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Si E est un ensemble de nombres naturels de densité supérieure > 1/,, tout nombre
naturel est d’une infinité de maniéres une différence de deux nombres de I'ensemble E.

Or, d’aprés une remarque de M. A. SCHINZEL notre théoréme peut étre déduit sans
peine de la proposition suivante, démontrée par M. T. NAGELL dans son travail Zur
Arithmetik der Polynome, Abhandlungen aus dem Math. Seminar Univ. Hamburg
7 (1922), p. 188:

St les nombres (a;, b;) (1 = 1, 2, 3) ne sont pas divisibles par aucun carvé d’'un nombre
premier, il existe une infinité de nombres naturels x pour lesquels les nombres a, x + by,
Ay X + by, ag x + by sont dépourvus de diviseurs premiers carvés.

Pour en déduire notre théoréme, il suffit de prendre 4, = a, =1, b, = 0.
W. SIERPINSKI, Varsovie

Uber die gruppenalgebraische Struktur der Elementargeometrie
(Fortsetzung)
4. Aufbau der Geometrie auf dem Spiegelungsbegriff

Wir wollen uns jetzt noch einer Entwicklungslinie in der geometrischen Grundlagen-
forschung zuwenden, die aus den soeben dargelegten Gedankengingen herausge-
wachsen ist. Es hat sich gezeigt, dass von der gruppenalgebraischen Seite her ein
axiomatischer Aufbau der Kongruenzgeometrie moglich ist. Im Vordergrund steht
dabei eine Gruppe mit einem invarianten Erzeugendensystem aus involutorischen Ele-
menten. Als Axiome werden einige Gesetze i{iber involutorische Gruppenelemente
postuliert. Wir sind damit bei der reinen gruppentheoretischen Geometrie angelangt,
die mit Arbeiten von HJELMSLEV und REIDEMEISTER aus den Jahren um 1930 ihren
Anfang nahm und die seither von der Kieler Geometerschule BACHMANNS wesentlich
geférdert worden ist.

Wir wollen hier kurz auf das Bachmannsche Axiomensystem eingehen. Es geht
von einer abstrakten Gruppe ® aus, in der ein invariantes Erzeugendensystem & aus
involutorischen Elementen gegeben ist. Wir bezeichnen die Elemente von & als
Gruppen-Geraden, involutorische Elemente aus ®, die als Produkt von zwei Gruppen-
Geraden darstellbar sind, sollen Gruppen- Punkte heissen?). Der Leser halte sich die
Gruppe K mit den Geraden- und Punktspiegelungen als Beispiel vor Augen. Fiir die
Gruppen-Geraden und die Gruppen-Punkte behalten wir die Symbole X, bzw. X
aus der Gruppe R bei.

In ® werden nun eine Inzidenz- und eine Orthogonalititsrelation eingefiihrt:

Die Gruppen-Gerade X, und der Gruppen- Punkt X, heissen inzident, wenn
(Z,02)2=1.

Die beiden Gruppen-Geraden X, und X, heissen orthogonal, wenn (2,0 X)) = I.
Diese Festlegungen erinnern uns an die beiden Aquivalenzen (1) und (2) in der
Figur 7.

4) Bei BacumaNN werden die Gruppenelemente als Geraden und Punkte bezeichnet. Wir wollen diese
Begriffe hier ausschliesslich fiir geometrische Objekte reservieren.
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Axiome

1. Zu zwei Gruppen- Punkten 2y und X' gibl es eine Gruppen-Gerade X, die mit ihnen
inzident 1st.

I1. Wenn die Gruppen- Punkte Xy und X'y mit den Gruppen-Geraden X, und X, inzident
sind, dann ist entweder 24 = Xp oder L, = 2.

II1. Wenn die drei Gruppen-Geraden X,, X, X}, mit dem Gruppen- Punkt Xy inzident
sind, dann gibt es ein X,, so dass X, 0 X, 02} = 2.

IV. Wenn die drei Gruppen-Geraden X, 2, 2, zur Gruppen-Geraden 2, orthogonal sind,
dann gibt es ein X, so dass 2,02, 02, =2,

Der Leser wird wohl sofort die beiden letzten Axiome mit der Aquivalenz (5) aus der

Gruppe 8 in Verbindung bringen.

V. Es gibt Gruppen-Geraden 2, 2,, 2, die ein rechtwinkliges Dreiseit bilden; X und
2, sind orthogonal, wnd X ist nicht inzident mit dem Gruppen-Punkt X0 X,

(Figur 10).
AN
z,\
[y \
Figur 10

Die durch dieses Axiomensystem gegebene Theorie nennt BACHMANN die ebene
metrische Geometrie. Ein Modell, das dem Axiomensystem geniigt, heisst eine metrische
Ebene. Offensichtlich liefert die Kongruenzgruppe K, von der wir ausgegangen sind,
ein solches Modell. Das Erzeugendensystem & ist der Komplex der Geradenspiege-
lungen. Das Axiom V garantiert gewissermassen die Zweidimensionalitit unserer
metrischen Geometrie. Diese Tatsache wird durch das folgende Modell beleuchtet, das
den Axiomen I bis IV geniigt, V hingegen nicht befriedigt: Man nehme fiir & die
Gruppe der kongruenten Abbildungen, die das (unbegrenzt zu denkende) Ornament
in der Figur 11 in sich selbst {iberfithren. & ist der Komplex der Geradenspiegelungen
mit den strichpunktierten Achsen.

Figur 11

Zahlreiche Sitze der Elementargeometrie bestehen bereits in der metrischen
Geometrie. Wir erwihnen als Beispiel den Satz iiber die Inzidenz der Mittelsenkrech-
ten in einem Dreieck, der fiir die Gruppe & durch Spiegelungsrechnen bewiesen wurde.
Definiert man die Mittelsenkrechte zu zwei Gruppen-Punkten in Anlehnung an die
festgestellte Beziehung in der Gruppe K, so kénnen wir den Beweis aus & wortwort-
lich fiir die allgemeine metrische Geometrie {ibernehmen.
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5. Metrische Ebenen

Mit den folgenden Beispielen soll der durch das Bachmannsche Axiomen-System
vorgezeichnete Spielraum grob abgesteckt werden.

Wir betrachten zuerst die ebene hyperbolische Geometrie am Kleinschen Modell.
Als Masskegelschnitt nehmen wir den Kreis 2; hyperbolischer Lebensraum ist das
Innere von k. Die hyperbolische Bewegungsgruppe & besteht aus den Projektivi-
taten, die & fest lassen. Dazu gehéren zum Beispiel die Perspektivititen mit der
Charakteristik y = — 1, bei denen Zentrum und Achse in der Lage von Pol und Polare
beziiglich % sind5). Diese involutorischen Abbildungen spielen nun in ® eine dhnliche
Rolle wie die Geraden- und Punktspiegelungen in der Gruppe K. In Anlehnung an die
Verhiltnisse in der Gruppe K unterscheiden wir in ® die beiden folgenden Typen von
Involutionen:

a) Involutionen, bei denen das Zentrum ausserhalb von % liegt. Die Perspektiv-
achse geht dann durch das Kreisinnere; die Abbildung hat also eine eigentliche Fix-
gerade. Man spricht in diesem Falle von einer hyperbolischen Geradenspiegelung. Die
beiden Involutionen mit den bestimmenden Elementen (G, g) und (H, A4) in der
Figur 12 sind hyperbolische Geradenspiegelungen ; wir bezeichnen sie mit 2, und 2.

b) Involutionen, bei denen das Zentrum innerhalb von % liegt. In diesem Falle hat
die Abbildung genau einen hyperbolischen Fixpunkt, und wir nennen sie eine hyper-
bolische Punktspiegelung. In der Figur 12 legen (P, ) die hyperbolische Punktspiege-
lung X, fest.

Figur 12

Die Geradenspiegelungen bilden nun ein invariantes Erzeugenden-System von G,
und jede Punktspiegelung ist als Produkt von zwei Geradenspiegelungen darstellbar.
So gilt fiir die drei Spiegelungen in der Figur 12 X2, = 2, 0 2. Diese Beziehung be-
steht genau dann, wenn die Zentren und Achsen der drei Perspektivititen in der
Situation eines Polardreiecks zum Kreis £ sind®).

Nimmt man die hyperbolischen Geraden- und Punktspiegelungen als Gruppen-
Geraden und Gruppen-Punkte in ®, so befriedigt dieses System die Bachmannschen

8) Perspektivititen mit der Charakteristik ¥ = — 1 werden als harmonische Spiegelungen bezeichnet.

%) Bilden die Achsen und Zentren von drei harmonischen Spiegelungen ¥,, ¥, ¥, ein Dreieck, so ist
¥, 0 ¥, 0 P, = I.Man bestitigt dies sofort, wenn man durch eine projektive Abbildung die eine Dreieck-
seite zur unendlichfernen Geraden macht.
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Axiome I bis V; die ebene hyperbolische Geometrie ist ein Spezialfall der ebenen
metrischen Geometrie.

Dasselbe gilt auch fiir die ebene elliplische Geometrie. Eine Besonderheit der
elliptischen Bewegungsgruppe liegt darin, dass jedes involutorische Element gleich-
zeitig Gruppen-Gerade und Gruppen-Punkt ist. Zur Illustration ziehen wir als Modell
die Kugel mit Diametralpunkt-Identifikation heran. Die Gruppen-Geraden sind die
Spiegelungen an Grosskreisen, die Gruppen-Punkte die Spiegelungen an Kugel-
punkten. Aus der Figur 13 ist sofort ersichtlich, dass 2; = 2, ist, wenn G Pol zum
Grosskreis g ist.

Figur 13

Die meétrischen Ebenen sind von recht allgemeiner Natur. Die bis jetzt erwdhnten
Modelle zeigen uns, dass zum Beispiel iiber die Parallelenfrage das zu Grunde gelegte
Axiomen-System keine Entscheidung enthélt. Das Fehlen von Anordnungs-Aussagen
in den Axiomen macht verstindlich, dass die metrische Geometrie eine auffallend
breite gemeinsame Basis der euklidischen Geometrie und der beiden nichteuklidi-
schen Geometrien darstellt. Man kann diese drei Fille leicht durch geeignete Zusatz-
Axiome von der allgemeinen metrischen Geometrie abspalten. Fiir die euklidische
Geometrie benutzt BACHMANN die folgenden Zusatz-Axiome:

E,: Es existieren Gruppen-Rechtecke, das heisst es gibt Gruppen-Geraden 2, 2, X, 2,
sodass 2,2, | 2,2,

E,: Je zwer Gruppen-Geraden haben entweder einen Gruppen- Punkt oder esne Gruppen-
Senkrechte gemeinsam.

Die Figur 14 zeigt die durch die Zusatz-Axiome umschriebenen Situationen fiir die
Gruppe K.

[a
>/ N Za Eb Za 2:'b

2\ a
Zy L -5

Figur 14

Das Bachmannsche System enthdlt auch keine Stetigkeits-Aussagen. Dadurch
steht die Méglichkeit endlicher metrischer Ebenen durchaus offen. Tatsdchlich gibt
es sogar endliche euklidische Ebenen. Da endliche geometrische Systeme immer einen
besondern Reiz ausiiben, wollen wir unsere Aufzihlung mit der Konstruktlon einer
endlichen euklidischen Ebene beschliessen.
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Wir betrachten die 9 Punkte A BC D E F G H ] in der Figur 15 und die 12 einge-
zeichneten Verbindungslinien. Um zum angekiindigten Modell zu gelangen, fassen wir
zwei Arten von involutorischen Permutationen der 9 Punkte ins Auge:

Permutationen 1. Art. Sie lassen die 3 Punkte auf einer Linie p fest (Fixpunkte).
Die verbleibenden 6 Punkte werden paarweise ausgetauscht, entsprechend ihrer Inzidenz
auf Linten, die 2u p «senkrechty sind (durch jeden Fixpunkt gibt es eine zu p senkrechte
Linze).

Permutationen 2. Art. Ein Punkt F bleibt fest, und die verbleibenden 8 Punkte werden
paarweise ausgetauscht, entsprechend ihrer Inzidenz auf Linien durch F.

K1) Jiz0)

~
x+y=0

Figur 15 Figur 16

Zu den Permutationen 1. Art gehéren etwa

ABCDEFGH]| . _ [ABCDEFGH]|
HBEJCFGAD|’ ‘" |AGDCJFBHE|’

und als Beispiele von Permutationen 2. Art nennen wir

_ |ABCDEFGH] _ |ABCDEFGH]| o _ {ABCDEFGH] )
i ]HG]EDFBAC}’ ¢ lDFEACBG]H}’ H " \FEDCBAJHG

Die Permutationen 1. Art erzeugen nun eine endliche Gruppe ®*, die auch die Per-
mutationen 2. Art enthdlt. Man bestétigt zum Beispiel leicht auf Grund der Permu-
tationsschemen, dass 2 = 2, 0 2 ist. Nennen wir jetzt die Permutationen 1. Art
Gruppen-Geraden, die Permutationen 2. Art Gruppen-Punkte, so befriedigt die
Gruppe G* mit diesen ausgezeichneten Elementen die Bachmannschen Axiome und
gleichzeitig auch die beiden euklidischen Zusatz-Axiome.
Die Struktur der Gruppe G* ist leicht iibersehbar; sie umfasst 72 Abbildungen,
und zwar neben der Identitit,
8 Translationen (4 Richtungen mit je 2 Schieb-Vektoren),

27 Drehungen (9 Drehzentren mit je 3 Drehwinkeln),

12 Geradenspiegelungen (Permutationen 1. Art),

24 Schubspiegelungen (zu jeder Linie gibt es 2).
Man kann unsere euklidische Ebene mit 9 Punkten und 12 Geraden auch auf ana-
lytischem Wege gewinnen. Wir betrachten dazu den Koérper K der Restklassen

ABCDEFGH]
GHJDEFABC|’

p =

-

") Das Permutations-Schema gibt an, wie die Bilder der 9 Punkte liegen. Bei X2y geht etwa 4 an die
Stelle von F, B an die Stelle von E und C an die Stelle von D,



34 M. Jecer: Uber die gruppenalgebraische Struktur der Elementargeometrie (Fortsetzung)

mod 3; seine Elemente seien mit 0, 1 und 2 bezeichnet. Die affine Geometrie iiber K,
besteht aus den Punkten (a,, a,) mit a; € K,; es gibt 9 derartige Zahlenpaare, da fiir
a, und a, je drei Moglichkeiten offenstehen. Andererseits sind die Geraden durch
lineare Gleichungen

G1¥+ gy +g=0 mit g;eK; und (g, g) + (0,0)

gekennzeichnet. Hiezu bestehen 3 (32 — 1) = 24 Moglichkeiten, wobei aber zu
beachten ist, dass die Multiplikation einer Gleichung mit dem Element 2 zu einer
neuen Gleichung fiir dieselbe Gerade fithrt. Bei unserer Aufzdhlung wird also jede
Gerade zweimal gezahlt. Die affine Geometrie tiber dem Korper K, besteht aus 9 Punkten
und 12 Geraden.

Wir ziehen jetzt aus den linearen Substitutionen iiber K,

x=a,,%x+a +a ] a4 a
¥ 11 12 Y 13 it A 11 %12 0
Y =Gy X + Ay Y + Ay Qg1 Agy
jene heraus, deren Matrix
M a1 %
gy Qoo

orthogonal ist. Sie bilden die sog. orthogonale Gruppe iiber K,. Thre Anzahl lisst sich
leicht abzihlen, wenn wir von der folgenden Zusammenstellung aller orthogonalen
zwei-reihigen Matrizen iiber K, ausgehen8):

HIN !
B9 GO (o (2

Aus jeder dieser 8 Matrizen gehen nun je 9 orthogonale Substitutionen hervor, da fiir
a,3 und a4, in K4 9 Kombinationsmoglichkeiten offen stehen. Man bestitigt ohne wei-
teres, dass unsere Bewegungsgruppe ®* isomorph ist zur Gruppe der orthogonalen
Substitutionen iiber dem Korper K. Die Figur 16 zeigt eine mogliche Identifikation
der 9 Punkte unseres Modells mit den Punkten iiber Kj,.

Es sei noch darauf hingewiesen, dass in unserer endlichen euklidischen Ebene die
freie Beweglichkeit fehlt. Es gibt zum Beispiel Geraden, die sich in der Bewegungs-
gruppe &* nicht ineinander {iberfiithren lassen. So ist sofort ersichtlich, dass p nicht
in r transformierbar ist, da in * 45°-Drehungen fehlen. Die gesuchte Transformation
ist erst in der iibergeordneten affinen Gruppe moglich.

Der an friiherer Stelle bewiesene Satz iiber die Mittelsenkrechten im Dreieck ist in
unserem Modell trivial; es enthilt nimlich nur rechtwinklige Dreiecke.

Mit der Existenz von endlichen euklidischen Ebenen stellt sich natiirlich sofort
die Frage nach endlichen nichteuklidischen Ebenen. Ein diesbeziigliches Modell hitte
unsere Betrachtungen zur metrischen Geometrie in gewissem Sinne abgerundet. Wir
miissen aber leider darauf verzichten. Ein Ergebnis der Bachmannschen Schule aus
neuerer Zeit besagt, dass jede endliche Gruppe, die unsern Axiomen I bis V geniigt,

8) Die erste Zeile enthilt die Matrizen mit 4 = 1; aus ihnen gehen die gleichsinnigen Kongruenzen
hervor, Fiir die Matrizen der zweiten Zeile ist 4 = 2; sie filhren zu den ungleichsinnigen Abbildungen.
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notwendigerweise euklidisch ist. Der Sonderfall der euklidischen Geometrie fillt auch
hier recht deutlich heraus. Auf der andern Seite zeigt das Bachmannsche Axiomen-
System aber auch, dass weite Gebiete der Geometrie ganz ohne Stetigkeitsvoraus-
setzungen erfassbar sind.

Unser Abstecher von der Schulgeometrie in die allgemeine metrische Geometrie
offenbart den Wandel in der geometrischen Forschung, der in einer vermehrten
Algebraisierung dieses Gebietes zum Ausdruck kommt. Er lisst auch deutlich her-
vortreten, dass sogar die geometrische Grundlagenforschung von dieser Algebraisie-
rung erfasst worden ist. y M. JEGER, Luzern/Ziirich
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Verallgemeinerungen des Satzes von DANDELIN

M. CuasLEs!) hat den bekannten Satz von G. P. DANDELIN?) iiber die Brennpunkte
des ebenen Schnittes eines Drehkegels in folgender Weise verallgemeinert:

Sind zwei Fldchen zweiter Ovdnung einander einbeschrieben, so schneidet die Tangential-
ebene in einem Nabelpunkt dev eimen Fldche die anderve in einem Kegelschwitt, die jenen
Nabelpunkt zum Brennpunkt hat. Bei DANDELIN ist die eine Flache eine Kugel, die einem
Kegel einbeschrieben ist.

Dieser Satz ist aber nur ein Spezialfall eines noch allgemeineren, namlich: Sind zwei
Flichen zweiter Ovdnung einer dritten einbeschvieben und beviihven sie einander in eimem
Punkt, der fiiv die eine Fldche ein Nabelpunkt ist, so ist er auch fiir die zweite Fliche Nabel-
punki.

Denn entartet die eine Fliache zu einem Kegelschnitt, so werden ihre Erzeugenden zu
den Tangenten dieses Kegelschnittes, insbesondere aber die isotropen Erzeugenden in
einem Nabelpunkt zu isotropen Tangenten des Kegelschnittes, der Nabelpunkt also zum
Brennpunkt. Ist insbesondere die eine einbeschriebene Fliche eine Kugel, so ist die Be-
rithrung mit der zweiten immer ein Nabelpunkt.

Aber auch diese Verallgemeinerung ist nur ein Spezialfall eines weiteren, in der dar-
stellenden Geometrie oft benutzten und auf G. MoNGE?3) zuriickgehenden Satzes, nimlich:

Sind zwei Flichen zweiter Ovdnung einer dvitten einbeschvieben, so zevfdllt ihve Durch-
dringungskurve in zwei Kegelschnitte.

Denn haben diese beiden Flichen eine Beriihrung, so zerfillt der eine Kegelschnitt in
ein beiden Flichen gemeinsames Erzeugendenpaar durch den Beriithrungspunkt. Im Falle
eines Nabelpunktes ist dieses Paar isotrop.

Schliesslich kann auch dieser Satz als Spezialfall eines noch allgemeineren aufgefasst
werden, nidmlich:

Gehoven die Quadriken zweier Biischel einem Netz4) an, so haben die Biischel eine Quadrik
gemein.

1) Rapport sur les progrés de la géométrie, (Paris 1870) p. 73-74.

%) Bruxelles nouv. mém. 2, 172 (1822); 3, 3 (1826).

8) Corr. polyt. 2, 321 (1812); 3, 299. (1816).

%) Vgl. G. Lamt: Examen des différentes méthodes employées pour résoudre les problémes de géométrie
{Paris 1818), -
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