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Sur l'equation diophantienne

(*2-i)(y2-D [(^)2-i]2

Le but de cet article est de trouver toutes les Solutions de l'equation

(*3-D(y2-D [(^-i]2 (i)

en nombres naturels x et y, oü x < y.
Vu l'identite

(x2 - 1) (y2 - 1) - [(^)2 - l]2= ~ (x + y)*(x2-6xy + y2 + 8)

l'equation (1) Equivaut (pour x et y positifs) _t l'equation

x2 - 6 x y + y2 + 8 0, (2)

c'est-ä-dire a l'equation
(y-3x)2=8(x2-l). (3)

II resulte de (3) que l'entier y — 3 x est divisible par 4, donc _y — 3 x 4 2, oü z est

un entier et (3) donne

x2-2z2=l. (4)

D'autre part, soit x un nombre naturel et z un entier satisfaisant ä l'equation (4).
On aura donc x > j/2 | £ |, d'oü 3 # > 3 j/2 | z | > 4 | z | et le nombre y 3 # + 4 z

sera naturel, et l'equation (4) donne l'equation (3), donc aussi l'equation (1).

Or, si y > x, on a.3x + 4z>x, donc x + 2 z > 0. S'il etait z < 0, on aurait
— 2 2 < #, d'oü 4 z2 < x2 1 + 2 z2, d'oü 2 *2 < 1, ce qui est impossible. On a donc

z>0.
On obtient donc toutes les Solutions de l'equation (1) en nombres naturels x et

y > x en trouvant toutes les Solutions de l'equation (4), oü x est un nombre naturel
et z un entier ;> 0, et en posant y 3 x + 4 z.

Pour j? 0 on trouve x 1, doncy 3. Nous pouvons donc enoncer la proposition
suivante:

Ow obtient toutes les Solutions de l'equation (1) en nombres naturels xety> x, autres

que la Solution x — 1, y — 3, en trouvant toutes les Solutions de l'equation (4) en nombres

naturels x et z et en posant y 3 x + 4 z.

Les Solutions de l'equation (4) en nombres naturels x et z sont bien connues.
Comme on sait, elles sont toutes contenues dans la suite infinie (xn, zn) (n 1, 2j...),
oü

%_=3, ^-2 et xH+1 3xn + 4zH9 zn+1 2xn + 3zn

D'apres notre proposition, si (xn, zn) est une Solution de l'equation (4), xn etyn
3 xn + 4 zn xn+1 est une Solution de l'equation (1).
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Les formules xn+1 3 xn + 4 zn, xn+2 3 xn+1 + 4 zn+1 et zn+1=2xn + 3zn
donnent tout de suite xn+2 6 xn + 1 — xn (n 1, 2,...)

Nous obtenons ainsi le theoreme suivant:
Toutes les Solutions de l'equation (1) en nombres naturels x et y, oü x < y, sont

x xn, y xn+1, (n 0,1,2, (5)

oüa;„ (n 0,1, 2, est la suite infinie determinee par les conditions

x0=l, xt 3, xn+2 6xn+1 -xn (n 0, 1, 2,...). (6)

II resulte des formules (6) (par exemple par l'induction) que pour n pairs les

nombres xn sont de la forme 4 t + 1, et pour n impairs de la forme 4 £ + 3. Les nombres

xn+1 — xn, oü n 0, 1, 2, sont donc toujours pairs, non divisibles par 4, et les

nombres (xn+1 — xn)/2 sont donc tous impairs. En posant

X Xn, y Xn + 1, Z= X*^~Xn

pour n 0, 1,2, on obtient donc toujours une Solution de l'equation

(x2 - 1) (y2 - 1) (*2 - l)2 (7)

en nombres impairs x, y, z*).
L'equation (7) a donc une infinite de Solutions en nombres impairs x, y, z, oü

0 < x < y, ce qui est d'ailleurs connu (voir [1] et [2]).
Or, il est ä remarquer que K. Szymiczek a trouve une Solution de l'equation (7),

oü le nombre x est pair et les nombres y et z sont impairs, notamment x 4, y 31,

z 11. Nous ne savons pas s'il existe une infinite de telles Solutions de l'equation (7)
ni si eile a une Solution en nombres pairs distincts.

Remarquons qu'on peut demontrer de la facon tres simple suivante que l'equation
(1), ou, ce qui revient au meme, l'equation (2), a une infinite de Solutions en nombres
naturels x et y > x. Vu l'identite

y2 - 6 y (6 y - x) + (6 y - x)2 + 8 - x2 - 6 x y + y2 + 8

si x et y > x sont des nombres naturels satisfaisant k l'equation (2), les nombres

u~y et v 6y — x satisfont k l'equation u2 — 6 u v + v2 + 8 0 et on a v > u.
Les nombres u=y>xetv=y+(5y — x) > y representent donc une Solution de

l'equation (2) en nombres naturels respectivement plus grands que x et y. Vu que
l'equation (2) a evidemment la Solution x 1, y 3, on en conclut qu'elle a une
infinite de Solutions en nombres x et y > x, c. q. f. d.

A. Schinzel et W. Sierpinski, Varsovie
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*) Ajoute pendant la correction des 6preuves) Cf. la Solution du probleme 5020 de M. J. A. H. Hunter
(Amer. Math. Monthly 70, 574 (1963)).
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