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Sur I’équation diophantienne
@—1 -1 = [(25E) 1)

Le but de cet article est de trouver toutes les solutions de 1'équation

@-1p2-1)=[(255) - 1] M

en nombres naturels x et y, ot x < y.
Vu l'identité
1

@-162—1) - [(2F -1 =~ G+ =62y +y2+8)

I'équation (1) équivaut (pour x et y positifs) a I'’équation

2 —6xy+9y2+8=0, (2)
c’est-a-dire a I'équation
(y —3%)? =8 (x* —1). (3)

Il résulte de (3) que l'entier y — 3 x est divisible par 4, donc y — 3 x =4 z, ol z est
un entier et (3) donne
22— 222=1. (4)

D’autre part, soit x un nombre naturel et z un entier satisfaisant a 1'équation (4).
On aura donc x > )2 | z|, dou3x>3)Y2|z|>4|z|etlenombrey=3x+ 4z
sera naturel, et I'équation (4) donne 'équation (3), donc aussi I'équation (1).

Or,siy>2x,ona3x+4z2>x, donc x4+ 22> 0. S'il était z < 0, on aurait
—2z2<x,dou422<x2=1+4 222 d'ol1 222 <1, ce qui est impossible. On a donc
2> 0.

On obtient donc toutes les solutions de 'équation (1) en nombres naturels x et
y > x en trouvant toutes les solutions de I’équation (4), ou x est un nombre naturel
et z un entier > 0, et en posant y =3 x 4 4 2.

Pour z = 0 on trouve x = 1, donc y = 3. Nous pouvons donc énoncer la proposition
suivante:

On obtient toutes les solutions de I'équation (1) en nombres naturels x ety > x, aulres
que la solution x = 1,y = 3, en trouvant toutes les solutions de I’équation (4) en nombres
naturels x et z et en posant y = 3 x + 4 z.

Les solutions de I'équation (4) en nombres naturels x et z sont bien connues.
Comme on sait, elles sont toutes contenues dans la suite infinie (x,, 2,) (n =1, 2, ...),
ou

%n=3, =2 e =x,,,=3x,+42,, 2,,,=2x,+32,

D’aprés notre proposition, si (x,, 2z,) est une solution de 'équation (4), x, et y, =
3x,+ 4z, = x,,, est une solution de I'équation (1).
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Les formules x,,,=3%,+4z2,, %,.0=3%,,1+42,,1 et 2,,,=2x,+32,
donnent tout de suite x,,,=6x,,,—x, n=1,2,..).

Nous obtenons ainsi le théoréme suivant:
Toutes les solutions de I'équation (1) en mombres naturels x et y, on x < y, sont

X=%,, Y=X43. ®=0,12 ..}, (5)

oux,(n=0,1,2, ...) est la suite infinie déterminée par les conditions

%=1, 2%=3, %,,=06x,.,—%, (n=0,1,2,..). (6)

Il résulte des formules (6) (par exemple par I'induction) que pour # pairs les
nombres x, sont de la forme 4 ¢ 4- 1, et pour » impairs de la forme 4 ¢ + 3. Les nombres
Xpi1— %,, 00 n=0,1,2, ..., sont donc toujours pairs, non divisibles par 4, et les
nombres (¥,,,; — %,)/2 sont donc tous impairs. En posant

g = Yn+1— ¥y

x:xn: y:xn+1’ - 2

pour n =0, 1, 2, ... on obtient donc toujours une solution de ’équation
(=1 (2 —1) = (*—1) (7)

en nombres impairs x, y, z*).

L’équation (7) a donc une infinité de solutions en nombres impairs #, y, 2, ol
0 < x <y, ce qui est d’ailleurs connu (voir [1] et [2]).

Or, il est a remarquer que K. SzyMICZEK a trouvé une solution de ’équation (7),
ou le nombre x est pair et les nombres y et z sont impairs, notamment x = 4, y = 31,
z = 11. Nous ne savons pas s’il existe une infinité de telles solutions de I’équation (7)
ni si elle a une solution en nombres pairs distincts.

Remarquons qu’on peut démontrer de la fagon trés simple suivante que I'équation
(1), ou, ce qui revient au méme, 1'équation (2), a une infinité de solutions en nombres
naturels x et y > x. Vu l'identité

yv2—6y6y—2%)+ 6y —%x24+8=x2—-6xy+y2+8,

si x et y > x sont des nombres naturels satisfaisant & 1’équation (2), les nombres
u=1y et v= 6y — x satisfont 4 1’'équation > —6uv 4+ 12+ 8=0et ona v > u.
Les nombres u =y > x et v =y + (5y — %) > y représentent donc une solution de
I’équation (2) en nombres naturels respectivement plus grands que x et y. Vu que
I'équation (2) a évidemment la solution x = 1, y = 3, on en conclut qu’elle a une
infinité de solutions en nombres x et y > x, c.q.f.d.

A. ScHINZEL et W. SIERPINSKI, Varsovie
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*) Ajouté pendant la correction des épreuves) Cf. la solution du probléme 5020 de M. J. A. H. HUNTER
(Amer. Math. Monthly 70, 574 (1963)).
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