider darauf verzichten. Ein Ergebnis der Bachmannschen Schule aus
neuerer Zeit besagt, dass jede endliche Gruppe, die unsern Axiomen I bis V genügt,

8) Die erste Zeile enthält die Matrizen mit A ~ 1; aus ihnen gehen die gleichsinnigen Kongruenzen
hervor. Für die Matrizen der zweiten Zeile ist A » 2; sie führen zu den ungleichsinnigen Abbildungen.
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notwendigerweise euklidisch ist Der Sonderfall der euklidischen Geometrie fallt auch
hier recht deutlich heraus Auf der andern Seite zeigt das Bachmannsche Axiomen-
System aber auch, dass weite Gebiete der Geometrie ganz ohne Stetigkeitsvoraussetzungen

erfassbar smd
Unser Abstecher von der Schulgeometrie m die allgemeine metrische Geometrie

offenbart den Wandel m der geometrischen Forschung, der in einer vermehrten
Algebraisierung dieses Gebietes zum Ausdruck kommt Er lasst auch deutlich
hervortreten, dass sogar die geometrische Grundlagenforschung von dieser Algebraisierung

erfasst worden ist * M Jeger, Luzern/Zunch
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Kleine Mitteilungen
Verallgemeinerungen des Satzes von Dandelin

M Chasles1) hat den bekannten Satz von G P Dandelin2) uber die Brennpunkte
des ebenen Schnittes eines Drehkegels m folgender Weise verallgemeinert

Sind zwei Flachen zweiter Ordnung einander einbeschrieben, so schneidet die Tangentialebene

in einem Nabelpunkt der einen Flache die andere in einem Kegelschnitt, die 'jenen
Nabelpunkt zum Brennpunkt hat Bei Dandelin ist die eine Flache eine Kugel, die einem
Kegel einbeschrieben ist

Dieser Satz ist aber nur em Spezialfall eines noch allgemeineren, namhch Sind zwei
Flachen zweiter Ordnung einer dritten einbeschrieben und berühren sie einander in einem
Punkt, der fur die eine Flache ein Nabelpunkt ist, so ist er auch fur die zweite Flache Nabelpunkt

Denn entartet die eine Flache zu einem Kegelschnitt, so werden ihre Erzeugenden zu
den Tangenten dieses Kegelschnittes, insbesondere aber die isotropen Erzeugenden in
einem Nabelpunkt zu isotropen Tangenten des Kegelschnittes, der Nabelpunkt also zum
Brennpunkt Ist insbesondere die eine einbeschriebene Flache eine Kugel, so ist die
Berührung mit der zweiten immer em Nabelpunkt

Aber auch diese Verallgemeinerung ist nur em Spezialfall eines weiteren, m der
darstellenden Geometrie oft benutzten und auf G Monge3) zurückgehenden Satzes, namhch

Sind zwei Flachen zweiter Ordnung einer dritten einbeschrieben, so zerfallt ihre
Durchdringungskurve in zwei Kegelschnitte

Denn haben diese beiden Flachen eine Berührung, so zerfallt der eine Kegelschnitt m
em beiden Flachen gemeinsames Erzeugendenpaar durch den Berührungspunkt Im Falle
eines Nabelpunktes ist dieses Paar isotrop

Schliesslich kann auch dieser Satz als Spezialfall eines noch allgemeineren aufgefasst
werden, namhch

Gehören die Quadnken zweier Büschel einem Netz4) an, so haben die Büschel eine Quadrik
gemein

1) Rapport sur les progrte de la giomitrie, (Paris 1870) p. 73-74
2) Bruxelles nouv mem 2, 172 (1822), 3, 3 (1826)
8) Corr polyt 0,321 (1812), 3, 299 (1816)
4) Vgl G Lau± Examen des dtffirentes mithodes employies pour risoudre les probUmes de giomitrie

(Paris 1818).
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